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Abstract: Organic solvent-tolerant (OST) enzymes have been discovered in psychrophiles. Cold-
adapted OST enzymes exhibit increased conformational flexibility in polar organic solvents resulting
from their intrinsically flexible structures. Proteus mirabilis lipase (PML), a cold-adapted OST lipase,
was used to assess the contribution of salt bridges near the active site involving two arginine residues
(R237 and R241) on the helix η1 and an aspartate residue (D248) on the connecting loop to the thermal
and organic solvent stabilities of PML. Alanine substitutions for the ion pairs (R237A, R241A, D248A,
and R237A/D248A) increased the conformational flexibility of PML mutants compared to that of the
wild-type PML in an aqueous buffer. The PML mutants became more susceptible to denaturation
after increasing the dimethyl sulfoxide or methanol concentration than after a temperature increase.
Methanol was more detrimental to the structural stability of PML compared to dimethyl sulfoxide.
These results suggest that direct interactions of dimethyl sulfoxide and methanol with the residues
near the active site can have a destructive effect on the structure of PML compared with the global
effect of heat on the protein structure. This study provides insight into the conformational changes
within an OST enzyme with different effects on its thermal and organic solvent stabilities.

Keywords: catalysis; cold-adapted enzyme; conformational flexibility; organic solvent-tolerant
enzyme; lipase; Proteus mirabilis; salt bridge; stability

1. Introduction

Organic solvents increase the solubility of non-water-soluble substrates in enzymatic
reactions [1]. On the other hand, organic solvents also strip off water molecules from
the surface of enzymes and penetrate deeper into the active site, causing denaturation of
the protein structure [2,3]. The varying hydrophobicity of organic solvents has different
effects on the activity of enzymes [4]. The structure of the enzymes is similar in water
and pure organic solvents because of the high rigidity of the non-polar organic solvents
and their inert nature [5–7]. The surface charge distribution and polar residues in the
loops are crucial for maintaining the stability of the enzymes in polar organic solvents [8,9].
Organic solvent-tolerant (OST) enzymes have overcome these inactivation challenges and
attracted considerable attention as biocatalysts in the presence of organic solvents, including
the synthesis of flavors and fragrances, regio- and stereo-selectivity of racemic mixtures,
production of biofuels and biodegradable polymers, and recycling/degradation of polymer
compounds [10–13]. OST enzymes can also perform synthetic reactions by reversing the
thermodynamic equilibrium in organic solvents [11].

OST enzymes have recently been discovered in psychrophiles [14–21]. Cold-adapted
OST enzymes are promising biocatalysts for industrial applications at colder temperatures
because of the low Gibbs free energy of activation (∆G‡), resulting from their inherently
flexible structures and the stability in organic solvents [22]. Nevertheless, their flexible
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structure makes the enzymes susceptible to denaturation at elevated temperatures and
high organic solvent concentrations [23]. The effects of polar organic solvents were evident
in cold-adapted OST lipases PML and LipS with weaker thermal stability [24]. Introducing
new interactions in PML increased the thermal and organic solvent stabilities of PML [25].
On the other hand, not every new interaction improved the organic solvent stability of PML,
even though its thermal stability was increased [25]. Studies on thermophilic enzymes also
showed that not all thermophilic enzymes are OST enzymes [26,27]. The link between the
thermal and organic solvent stabilities of OST enzymes is an important topic in organic
solvent enzymology [27], but it has not been fully elucidated.

In this study, the cold-adapted OST lipase PML (EC 3.1.1.3, PDB code 4GW3), an
α/β hydrolase with a wide active site [14], was chosen as a model to investigate the roles
of intramolecular salt bridges (combination of ionic bonding and hydrogen bonding) in
thermal and organic solvent stabilities. The catalytic triad of PML consists of S79, D232,
and H254 residues [14]. PML has a substrate preference for p-nitrophenyl laurate (pNPL)
and is tolerant of DMSO, ethanol, and methanol at concentrations up to 50% [24]. Two
arginine residues (R237 and R241) on the helix η1 and an aspartate residue (D248) on the
connecting loop form salt bridges, thereby stabilizing the catalytic site (Figure 1a). While
R237 and D248 are highly conserved in many lipases, R241 is present in PML and forms an
additional salt bridge with D248 (Figure 1b). Another basic amino acid residue, histidine,
is conserved in the corresponding position of R241 in other lipases (Figure 1b).
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Alanine-scanning mutations were produced in the R237, R241, and D248 residues. A 
double alanine substitution (R237A/D248) was also generated to confirm the absence of 
salt bridges. This paper reports that salt bridges holding the active-site catalytic residues 
of PML in the correct conformation and orientation play a distinct role in maintaining its 
stability in thermal and organic solvents. 

