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Abstract: The efficiency and robustness of selective catalytic reduction (SCR) by NH3 catalysts for
exhaust gas purification, especially of heavy-duty diesel engines, will continue to play a major role,
despite the increasing electrification of powertrains. With that in mind, the effect of the synthesis
scale on commercially available Cu-exchanged chabazite catalysts for SCR was investigated through
physicochemical characterizations and catalytic tests. During hydrothermal aging, both industrial
and lab-scale prepared catalysts underwent structural dealumination of the zeolite framework and
redistribution of the Al sites. Although both catalysts demonstrated similar NO conversion activity
under SCR conditions, the lab-scale catalyst showed higher selectivity and lower activity in NH3

oxidation. Variations in N2O formation and NH3 oxidation rate were found to correlate with the
formation of different copper species, and the compositions become less controllable in industrial-
scale process. This case study focused on routes of ion exchange, and the results provide new insights
into catalytic performance of the industrially-produced zeolites.

Keywords: DeNOx; NH3-SCR; Cu-zeolite; ion exchange; Cu source

1. Introduction

Nitrogen oxides (NOx), as primary pollutants from lean burning engines, remain a
challenge for exhaust gas aftertreatment. One of the currently most efficient approaches
in the field is the selective catalytic reduction (SCR) of NOx. In this kind of DeNOx
aftertreatment, a reducing agent is introduced in the exhaust mixture to convert NOx
to harmless N2 and H2O, supported by a suitable catalyst [1–5]. Zeolites are a group
of crystalline inorganic materials with regular pore structures that consist of connected
TO4 (T represents the framework atom) tetrahedra sharing oxygen atoms [2,6]. In the
most common systems of NH3-SCR, the catalyst of choice is a copper-exchanged zeolite.
More specifically, copper-exchanged small-pore chabazite (CHA) zeolites are currently
the leading NH3-SCR catalysts due to their high NO conversion rates over a wide range
of temperatures, high selectivity towards the formation of N2 and long stability under
operative SCR conditions [7–10].

In the synthesis of CHA zeolite, the temperature, seeds and templates all influence
the space-time yields and catalytic properties. Many efforts have been devoted to ob-
taining optimized CHA zeolites by adjusting the synthetic parameters. General synthetic
strategies include using different templates [11,12], controlling the distribution of Al or Si
atoms [13–15], one pot synthesis methods [16,17] and microwave-assisted synthesis [18,19].
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However, plenty of work has focused on improving the intrinsic properties of the CHA
zeolite framework, without considering the suitability for their industrial applications,
which are typically guided by economic and ecologic constraints. The large-scale synthesis
conditions and the subsequent Cu ion exchange step may influence the properties of CHA
zeolites, especially the hydrothermal stability [20].

In this work, we showcase the comparison of an industry-scale and a lab-scale version
of Cu ion exchange process in terms of the catalytic properties of Cu-exchanged chabazites.
By means of thorough physicochemical characterization, the differentiating parameters
were identified, allowing us to interpret the differences in the catalytic behavior. Taking
economic aspects into account, we compared two routes of ion exchange for the catalyst
fabrication, i.e., a large scale or industrial process, and a small scale or laboratory process,
which differ mainly in Cu source and reaction temperature. Both catalysts were prepared
by performing aqueous ion exchange on a commercially available NH4-form chabazite.
Each aged material underwent a full physicochemical characterization routine, includ-
ing inductively coupled plasma–optical emission spectroscopy (ICP-OES), powder X-ray
diffraction (pXRD), diffuse reflectance infrared Fourier-transform spectroscopy (DRIFTS),
N2 adsorption, scanning and transmission electron microscopy (SEM and TEM) and solid-
state 27Al and 29Si magic angle spinning nuclear magnetic resonance (NMR) spectroscopy.
The as-synthesized Cu-exchanged chabazites are denoted as Cu-CHA-I (I = “industrial”)
and Cu-CHA-L (L = “laboratory”), respectively. To test their stability and properties under
conditions similar to the operative ones, both materials were hydrothermally annealed,
and the corresponding samples are deonted as Cu-CHA-I-a and Cu-CHA-L-a, respectively.

