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Áron Ágoston 1, Ádám Balog 2, Šarūnas Narbutas 3, Imre Dékány 1,* and László Janovák 1,*

1 Department of Physical Chemistry and Materials Sciences, University of Szeged, Rerrich B. Sqr.1,
H-6720 Szeged, Hungary

2 Department of Physical Chemistry and Materials Science, Interdisciplinary Excellence Centre, University of
Szeged, Rerrich Square 1, H-6720 Szeged, Hungary

3 UAB “Kai reikia” Director, Savanorių pr. 303, LT-45301 Kaunas, Lithuania
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Abstract: Catalyst development still has a major impact on science today, as we can use catalysts
to break down certain pollutants in an energy-efficient way. There is no comprehensive literature
on the development of SrTiO3-based photocatalysts, so study in this area is justified. Related to this
topic, here we report the facile preparation of surface-modified SrTiO3 photocatalyst, performed by
plasmonic copper deposition. In the case of the copper-modified samples (0.25–3 wt.% Cu content),
the photooxidation of phenol, as model contaminant, was almost 4–5 times higher than the bare
SrTiO3. However, the photocatalytic activity was not linearly related to copper content, since the
highest photoactivity was achieved at 1 wt.% copper content. The reason for the better activity was
the plasmonic effect of copper, which increases the recombination time of charge separation on the
catalyst surface. During slower recombination, more water is oxidized to hydroxyl radicals, which
can lead to faster degradation of phenol.

Keywords: strontium-titanate; copper surface deposition; plasmonic effect; copper content
optimization; hydroxyl radical; recombination time

1. Introduction

Photocatalyst development is a supported and intensively researched field of chem-
istry, even nowadays. These catalysts are suitable for water purification, air cleaning,
antimicrobial treatment, and many other beneficial applications [1–6]. The photocatalysts
are often metal oxide-based materials, metal oxide semiconductors or composites, and the
most popular members are based on titanium, e.g., TiO2, metal or nonmetal modified TiO2,
MeTiO3 (Me: alkaline metal, alkaline earth metal, transition metal) [7,8]. Nowadays, SrTiO3
is an intensively researched photocatalyst because it has many benefits, like inertness,
nontoxicity, low cost and high stability. SrTiO3 is a typical semiconductor photocatalyst
oxide, which has relatively high photocatalytic activity in the UV region. The modification
of SrTiO3 usually results in increased photocatalytic activity [9–11].

Heterogeneous photocatalysis is an advanced oxidation processes (other AOPs: homo-
geneous photocatalysis, photolysis, Gamma-radiolysis) [12]. By means of heterogeneous
photocatalysis, the goal is to break down different pollutants into less polluting sub-
stances [13]. In the case of heterogeneous photocatalysis, the photocatalyst can be excited
with photons. When irradiated, the photocatalyst with photons of different energies, show
photooxidative properties. Electron-hole pairs are created by electrons moving from the
valance band to the conduction band [14]. This charge separation can promote redox
reactions on the surface of the catalyst, whereupon reactive oxygen species could generate,
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e.g., hydroxyl radical, H2O2, peroxide radicals, hydroxyl anion, and superoxide anion [15].
Photocatalysts can usually be effectively excited with UV light, but the excitability can be
increased by modifying the catalyst. One option is to reduce the band gap (excitation with
visible light), while another option is to increase the recombination time (more reactive
radicals are produced). We have three useful ways for modification: doping is when the
crystalline structure is modified, decoration is when the surface of the photocatalyst is
modified (e.g., metal deposition) and morphological modifications [16–18].

Doping photocatalysts with various elements (e.g., C, S, N, Ag, Cu) can reduce the
bandgap energy, and, therefore, the photocatalyst could be activated with visible light as
well and the dopant can act as an electron trap, which slows down the recombination of the
electron-hole pairs, which also favors photocatalytic activity [16]. It has been proven that
modifying TiO2 with transition metals via different methods can help enhance photocat-
alytic efficiency under visible light. Some transition metals or transition metal oxides (Ag,
Cu, CuO) have a plasmonic effect on the surface of the catalyst, which also increases the
recombination time [18]. In the case of morphological modification, generally, the shape
and porosity are modified [17].