Figure 1. Active-site structure of PML and multiple sequence alignments. (a) View of the salt bridges
involving R237 and R241 on the helix η1 and D248 on the connecting loop. The catalytic D232 and
H254 are located on the connecting loops before and after the helix η1, respectively. (b) Multiple
sequence alignments of OST lipases. PML [14], LipS [15], LipA [28], LipC12 [29], and Lip9 [30].
Catalytic serine, aspartate, and histidine (yellow), R237 (orange), R241 (green), and D248 (red).

Alanine-scanning mutations were produced in the R237, R241, and D248 residues. A
double alanine substitution (R237A/D248) was also generated to confirm the absence of
salt bridges. This paper reports that salt bridges holding the active-site catalytic residues
of PML in the correct conformation and orientation play a distinct role in maintaining its
stability in thermal and organic solvents.
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2. Results
2.1. Protein Expression and Purification

The role of the proposed salt bridges in the thermal and organic solvent stabilities
of PML was examined by replacing the residues, R237, R241, and D248, with a small
aliphatic amino acid, alanine. Hence, four mutants were generated: R237A, R241A, D248A,
and R237A/D248A. The wild-type (WT) and mutant PML enzymes were expressed in
E. coli BL21 (DE3) as soluble proteins. The recombinant PML enzymes were purified to
homogeneity by nickel-chelate affinity chromatography followed by Q-Sepharose anion-
exchange chromatography (Table 1).

Table 1. Purification summary of the WT and mutant PML enzymes.

Total
Protein (mg)

Total Activity
(units)

Specific Activity
(units/mg) Yield (%) Purity (%)

WT
Cell lysate 121 8935 74 100 25

HisTrap 14 3457 247 39 83
Q-Sepharose 11 3269 297 37 100

R237A
Cell lysate 73 8673 119 100 21

HisTrap 9 4569 508 53 90
Q-Sepharose 6 3389 565 39 100

R241A
Cell lysate 52 2336 45 100 26

HisTrap 7 976 139 42 80
Q-Sepharose 5 874 175 37 100

D248A
Cell lysate 71 3965 56 100 19

HisTrap 11 2387 217 60 73
Q-Sepharose 7 2086 298 53 100

R237A/
D248A

Cell lysate 93 10715 115 100 14
HisTrap 7 4571 653 43 77

Q-Sepharose 5 4239 848 40 100

Protein concentration was determined by Bradford assay using bovine serum albumin as a standard protein.
Enzyme activity was measured as described in the Materials and Methods section.

The recombinant WT and mutant PML enzymes, with an approximately 33 kDa
molecular weight, appeared as a single band on an SDS-polyacrylamide gel (Figure 2). The
WT and mutant PML enzymes showed the same substrate preference for pNPL.
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2.2. Effects of Temperature and Organic Solvent on the Enzymatic Activity

WT PML showed the optimal activity at 35 ◦C (Figure 3a). The optimal temperature of
the R237A and R237A/D248A mutants was 35 ◦C, whereas the R241A and D248A mutants
had a 10 ◦C lower optimal temperature of 25 ◦C.
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The effects of organic solvents on the PML activity were evaluated in 10–40% DMSO
and methanol, respectively, at the optimum temperature for 2 min. The enzymatic activity
in 10–40% DMSO was in the order of WT ≈ R241A > D248A > R237A > R237A/D248A
(Figure 3b). On the other hand, PML mutants showed lower activity in 10–40% methanol
than at the same concentrations of DMSO (Figure 3c). Interestingly, the activity of the
mutant R241A decreased with increasing methanol concentration (Figure 3c). The double
mutant overall showed the lowest enzymatic activity among the mutants in the presence of
organic solvents.