2. Results

The Cu/Al molar ratio was determined by ICP-OES, and the Cu loading of the two
catalysts matched each other quite well (cf. Table 1). Even after hydrothermal aging,
the Cu/Al ratio remained substantially unchanged in both materials. Comparatively,
Cu-CHA-I and Cu-CHA-I-a showed higher Cu weight percentage values. The pXRD
patterns (Figure S1) confirmed the stability of the chabazite crystalline structure not only
directly after the ion exchange, but also after the hydrothermal treatment. From the
combination of pXRD and DRIFTS analysis (Figure S2), no evidence was found for the
presence of crystalline copper oxides particles or agglomerates (CuOx) [21]. Compared
with the starting material, i.e., the bare chabazite, the intensities of asymmetric vibrations
of the zeolite framework (T-O-T, 1350–950 cm−1) were decreased in the aged materials,
which is in line with previous findings and points at partial lattice degradation [22]. This
effect was slightly more pronounced in the industrial chabazite. Cu-CHA-I and Cu-CHA-L
showed the same microscopic morphology when observed by SEM (Figure S3), and both
materials appeared to be reduced to smaller particles after aging. A closer observation with
TEM (Figure S4) revealed that the lab-scale catalyst better retained the particle morphology
after aging: Cu-CHA-L-a presented cubical particles with pronounced facets, whereas
these were less defined in Cu-CHA-I-a, and the latter’s surface was partially decomposed
into smaller amorphous particles. TEM scanning electron nanodiffraction (SEND) and
subsequent analysis by automatic crystal orientation mapping (ACOM) [23] realized with
the ASTAR system was employed to determine particle crystallinity from so called “index
maps”. Index maps depict the template matching quality in greyscale. SEND patterns
from crystalline regions generate a higher index score, and therefore, will appear bright,
whereas diffuse scattering from non-crystalline regions generates low index values, and
therefore, will appear darker. Difference images (Figure 1) were constructed from index
maps superimposed on virtual bright field maps (VBF, greyscale from mass/thickness +
diffraction contrast) revealed that the aging process induced the formation of amorphous
regions in the zeolite particles of Cu-CHA-I-a (indicated by d1, d2 and red arrows in
Figure 1d). In contrast, the Cu-CHA-L-a sample did not show completely amorphized
regions, although low crystallinity regions (indicated by b1 and b2 in Figure 1b) were
occasionally observable. Moreover, the Z-contrast images (Figure 2) evidenced in both
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zeolites the presence of smaller (4 nm–6 nm) evenly distributed particles, which were
identified as non-crystalline CuOx. N2 adsorption measurements were performed to
investigate the porosity of the two samples. The shape of the adsorption isotherms curves,
as shown in Figure S5, confirms the typical microporous structure of zeolites, and Cu-CHA-
I-a and Cu-CHA-L-a presented the specific BET surface areas of 633 and 606 m2 g−1, and
the total pore volumes of 0.303 and 0.290 cm3 g−1, respectively. In general, the two samples
showed similar porosity, as expected for catalysts derived from the same source zeolite
(NH4-form CHA), indicating that their microporous structure was only mildly affected by
the Cu-exchange and the hydrothermal aging steps. The slightly higher BET surface area
and accessible pore volume of Cu-CHA-I-a might be attributable to the less defined crystal
facets which were observed by TEM in Figure S4. Overall, the two catalysts showed very
similar physicochemical properties, even though the lab-scale material appeared to be less
affected by the aging treatment.

Table 1. Chemical composition determined by ICP-OES.

Sample Si [wt%] Al [wt%] Cu [wt%] Cu/Al
Molar Ratio

Cu-CHA-I 38.40 5.40 2.94 0.231
Cu-CHA-L 22.99 4.09 2.29 0.238

Cu-CHA-I-a 35.88 6.18 3.62 0.249
Cu-CHA-L-a 29.18 5.04 2.86 0.241
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Figure 1. TEM bright field images (TEM-BF, (a,c)) for reference and corresponding difference images 
(index map superimposed on VBF, (b,d)) of Cu-CHA-L-a (a,b) and Cu-CHA-I-a (c,d). Difference 
images show enlarged regions marked by the reticule in (a,c). Local nanodiffraction patterns (false 
colored) acquired by SEND of Cu-CHA-L-a (b1–b4) and Cu-CHA-I-a (d1–d4) correspond to 
positions indicated by the markers in (b,d). Completely amorphized regions visible in Cu-CHA-I-a 
material, as shown in (d) (red arrows and exemplarily marked with (d1,d3)), are distinguishable by 
bright contrast in the difference image, whereas comparatively bright contrast regions in (b) 
(exemplarily marked with (b1,b2)) show partially amorphized/low crystallinity Cu-CHA-L-a. A 
nanodiffraction pattern of the TEM carbon support film is shown for reference (d2). Crystalline 
regions are distinguishable by darker contrast in the difference images, as referenced by crystalline 
nanodiffraction patterns (b3,b4) for Cu-CHA-L-a and (d4) for Cu-CHA-I-a. 