2.3. Changes in Conformational Flexibility

As cold-adapted enzymes exhibit an inherently flexible structure, the mutation-
induced flexibility changes occurring in PML were assessed using the acrylamide-induced
quenching of protein fluorescence in an aqueous buffer (excitation at 280 nm). PML has
1 tryptophan and 15 tyrosine residues. Alanine substitution led to a more flexible structure
in all mutants than the WT (Figure 4).
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Figure 4. Acrylamide-induced quenching of PML enzyme fluorescence. F0—the fluorescence intensity
in the absence of acrylamide; F—fluorescence intensity in the presence of acrylamide. Data presented
correspond to the mean of three experiments.

2.4. Thermal Stability

The thermal stability of the WT and mutant PML enzymes was evaluated under
their optimal operating conditions after incubation of the enzymes in an aqueous buffer
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at 15–35 ◦C for 2 h at 30 min intervals (Figure 5). WT maintained 83% activity over the
temperature range for 2 h. Although D248A showed similar activity to WT, the activity of
other PML mutants decreased with increasing temperature from 15 ◦C to 35 ◦C (Figure 5).
The thermal stability was in the order of WT ≈ D248A > R237A > R241A > R237A/D248A.
As expected, the double mutant R237A/D248A showed the lowest thermal stability among
the mutants, exhibiting 65% and 50% activity after incubation at 25 ◦C and 35 ◦C for 2 h,
respectively. Interestingly, the mutant R241A exhibited reduced thermal stability compared
to R237A. These results suggest that the salt bridge involving R241 is more important to
the thermal stability of PML than the interactions involving the conserved R237 residue in
many lipases.
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2.5. Organic Solvent Stability

The effects of alanine substitution on the organic solvent stability of WT and mutant
PML enzymes were evaluated in 10–40% of DMSO or methanol at 25 ◦C for up to 3 h
(Figure 6). WT maintained its activity quite well in 10–40% DMSO or methanol for 3 h:
approximately 83% activity in 40% DMSO and 80% activity in 40% methanol (Figure 6).

On the other hand, the PML mutants showed reduced activity in the presence of
DMSO or methanol. The activity of the PML mutants over time decreased with increasing
organic solvent concentration (10–40%) (Figure 6). Among the PML mutants, D248A
showed the highest activity, while the double mutant R237A/D248A showed the lowest,
both in the presence of DMSO or methanol. The results for the PML mutants in 10–30%
organic solvents were consistent with the thermal stability profile of the PML mutants
(Figure 5). In particular, the double mutant completely lost its activity in 40% DMSO or
methanol within 1 h. Although R241A showed slightly lower activity in 10–30% organic
solvent than R237A, R237A showed lower activity in 40% organic solvent than R241A.
Hence, PML mutants with broken salt bridges involving R237 and R241 are susceptible to
denaturation by organic solvents.

The Tm values of the WT and mutant PML enzymes in 10–40% DMSO or methanol
were also compared using SYPRO orange-based thermal shift analysis. The Tm value
of WT (64.9 ◦C) was similar to the Tm values of the PML mutants (62.2–65.0 ◦C) in an
aqueous buffer (Table 2). On the other hand, the Tm values of the PML enzymes decreased
with increasing DMSO or methanol concentration (Table 2). The WT and mutant PML
enzymes showed lower Tm values in 40% DMSO (39.6 ◦C for WT and 38.9–41.1 ◦C for the
mutants), and even lower Tm values in 40% methanol (36.2 ◦C for WT and 34.5–36.1 ◦C for
the mutants).
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Table 2. Melting temperature of WT and mutant PML enzymes in 0–40% DMSO and methanol.

Concentration (%) Tm (◦C)
WT R237A R241A D248A R237A/D248A

buffer 64.9 ± 0.3 65.0 ± 0.6 62.2 ± 0.2 62.8 ± 0.1 63.4 ± 0.2

DMSO

10 61.6 ± 0.8 62.1 ± 0.7 63.6 ± 0.3 62.4 ± 0.1 63.1 ± 0.5
20 56.5 ± 0.6 57.2 ± 0.2 56.1 ± 0.9 57.9 ± 0.4 55.8 ± 0.7
30 46.5 ± 1.9 46.9 ± 0.4 47.2 ± 0.4 46.3 ± 1.1 45.9 ± 0.9
40 39.6 ± 1.4 40.3 ± 0.9 38.9 ± 0.7 41.1 ± 0.9 40.8 ± 1.1