Figure 1. TEM bright field images (TEM-BF, (a,c)) for reference and corresponding difference images
(index map superimposed on VBF, (b,d)) of Cu-CHA-L-a (a,b) and Cu-CHA-I-a (c,d). Difference
images show enlarged regions marked by the reticule in (a,c). Local nanodiffraction patterns (false
colored) acquired by SEND of Cu-CHA-L-a (b1–b4) and Cu-CHA-I-a (d1–d4) correspond to positions
indicated by the markers in (b,d). Completely amorphized regions visible in Cu-CHA-I-a material, as
shown in (d) (red arrows and exemplarily marked with (d1,d3)), are distinguishable by bright contrast
in the difference image, whereas comparatively bright contrast regions in (b) (exemplarily marked
with (b1,b2)) show partially amorphized/low crystallinity Cu-CHA-L-a. A nanodiffraction pattern
of the TEM carbon support film is shown for reference (d2). Crystalline regions are distinguishable
by darker contrast in the difference images, as referenced by crystalline nanodiffraction patterns
(b3,b4) for Cu-CHA-L-a and (d4) for Cu-CHA-I-a.

The SCR performances of the two Cu-exchanged zeolites were compared in terms of NH3-
uptake, NO conversion, N2O formation and NH3 oxidation under SCR reaction conditions.

The SCR catalytic cycle in Cu-chabazites is initiated by the reaction of NO with NH3,
which is pre-adsorbed at the Cu2+ active sites. Therefore, the amount of NH3 that a zeolite
is capable of adsorbing and the fraction that binds to Cu2+ sites are key parameters for the
choice of an SCR catalyst [21]. The NH3 storage capacities of Cu-CHA-I-a and Cu-CHA-L-a
were derived from temperature-programmed desorption (NH3-TPD) experiments, and the
respective data are summarized in Table 2. As shown in Figure 3, the curve deconvolution
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exhibits that the mid-temperature (MT, ca. 250 ◦C) peak, which is attributed to the NH3
bound to extra-framework metal sites [24,25], is two times more intense for Cu-CHA-I-a
as for Cu-CHA-L-a. This result is consistent with the 25% higher mass of Cu present in
Cu-CHA-I-a, which was proved by ICP, since four-fold planar [Cu(NH3)4]2+ complexes are
the most stable species formed by extra-framework Cu2+ in the presence of NH3. Higher
amounts of [Cu(NH3)4]2+ complexes may also serve as anchor points for the formation
of weakly bound NH3 chains [26], which are stable at low temperatures (LT peak, ca.
190 ◦C). The amounts of free Brønsted sites (high temperature, HT peak, 340–350 ◦C) of
the two aged zeolites appeared to be very similar [27]. Overall, the industrial catalyst had
a 50% higher NH3 storage capacity than the lab-scale one, which is mainly related to the
higher Cu content.
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Table 2. NH3 uptake derived by deconvolution of the NH3-TPD profile in the low, mid and high
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NH3 Uptake Cu-CHA-I-a Cu-CHA-L-a

Total [mmol/g] 0.682 0.430
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MT range [mmol/g] 0.371 0.181
HT range [mmol/g] 0.163 0.147
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Figure 3. Deconvoluted NH3-TPD profiles of (a) Cu-CHA-I-a and (b) Cu CHA-L-a.

The higher NH3 storage of Cu-CHA-I-a seems to be beneficial for the catalytic con-
version of NO at low temperatures (Figure 4): under typical SCR reaction conditions, the
industrial Cu-chabazite reaches complete NO conversion at a lower temperature (200 ◦C)
and shows ca. 15% higher conversion than Cu-CHA-L-a between 150 and 175 ◦C. Above
250 ◦C, this advantage is no more remarkable, and the two catalysts behave similarly.
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However, NO conversion cannot be utilized as the only parameter, as selectivity has
to be taken in account as well.

The most harmful by-product of SCR is N2O, which is a potent greenhouse gas [7].
Recent studies showed that, for Cu-exchanged zeolites, N2O may be formed not only when
NO2 is the predominant NOx species, but also under standard SCR conditions due to
non-selective SCR [28,29]:

4NO + 4NH3 + O2 → 4N2O + 3H2O. (1)

Considering the selectivity towards N2O, the two investigated catalysts showed sig-
nificantly different performance. Cu-CHA-I-a produced more N2O in all measured temper-
ature ranges (Figure 5a).
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Another important side reaction that affects the SCR efficiency at high temperatures
(>300 ◦C) is the oxidation of NH3 (Equation (2)):

4NH3 +5O2 → 4NO + 6H2O (2)

By excluding NO from the reaction mixture, we performed specific NH3 oxidation
experiments on Cu-CHA-I-a and Cu-CHA-L-a. The results indicated that the industrial
catalyst is more active in NH3 oxidation than the lab-scale material (Figure 5b), and this
is even more pronounced at higher temperatures. Cu-CHA-L-a was therefore proven to
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be the catalyst with the higher selectivity towards SCR conversion of NO, even though its
activity is slightly less than that of Cu-CHA-I-a at low temperatures.