methanol

10 60.4 ± 0.9 59.8 ± 0.3 60.7 ± 1.2 59.3 ± 0.5 61.1 ± 0.6
20 53.4 ± 0.4 54.1 ± 1.3 53.9 ± 0.6 54.5 ± 0.7 54.3 ± 0.9
30 43.4 ± 1.1 42.7 ± 0.5 43.1 ± 0.8 43.5 ± 1.4 42.8 ± 0.9
40 36.2 ± 1.7 35.4 ± 2.2 34.5 ± 1.4 36.1 ± 2.3 35.7 ± 1.9

Data presented correspond to the mean ± S.D. of three experiments.

These results are consistent with the activity of PML mutants in 10–40% DMSO and
methanol (Figure 3b,c). Interestingly, the loss of salt bridges did not lead to significant
changes in the Tm values of the PML mutants compared to those of WT in organic solvents.

2.6. Kinetic and Thermodynamic Properties

Next, the kinetic and thermodynamic properties of WT and mutant PML enzymes were
investigated (Table 3). WT showed a Km value of 370 µM, a kcat value of 59 s−1, and a
kinetic efficiency of 0.16 s−1µM−1 at 25 ◦C. Alanine substitution did not significantly affect
the kinetic parameters of R237A and R241A, but D248A showed a 2.1-fold lower Km value
while maintaining a similar kcat value to that of WT, which led to a 1.9-fold higher catalytic
efficiency. Interestingly, the double mutant, R237A/D248A, showed a 1.9-fold higher Km value
and 4.0-fold higher kcat value, leading to a 2-fold higher catalytic efficiency than WT. This
observation is consistent with the increased conformational flexibility of the double mutant
and its reduced stability in 10–40% DMSO or methanol and elevated temperatures. Hence,
the salt bridges are responsible for maintaining the active-site stability of PML.
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Table 3. Kinetic and thermodynamic parameters of WT and mutant PML enzymes.

Km
(µM)

kcat
(S−1)

kcat/Km
(µM−1 S−1)

∆G‡

(kJ mol−1)
∆H‡

(kJ mol−1)
T∆S‡

(kJ mol−1)

WT 370 ± 12 59 ± 4 0.16 ± 0.02 64.0 17.4 −46.6
R237A 241 ± 7 42 ± 1 0.18 ± 0.01 62.3 17.4 −44.9
R241A 234 ± 15 58 ± 9 0.24 ± 0.03 64.2 17.3 −46.9
D248A 177 + 21 53 ± 8 0.30 ± 0.10 64.3 12.8 −51.5
R237A/
D248A 716 ± 42 234 ± 10 0.32 ± 0.40 56.5 10.6 −45.8

Data presented correspond to the mean ± S.D. of three experiments.

The Gibbs free energy of activation (∆G‡), enthalpy of activation (∆H‡), and entropy
(T∆S‡) of WT were determined to be 64 kJ mol−1, 17.4 kJ mol−1, and −46.6 kJ mol−1,
respectively. Single alanine substitution did not affect the thermodynamic properties
of R237A and R241A. D248A showed a larger T∆S‡ value (–51.5 kJ/mol), indicating a
substantial change in its active-site structure, but the mutation did not lead to increased
catalytic activity. On the other hand, the double mutant, R237A/D247A, showed a lower
∆G‡ value (64.3 kJ mol−1) compared to WT and other mutants, which is consistent with its
higher catalytic rate, but did not show a flexible active-site structure from its T∆S‡ value
(−45.8 kJ mol−1).

2.7. Circular Dichroism (CD) Spectra Analysis

The CD spectra were measured to evaluate the mutation-induced secondary structure
changes in the WT and mutant PML enzymes (Figure 7).
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WT consisted mainly of α-helices (46.3%) with a minor portion of β-strands (5.7%).
The PML mutants (R241A, D248A, and R237A/D248A) had α-helix and β-strand contents
similar to WT PML. On the other hand, R237A showed a different CD spectrum than WT
and the other PML mutants, with a 1.28-fold higher α-helix content (59.4%) but a slightly
lower β-strand content (4.5%).