The loss of crystallinity in the industrial chabazite caused by the aging process indi-
cated faster decay of its catalytic performance. However, the change in selectivity must be
related to differences in the speciation of the Cu redox-active sites. Gao et al. [29] proved
that a crucial factor in the changes in selectivity, and specifically in the suppression of
NH3 oxidation, is the predominance of isolated Cu sites. The Cu2+ ions coordinated to
the zeolite framework in proximity of a chabazite 8-membered ring hosting a single Al
atom are indicated as “ZCuOH”. Due to the coordination of a hydroxyl group, these Cu
active sites are known to be easier to reduce than the isolated Cu sites (Z2Cu), which are
located on the 6-membered ring occupied by two Al atoms [30]. Therefore, we performed
temperature programmed reduction experiments with H2 (H2-TPR) to investigate the Cu
speciation in the two catalysts. As shown by the intense peak at 260–280 ◦C, this analy-
sis (Figure 6) confirmed that the predominant Cu species in Cu-CHA-I-a is ZCuOH. On
the other hand, Cu-CHA-L-a shows a more even distribution of the Cu species between
ZCuOH and Z2Cu (350 ◦C–400 ◦C). Moreover, a peak at ca. 110 ◦C is in the Cu-CHA-I-a
profile, which may be related to the formation of amorphous oxide species during the aging
process. Considering these results and the outcome of the physicochemical characteriza-
tion, the treatment experienced by the starting material during the industrial ion-exchange
may cause a redistribution of the Al sites, and therefore, the change in the Cu speciation,
probably due to processes of dealumination and re-insertion.
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Figure 6. Deconvoluted H2-TPR profiles of Cu-CHA-I-a (top) and Cu CHA-L-a (bottom).

To investigate the change in Al local environment in the zeolite framework induced
by hydrothermal aging, solid-state 27Al and 29Si magic angle spinning NMR spectroscopy
were conducted for the as-synthesized and aged Cu-chabazites. As shown in Figure 7a, both
Cu-CHA-I and Cu-CHA-L showed a primary peak—“*”—at chemical shift 58 ppm and a
low intensity peak—”ˆ”—at 0 ppm, which were attributed to tetrahedral Al incorporated
into the framework and extra-framework octahedral Al, respectively [31]. The intensity of
Cu-CHA-L is much higher than that of Cu-CHA-I, indicating the loss of crystallinity of the
industrial chabazite. After being hydrothermally aged, the peak of tetrahedral Al tended
toward a lower chemical shift, and the intensity decreased, whereas the peak of octahedral
Al became broader and tended toward a higher chemical shift. This phenomenon is typical
for hydrothermally aged Cu zeolite, which indicates the loss of Brønsted acid sites and
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dealumination of the zeolite framework [4]. The elution of aluminum from the framework
and the formation of Al2O3 clusters small in size are evident from the high fraction of
pent-coordinated Al sites, as was proven recently [32]. The intensity ratio of the above
two peaks was calculated to estimate the contents of different Al sites, which are shown in
Table S1. The peak intensity ratio of Cu-CHA-L was 5.76, which was slightly higher than
that of Cu-CHA-I (5.39), indicating a higher number of framework Al sites, and thus higher
crystallinity for lab-scale zeolite [33]. The corresponding 29Si NMR spectra are displayed
in Figure 7b. Cu-CHA-I and Cu-CHA-L contained two framework tetrahedral Si features.
The peaks at −105 and −111 ppm were attributed to tetrahedral Si with three Si neighbors
and one Al neighbor (i.e., Si(OSi)3(OAl)) and the same with four Si neighbors (i.e., Si(OSi)4),
respectively [34,35]. After hydrothermal aging, the peak at −105 ppm decayed, which is
consistent with dealumination in zeolite framework shown in Figure 7a.
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3. Materials and Methods
3.1. Experimental Section
3.1.1. Synthesis via Liquid Ion-Exchange (LIE)