3. Discussion

Considerable efforts have been made to increase the stability of native enzymes in
organic solvents for industrial applications [10,31]. Since the identification of the first OST
lipase Lip9 from Pseudomonas aeruginosa LST-03 [30], OST enzymes have been reported
in psychrophiles. Cold-adapted enzymes generally exhibit reduced intramolecular in-
teractions and show intrinsically flexible structures [32,33]. In particular, cold-adapted
enzymes exhibit a higher lysine/arginine ratio, lower proline content, glycine clustering
at catalytic site, and increased loop length [34]. Arginine participates in the formation of
more hydrogen bonds and ionic interactions than lysine, whereas proline reduces the struc-
tural flexibility. The reduced surface hydrophobicity of cold-adapted enzymes provides
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tight binding of surface charged and polar residues to available water molecules, thereby
increasing its OST property [35]. Directed evolution has been more successful in attaining a
thermal and increasing organic solvent stability than rational design because the hot spots
of mutation are not easily identified [31,36]. Introducing charged residues on the protein
surface via directed evolution further increased the stability of the OST enzymes in polar
organic solvents [31,37].

Despite the active site being more flexible than the overall protein structure in cold-
adapted enzymes [38], the active site should maintain the correct conformation and orienta-
tion of the catalytic residues [39]. The residues surrounding the catalytic site help provide
the correct spatial relationship. The salt bridge that stabilizes the α-helix with catalytic
aspartate and the β-strand with catalytic histidine (the interaction between R237 and D248
in PML) is highly conserved in many esterases, including hyperthermophilic esterase EstE1
(optimal temperature 70 ◦C) and mesophilic esterase rPPE (optimal temperature 50 ◦C) [40].
The disruption of the salt bridge in the structurally rigid EstE1 increased the conformational
flexibility of the protein significantly but had a lesser effect on the thermal stability [40]. In
contrast, the disruption of the salt bridge in the relatively flexible rPPE had a lesser effect on
the conformational flexibility but resulted in reduced thermal stability [40]. These results
are consistent with those on rPPE in that the alanine-substituted PML mutants showed
a larger change in thermal stability than conformational flexibility in an aqueous buffer
because the structure of PML is intrinsically flexible. Alanine substitution also affected the
conformation and stability of the PML mutants. Specifically, R237A showed a 1.28-fold
increase in α-helical content by mutations despite no change in the Tm value compared to
WT. On the other hand, the other PML mutants showed 1.6–2.8 ◦C lower Tm values despite
the similar α-helical content to WT.

Several studies showed that intramolecular interactions for both the thermal and
organic solvent stabilities of enzymes differ [25,27,41]. On the other hand, the specific
interactions in the enzyme active site responsible for the stability in an organic solvent have
not been elucidated. These results show that the salt bridges involving R237, R241, and
D248 play a more important role in the active-site stability of PML in organic solvents than at
elevated temperatures. The interactions of the organic solvents with enzymes are weak and
non-specific as the effect of organic solvents is only noticeable at high concentrations, and
the organic solvent itself does not bind to a specific site on the enzyme [42]. Polar organic
solvents exhibit detrimental effects on the stability of proteins, while enzymes are more
tolerant of non-polar organic solvents. DMSO is a polar aprotic solvent, and DMSO above
a certain concentration shows significant perturbations of protein secondary structure by
interfering with the intramolecular backbone C = O···H–N bonds [43]. On the other hand,
DMSO can also increase the enzyme activity by reducing aggregation [44]. By contrast, as a
polar protic solvent, methanol can interact with the protein via the hydrophobic interactions
and hydrogen bonding, thus destabilizing enzyme structure [45,46]. The similar but distinct
properties of DMSO and methanol exert different stability profiles of PML mutants in
organic solvents. DMSO and methanol lowered the Tm values of the PML WT and mutants,
as expected, in the order of aqueous buffer > DMSO > methanol. Considering that the
active site is the least stable structural element in cold-adapted enzymes [38], these results
suggest that direct interactions of DMSO and methanol with the residues near the active
site can have a more detrimental effect on the structure of PML compared to the global
effect of heat on the protein structure.

The structure of PML shows that R237 and R241 form ionic interactions with D248,
and also hydrogen bonds with Q230 and G182, respectively (Figure 8). Although another
aspartate residue D249 is located next to D248, the structure of PML suggests that the side
chain of D249 is more likely to form a salt bridge with the side chain of K247 (2.7 Å) rather
than with the side chain of R237 (5.4 Å) (Figure 8). Among the mutants, D248A showed
similar thermal stability to the WT but reduced solvent stability in DMSO and methanol
(Figures 5 and 6). These hydrogen bond formations between R237 and Q230 and between
R241 and G182 support the similar thermal stability of D248A to the WT.
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In conclusion, the conformational changes within the cold-adapted OST lipase PML,
involving salt bridges near the active site, have distinct effects on the thermal and organic
solvent stabilities of PML, with a larger effect on the organic solvent stability than the
thermal stability. The differences between the thermal and organic solvent stabilities of
OST enzymes may be distinguished further using intrinsically flexible cold-adapted OST
enzymes and molecular dynamics simulations.

4. Materials and Methods
4.1. Materials

The pml gene with a C-terminal six histidine-tag was synthesized at GenScript (Piscat-
away, NJ, USA). Pfu polymerase and restriction enzymes were purchased from Enzynomics
(Daejeon, South Korea), HisTrap, Desalting, and Q-Sepharose columns were acquired from
GE Healthcare (Piscataway, NJ, USA). The pET28a(+) expression vector was obtained from
Novagen (Madison, WI, USA). p-Nitrophenyl laurate (pNPL) was purchased from Sigma
(St. Louis, MO, USA). All other reagents were from Sigma unless noted otherwise.

4.2. Structural Modelling

The structural models of the PML mutants were constructed using the Swiss Model
(https://swissmodel.expasy.org, accessed on 1 June 2022) based on the crystal structure of
PML (PDB code 4GW3) [14]. The molecular graphics program UCSF Chimera was used to
display the structure of WT and mutant PML enzymes [47].

4.3. Site-Directed Mutagenesis

Alanine substitution of the PML mutants was generated by Pfu polymerase-based
site-directed mutagenesis using the following primers.

R237A 5′-CTTAGTTGGTGCCTCGAGTATG-3′ and
5′-CATACTCGAGGCACCAACTAAG-3′

R241A 5′-GCTCGAGTATGGCATTAGGTAAATTG-3′ and
5′-CAATTTACCTAATGCCATACTCGAGC-3′

D248A 5′-GATAAAGGCTGATTATGCGC-3′ and 5′-GCGCATAATCAGCCTTTATC-3′

For the generation of the double mutant R237A/D248A, the primers for D248A were
used for a polymerase chain reaction using the nucleotide sequence of R237A as a tem-

https://swissmodel.expasy.org
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plate. Mutated codons are underlined. The presence of mutation was confirmed by DNA
sequencing after PCR and subcloning.

4.4. Protein Expression and Purification

After subcloning genes into the pET28a(+) vector, recombinant WT and mutant PML
enzymes were expressed in Escherichia coli BL21 (DE3). A single colony of E. coli BL21
(DE3) grown on an LB/kanamycin plate was picked to grow overnight to form the start-
ing culture. After the addition of 1% of the starting culture to 100 mL of freshly pre-
pared LB broth, cells were propagated at 37 ◦C until they reached the mid-log phase
(OD600 = 0.6–0.8). The growth temperature was then lowered to 18 ◦C and 1 mM iso-
propyl β-D-1-thiogalactopyranoside (IPTG) was added. Cells growth was continued for an
additional 16 h after the IPTG induction.

After harvesting the cells at 13,000× g for 10 min, cells were ruptured by sonication in
buffer A (20 mM Tris HCl, pH 7.5, 100 mM NaCl, and 5% glycerol) and the centrifugation-
recovered lysate supernatant. Imidazole concentration was adjusted to 5 mM for nickel-
chelate affinity chromatography. The WT and mutant PML enzymes were purified using a
1 mL HisTrap column with a step gradient (100 mM and 500 mM imidazole) in buffer A on
an AKTA Explorer system (GE Healthcare, Piscataway, NJ, USA). Next, the proteins were
further purified using a 1 mL Q-Sepharose column with a linear gradient of 25 to 1000 mM
KCl in buffer B (25 mM Tris HCl, pH 7.5, 25 mM KCl, and 5% glycerol). All purification
steps were conducted at 4 ◦C. Purified enzymes were stored at −80 ◦C by flash freezing
them in liquid nitrogen.