Cu-CHA-L: As a precursor material for the catalyst, a commercially available chabazite
in the NH4-form was supplied by Clariant (sample code: NH4-CZC-13). The Si/Al ratio
of the zeolite was 12.88 (measured by ICP-OES). The precursor material was modified
by means of LIE, according to a procedure reported in the literature, and subsequently
optimized [36]. In particular, the reaction temperature was increased, in order to reach
higher Cu-exchange levels [37]. The precursor zeolite (5 g/600 mL of solution) was finely
ground with a mortar and pestle and stirred under reflux in an aqueous solution of
Cu(CH3COO)2·H2O (Honeywell Riedel-de-Haën, Selze, Germany, 99.9%). A series of
Cu-exchanged chabazites were prepared by varying the reaction temperature (from room
temperature to 80 ◦C), stirring time (up to 24 h) and Cu2+-source concentration (from
1.61 × 10−3 M to 9.66 × 10−3 M). On certain samples, LIE was repeated up to three times.
The product of each LIE process was recovered by vacuum filtration; washed with ultra-
pure water until the filtrate got white, then again with 300 mL of water; and finally allowed
to dry with in air. To remove the possible remaining NH4

+ extra-framework ions, a calci-
nation step was performed in a Muffle furnace: the sample was heated for 1 h at 100 ◦C
(1 h of ramp time) and for 6 h at 640 ◦C (1 h of ramp time).

Cu-CHA-I: Similar liquid ion-exchange was performed for the NH4-CZC-13 precursor
material. A slurry of 0.25 kg Cu(CH3COO)2·H2O (technical grade, VRW), 1.11 kg NH4-
CZC-13 (LOI of 10 wt.%) and 9 kg demineralized water was stirred at 40 ◦C for 2 h. The
materials were filtered, washed and dried at 100 ◦C for 16 h. The exchange was repeated
2 times.
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3.1.2. Hydrothermal Aging

Both the chabazite Cu-exchanged by Clariant (Cu-CZC-13) and the lab-scale synthe-
sized materials were aged in crucibles under hydrothermal conditions at 800 ◦C for 16 h in
flowing humid air (10% H2O).

3.2. Physicochemical Characterization

Each material underwent a full characterization routine before and after hydrothermal
aging. The Cu/Al ratio was obtained by inductively coupled plasma–optical emission
spectroscopy (ICP-OES): the sample was dissolved in HF and analyzed with a SPECTROB-
LUE device by SPECTRO Analytical Instrument, GmbH (Kleve, Germany). The crystalline
structure of each sample was determined by powder X-ray diffraction (pXRD, STOE and
Cie GmbH, Darmstadt, Germany) using a STOE Stadi MP powder diffractometer by Stoe
and Cie, equipped with a Cu-anode (40 kV, 30 mA) and a Ge monochromator for the
generation of the Cu Kα1 radiation (1.54059 Å). The presence of copper oxides agglomer-
ates was investigated by means of XRD and diffuse reflectance infrared Fourier-transform
spectroscopy (DRIFTS). A Vertex 70 infrared spectrometer by Bruker and a Praying Mantis
mirror system by Harrick were employed to analyze the powder sample. For the multipoint
Brunauer−Emmett−Teller (BET) surface area measurements, the samples were degassed
under vacuum (<10−3 mbar) at 300 ◦C for 10 h. Surface areas were determined by nitrogen
adsorption at −196 ◦C using an automated gas adsorption analyzer (Autosorb iQ model
7—Quantachrome Instrument, Anton Paar, Graz, Austria). BET Surface area was calculated
considering p/p0 points giving the best linear fit. Data processing was performed using
ASiQWin software (Version: 5.2x, Graz, Austria). H2 temperature-programmed reduction
(H2-TPR) was performed on a ChemBET Pulsar TPR/TPD (Quantachrome Instruments,
Boynton Beach, FL, USA) equipped with a TDC detector. Samples were pretreated in a
16.3 mL min−1 He stream for 2 h at 500 ◦C. H2-TPR was performed with 5% H2 in Ar with
a total flow rate of 100 mL min−1 by heating the sample from 25 ◦C up to 600 ◦C with a
heating rate of 5 K min−1.

The morphology of the samples was studied by means of scanning and (scanning)
transmission electron microscopy (SEM and (S)TEM, respectively) using a ZEISS Leo Supra
35 VP and a 200 kV FEI Tecnai F20 (FEI Europe B. V., Eindhoven, Netherlands), respectively.
(S)TEM scanning electron nanobeam diffraction (SEND) and subsequent automated crystal
orientation mapping (ACOM) were performed with the ASTAR system from NanoMEGAS
SPRL (Brussels, Belgium) for ascertaining the local zeolite crystallinity. SEND patterns
were acquired at a lateral step size of 4.5. TEM bright field (BF) images were acquired with
a Veleta S04 F camera (EMSIS GmbH, Münster, Germany). STEM annular dark field (ADF)
images were obtained by an ADF detector from Fischione Instruments (E.A. Fischione
Instruments, Inc., Export, PA, USA). Digital Micrograph (version 2.11.1404.0, Gatan Inc.,
Pleasanton, CA, USA) was used for image processing [38] and analysis of TEM BF and
STEM-ADF images. The CuOx particle sizes were identified by their bright contrast in the
atomic number sensitive STEM-ADF (Z-contrast) images.