4.5. Enzyme Assay and Thermal Stability

Enzyme activity of WT and mutant PML enzymes was determined in reaction buffer
(100 mM Tris HCl, pH 8.0, 100 mM NaCl, and 5% glycerol) with pNPL using a Shimadzu UV-
1800 spectrophotometer (Kyoto, Japan) at 405 nm with a final subtraction of the background
hydrolysis of pNP esters. The optimal temperature of the enzyme was measured at 4–45 ◦C
for 2 min. The thermal stability of the enzymes was determined by measuring the residual
activity at the optimum temperature upon incubation of the enzymes at various temperatures
(15–35 ◦C) for the indicated times (every 15 min interval for up to 2 h).

4.6. Activity and Stability in Organic Solvents

Activities of PML enzymes were determined in the reaction buffer containing 10–40%
DMSO or methanol at the optimum temperature for 2 min. The organic solvent stability
of the PML enzymes was determined by measuring the residual activity at the optimum
temperature upon incubation of the enzymes in the reaction buffer with 10–40% DMSO
or methanol at 25 ◦C for the indicated times (every 60 min interval for up to 3 h). The
organic solvent concentration in the reaction buffer was maintained at 2% while measuring
the residual activity. Enzymatic activity without organic solvent presence was used as
a control.

4.7. Enzyme Kinetics and Thermodynamics Analysis

Kinetics of WT and mutant PML enzymes were determined at the optimum tempera-
ture of the WT enzyme (35 ◦C). The Michaelis constant (Km) and the catalytic rate constant
(kcat) were measured from Lineweaver-Burk plots. The Arrhenius plot was constructed
using kcat values measured at different temperatures (4 ◦C, 15 ◦C, 25 ◦C, 30 ◦C, and 35 ◦C).
The activation energy (Ea) of pNPL was calculated from the Arrhenius plot. Thermody-
namic parameters, including Gibbs free energy of activation (∆G‡), enthalpy (∆H‡), and
entropy (T∆S‡), were determined using the following equations.

∆G‡ = RT ×
[

ln
(

kBT
h

)
− ln k

]
∆H‡ = Ea − RT
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∆S‡ =
(

∆H‡ − ∆G‡
)

/T

where kB is the Boltzmann constant (1.3805 × 10−23 J K−1), h is the Planck constant
(6.6256 × 10−34 J s), k is the catalytic rate constant, and R is the universal gas constant
(8.314 J mol−1 K−1).

4.8. Protein Thermal Shift Analysis

The SYPRO orange dye-based thermal shift assay was conducted on an Applied
Biosystems StepOnePlus real-time PCR system (Waltham, MA, USA). Sample mixture with
or without DMSO or methanol contained approximately 20 µM of protein in the incubation
buffer (100 mM Tris·HCl, pH 7.5, and 100 mM NaCl) with a 1× final concentration of
SYPRO orange dye. Melting temperature (Tm) of the enzyme was recorded from within
the temperature range of 25–95 ◦C with a 1 ◦C increase per minute. Data were analyzed
using protein thermal shift software from Thermo Fisher (Waltham, MA, USA).

4.9. Quenching of Protein Fluorescence

Acrylamide-induced fluorescence quenching was measured using a Scinco FS-2 flu-
orescence spectrometer (Seoul, Korea) at 25 ◦C. Initially, 10 µmol of protein was added
to buffer containing 0–40% DMSO or methanol. The fluorescence of the protein from
tryptophan and tyrosine residues was measured at 280 nm upon addition of increasing
concentrations of acrylamide (0–0.5 M). Quenching data are presented as a proportion
of the intrinsic fluorescence intensity (F0) to the fluorescence intensity in the presence of
0–0.5 M acrylamide (F).

4.10. CD Spectroscopy

The secondary structure of the WT and mutant PML enzymes was determined using
a JASCO J-1500 spectropolarimeter (Tokyo, Japan), which was available at the Korea Basic
Science Institute (Ochang, Korea). Protein samples (0.5 mg/mL) in buffer B were incubated
at 25 ◦C for 1 h before measuring CD spectra. The data were analyzed using K2D3, a web
server that analyzes protein secondary structure [48].
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