All solid state nuclear magnetic resonance (NMR) spectra were recorded on a Bruker AV-
III-400 MHz (BioSpin GmbH, Ettlingen, Germany) using a MAS-4 mm probe and a sample rota-
tion frequency (rf) of 12.5 kHz. The reference frequencies (i.e., 0 ppm for the chemical shift) for
the nuclei were: nue_ref (29Si) = 79.500614500 MHz and nue_ref (27Al) = 104.26923126 MHz.
The rf field strength was determined by 27Al nutation curves on an aluminum nitrate
solution in water: rf = 4.5 kHz for a power of 1.5 W and rf = 45 kHz for 150 W. All other
pulses were calculated based on this value. 27Al spectra were acquired after one hard-pulse
(P30 = 1.89 µs; power = 150 W), showing rotational sidebands or a rotation synchronized
Hahn-echo (P1 = 18.9 µs, D6 = 51.64 µs, P2 = 37.8 µs; power = 1.5 W) where the rotational
sidebands are suppressed. 29Si spectra were acquired after one hard-pulse (P90 = 11.5 µs;
power = 50 W; rf = 21 kHz).
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3.3. Temperature-Programmed Desorption with NH3 (NH3-TPD)

The NH3 uptake capacity of the samples was measured with TPD experiments. The
zeolite powder was pressed, crushed and sieved, in order to obtain the 200–355 µm granules
employed in the analysis. The total gas flow during the test was set to 300 sccm, and N2
was employed as carrier gas. The amount of sample to be used was calculated to have a
gas hourly space velocity of 50,000 h−1. The granules were located in a 6 mm diameter
quartz tube and blocked with quartz wool. After a 30 min pretreatment in 6.5% O2 at
500 ◦C, the sample was cool down to 100 ◦C, and afterwards, exposed to 1000 ppm NH3
for 3 h. The sample was flushed for 4 h in N2 and then heated up to 700 ◦C at 5 ◦C/min.
The downstream gas composition was measured with a Multigas 2030 gas analyzer by
MKS. The temperature was controlled with a Carbolite TZF horizontal furnace and the gas
composition with mass flow controllers by MKS.

3.4. SCR Catalytic Tests

The selective catalytic reduction (SCR) tests were carried on all investigated materials
in granule form (200 µm–355 µm), using the same reactor and measuring setup as for the
NH3-TPD experiments. Prior to the measurement, the sample was pretreated for 30 min
in 6.5% O2 at 500 ◦C. After cooling the sample to 100 ◦C, the standard SCR mixture was
applied: 500 ppm NH3/500 ppm NO/6.5% O2/9% CO2/5% H2O with N2 as carrier gas
(total gas flow = 300 sccm). The water was dosed by flowing the gas stream through a
bubbler. The amount of sample to be used was calculated to have an hourly gas space
velocity of 50,000 h−1. A series of increasing temperature steps between 100 and 500 ◦C
were applied. Each step was extended till the steady state for the temperature was reached.
During these experiments, the N2O formation under SCR conditions was monitored and
the NO conversion was calculated according to the following formula:

NO conv. % =
cin − cout

cin
·100% (3)

where cin is the dosed NO concentration (500 ppm) and cout is the NO concentration
measured by the gas analyzer. The amount of sample to be used was calculated to have a
gas hourly space velocity of 50,000 h−1.

3.5. NH3 Oxidation Tests

The selectivity towards NH3 oxidation was measured by performing an experimental
routine similar to the one of the SCR tests, but after removing NO from the gas mixture.
To reach 300 sccm of total gas flow, additional N2 was dosed. All investigated materials
were in granule form (200 µm–355 µm); the same reactor and measuring setup as for the
NH3-TPD and SCR experiments was used. Equation (1) was employed for the calculation
of the consumed NH3, considering cin as the dosed NH3 concentration (500 ppm) and cout
as the NH3 concentration measured by the gas analyzer.

4. Conclusions

In summary, two Cu-chabazite catalysts were prepared by starting from the same
NH4

+-form parent zeolite and performing the Cu ion exchange in a large-scale (industrial)
or in a small-scale (laboratory) procedure. Similar Cu/Al molar ratios of 0.231 and 0.238,
respectively, were achieved for the materials. After hydrothermal aging treatment, TEM
images showed the lab-scale catalyst retained the original particle morphology, and the ori-
entation imaging technique revealed the formation of amorphous regions in the industrial-
scale sample. The change in surface morphology generated during hydrothermal aging
treatment slightly increased the accessible pores of the industrial-scale catalyst, leading
to a mildly higher measured BET surface area. For both aged materials, the SCR per-
formances were compared in terms of NH3-uptake, NO conversion, N2O formation and
NH3 oxidation. The industrial-scale catalyst showed ca. 15% higher NO conversion at
a low temperature, whereas similar NO conversions were achieved by both catalysts at
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higher temperatures. However, the lab-scale material was proved as the preferable catalyst
due to its lower N2O formation and reduced NH3 oxidation towards SCR conversion of
NO. Furthermore, H2-TPR profiles indicated the lab-scale zeolite possessed less ZCuOH
species, and thus more isolated Cu sites, which enhance the SCR selectivity. NMR results
illustrated the dealumination of the zeolite framework and redistribution of Al during the
hydrothermal aging process.

The industrial-scale catalyst appears to destabilize the zeolite crystalline structure and
made it less resistant to hydrothermal aging. Such change in the crystal structure appears
to affect the Al distribution on the zeolite, and consequently, the nature and reactivity of the
Cu redox sites. This study illustrates that the catalytic findings achieved in the laboratory
cannot easily be transferred during a scale-up, and that advanced characterization methods
should be also applied to industrial research to get a better understanding of the material
destined for mass production.
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(b) Cu-CHA-I-a, (c) Cu-CHA-L and (d) Cu-CHA-L-a. Figure S4: TEM images of the (a) Cu-CHA-I-a
and (b) Cu-CHA-L-a. Figure S5: Nitrogen adsorption isotherms of Cu-CHA-I-a and Cu-CHA-L-a.
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10. Bozbag, S.E.; Şanlı, D.; Özener, B.; Hisar, G.; Erkey, C. An aging model of NH3 storage sites for predicting kinetics of NH3
adsorption, desorption and oxidation over hydrothermally aged Cu-Chabazite. Catalysts 2020, 10, 411. [CrossRef]

11. Zhao, Z.; Yu, R.; Zhao, R.; Shi, C.; Gies, H.; Xiao, F.-S.; De Vos, D.; Yokoi, T.; Bao, X.; Kolb, U. Cu-exchanged Al-rich SSZ-13 zeolite
from organotemplate-free synthesis as NH3-SCR catalyst: Effects of Na+ ions on the activity and hydrothermal stability. Appl.
Catal. B-Environ. 2017, 217, 421–428. [CrossRef]

12. Chen, M.; Sun, Q.; Yang, X.; Yu, J. A dual-template method for the synthesis of bimetallic CuNi/SSZ-13 zeolite catalysts for
NH3-SCR reaction. Inorg. Chem. Commun. 2019, 105, 203–207. [CrossRef]

13. Zhang, S.; Pang, L.; Chen, Z.; Ming, S.; Dong, Y.; Liu, Q.; Liu, P.; Cai, W.; Li, T. Cu/SSZ-13 and Cu/SAPO-34 catalysts for deNOx
in diesel exhaust: Current status, challenges, and future perspectives. Appl. Catal. A-Gen. 2020, 607, 117855. [CrossRef]

14. Li, S.; Gounder, R.; Debellis, A.; Müller, I.B.; Prasad, S.; Moini, A.; Schneider, W.F. Influence of the N, N, N-Trimethyl-1-adamantyl
Ammonium Structure-Directing Agent on Al Substitution in SSZ-13 Zeolite. J. Phys. Chem. C 2019, 123, 17454–17458. [CrossRef]

15. Nishitoba, T.; Yoshida, N.; Kondo, J.N.; Yokoi, T. Control of Al distribution in the CHA-type aluminosilicate zeolites and its
impact on the hydrothermal stability and catalytic properties. Ind. Eng. Chem. Res. 2018, 57, 3914–3922. [CrossRef]

16. Yue, Y.; Liu, B.; Qin, P.; Lv, N.; Wang, T.; Bi, X.; Zhu, H.; Yuan, P.; Bai, Z.; Cui, Q. One-pot synthesis of FeCu-SSZ-13 zeolite with
superior performance in selective catalytic reduction of NO by NH3 from natural aluminosilicates. Chem. Eng. J. 2020, 398, 125515.
[CrossRef]

17. Zhang, N.; Xin, Y.; Li, Q.; Ma, X.; Qi, Y.; Zheng, L.; Zhang, Z. Ion Exchange of One-Pot Synthesized Cu-SAPO-44 with NH4NO3 to
Promote Cu Dispersion and Activity for Selective Catalytic Reduction of NOx with NH3. Catalysts 2019, 9, 882. [CrossRef]

18. Liu, Z.; Zhu, J.; Wakihara, T.; Okubo, T. Ultrafast synthesis of zeolites: Breakthrough, progress and perspective. Inorg. Chem.
Front. 2019, 6, 14–31. [CrossRef]

19. Zeng, X.; Hu, X.; Song, H.; Xia, G.; Shen, Z.-Y.; Yu, R.; Moskovits, M. Microwave synthesis of zeolites and their related applications.
Microporous Mesoporous Mater. 2021, 323, 111262. [CrossRef]

20. Jiang, H.; Guan, B.; Peng, X.; Zhan, R.; Lin, H.; Huang, Z. Influence of synthesis method on catalytic properties and hydrothermal
stability of Cu/SSZ-13 for NH3-SCR reaction. Chem. Eng. J. 2020, 379, 122358. [CrossRef]

21. Rizzotto, V.; Chen, D.; Tabak, B.M.; Yang, J.-Y.; Ye, D.; Simon, U.; Chen, P. Spectroscopic identification and catalytic relevance of
NH4+ intermediates in selective NOx reduction over Cu-SSZ-13 zeolites. Chemosphere 2020, 250, 126272. [CrossRef] [PubMed]

22. Pereira, M.V.L.; Nicolle, A.; Berthout, D. Hydrothermal aging effects on Cu-zeolite NH3-SCR catalyst. Catal. Today 2015, 258,
424–431. [CrossRef]

23. Rauch, E.; Véron, M.; Portillo, J.; Bultreys, D.; Maniette, Y.; Nicolopoulos, S. Automatic crystal orientation and phase mapping in
TEM by precession diffraction. Microsc. Anal.-UK 2008, 128, S5–S8.

24. Shan, Y.; Shi, X.; Yan, Z.; Liu, J.; Yu, Y.; He, H. Deactivation of Cu-SSZ-13 in the presence of SO2 during hydrothermal aging. Catal.
Today 2019, 320, 84–90. [CrossRef]

25. Song, C.; Zhang, L.; Li, Z.; Lu, Y.; Li, K. Co-exchange of Mn: A simple method to improve both the hydrothermal stability and
activity of Cu–SSZ-13 NH3–SCR catalysts. Catalysts 2019, 9, 455. [CrossRef]

26. Yashnik, S.; Ismagilov, Z. Cu-substituted ZSM-5 catalyst: Controlling of DeNOx reactivity via ion-exchange mode with copper–
ammonia solution. Appl. Catal. B-Environ. 2015, 170, 241–254. [CrossRef]

27. Gao, F.; Washton, N.M.; Wang, Y.; Kollár, M.; Szanyi, J.; Peden, C.H. Effects of Si/Al ratio on Cu/SSZ-13 NH3-SCR catalysts:
Implications for the active Cu species and the roles of Brønsted acidity. J. Catal. 2015, 331, 25–38. [CrossRef]

28. Yao, D.; Liu, B.; Wu, F.; Li, Y.; Hu, X.; Jin, W.; Wang, X. N2O Formation Mechanism During Low-Temperature NH3-SCR over
Cu-SSZ-13 Catalysts with Different Cu Loadings. Ind. Eng. Chem. Res. 2021, 60, 10083–10093. [CrossRef]

29. Gao, F.; Mei, D.; Wang, Y.; Szanyi, J.; Peden, C.H. Selective catalytic reduction over Cu/SSZ-13: Linking homo-and heterogeneous
catalysis. J. Am. Chem. Soc. 2017, 139, 4935–4942. [CrossRef]

30. Paolucci, C.; Parekh, A.A.; Khurana, I.; Di Iorio, J.R.; Li, H.; Albarracin Caballero, J.D.; Shih, A.J.; Anggara, T.; Delgass, W.N.;
Miller, J.T.; et al. Catalysis in a Cage: Condition-Dependent Speciation and Dynamics of Exchanged Cu Cations in SSZ-13 Zeolites.
J. Am. Chem. Soc. 2016, 138, 6028–6048. [CrossRef]

31. Prodinger, S.; Derewinski, M.A.; Wang, Y.; Washton, N.M.; Walter, E.D.; Szanyi, J.; Gao, F.; Wang, Y.; Peden, C.H. Sub-micron
Cu/SSZ-13: Synthesis and application as selective catalytic reduction (SCR) catalysts. Appl. Catal. B-Environ. 2017, 201, 461–469.
[CrossRef]

32. Khivantsev, K.; Jaegers, N.R.; Kovarik, L.; Derewinski, M.A.; Kwak, J.H.; Szanyi, J. On the Nature of Extra-Framework Aluminum
Species and Improved Catalytic Properties in Steamed Zeolites. Molecules 2022, 27, 2352. [CrossRef]
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