In this work, we modified the SrTiO3 photocatalyst with different amounts of plas-
monic CuOx nanoparticles by a reduction method, and the surface CuOx content was
optimized. Structure characterization methods were applied to prove the success of the
photocatalyst preparation. Next, we determined the photocatalytic activity for all the
prepared photocatalysts under UV illumination following the degradation of the phenol
test molecule. The results showed that the modified SrTiO3 had higher photocatalytic
activity than pure SrTiO3.

2. Results and Discussion
2.1. Characterization

The crystal phase of the obtained photocatalyst was determined by XRD measure-
ments. The characteristic reflection peaks of the modified and initial samples were located
at the same 2Θ angle values and the ratio of the peaks was also similar, so the crystal lattice
was not changed after the copper modification (Figure 1). The peaks belonged to the SrTiO3
((100), (110), (111), (200), (210), (211), (220), (300), (310) [19]). The XRD pattern for SrTiO3
was assigned by the help of the SrTiO3 JCPDS card (35–0734). Table 1 also contains the
primary crystallite (not particle) sizes, calculated according to the Scherrer equation. The
increase in the particle size also indicated the successful deposition of CuOx.
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Table 1. Nominal and measured Cu contents, specific surface area values and the primer crystallite
size of the synthetized catalysts.

Catalyst Name Nominal
Cu-Content (wt.%)

Specific Surface
Area (m2/g)

Measured
Cu-Content (wt.%)

Primary Crystallite
Size (nm) Eg (eV)

SRT0 0.00 2.06 0.00 5.30 3.22
SRT025 0.25 1.77 0.05 8.64 3.20
SRT05 0.50 2.07 0.81 9.10 3.19
SRT1 1.00 2.23 1.10 8.39 3.16
SRT2 2.00 2.11 2.77 7.86 3.17
SRT3 3.00 1.63 3.48 8.08 3.16

The presence of surface copper was also proved by EDX measurements. The EDX
spectrum of the SRT1 sample, with 1 wt.% nominal Cu content, can be seen in Figure 2A.
The characteristic lines of titanium, strontium and copper were clearly visible and it can
also be seen that it did not contain significant amounts of other elements. By carrying out
the measurements on the other samples (spectra are not presented), we could establish
that the measured values did not always correspond to the nominal (theoretical, initial
amount of copper) values, but followed a well-managed trend (Table 1). Moreover, we also
carried out mapping measurements for the SRT1 sample with highest photocatalytic activity
(photocatalytic activities see Section 2.2), in the resulting image we can see the presence of
copper on the surface (Figure 2B). It can be seen that the coverage of CuOx nanoparticles
(red dots) was more or less uniform; however, local enrichment could also be observed
in some cases. In the figure, the titanium is marked with blue. During the measurement,
the titanium signal was set to a stronger contrast (this is why the image appears a little
brighter), so that the CuOx on the surface was more visible and more distinct.
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(SRT1) (A), the presence of CuOx (red) on the surface of SrTiO3 in the case of SRT1 sample EDX
mapping (titanium marked with blue) (B) and Kubelka-Munk representation of SrTiO3 and SRTX
samples for bandgap energy determination (C).

Furthermore, the copper-modified samples were gray (gray-brown) in color, which
also indicated the successful modification of the initial white strontium titanate. Therefore,
the optical properties of the synthetized samples were also studied, by diffuse reflectance
measurements (Figure 2C). The band gap energies (Eg) calculated by the Kubelka-Munk
method [20] are presented in Table 1. As can be observed, the band gap values changed only
slightly (from 3.16 to 3.22 eV), so this was not the primary reason for the increased photo-
catalytic activity (see later). However, the results showed that the wavelength dependence
of the photocatalyst excitability was minimally improved by the copper deposition and the
modified samples could be excited by lower energy photons, compared to initial SrTiO3.

TEM images of the initial SrTiO3 (Figure 3A) and SRT1 (Figure 3B) with highest
photocatalytic activity were also taken. The spherical CuOx deposits located on the
modified SrTiO3 surfaces are marked with yellow arrows in Figure 3B. However, these
d = ~5–40 nm surface nanoparticles were completely missing in the case of initial SrTiO3
(SRT0, Figure 3A), and its surface was much smoother. This phenomenon was also con-
firmed by SEM mapping, where it was revealed that the coverage of CuOx nanoparticles
(red dots) was more or less uniform; however, local enrichment could also be observed in
some cases (Figure 2B). The presence of CuOx deposits on the SrTiO3 particles increased
the surface roughness, as well.
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Figure 3. TEM image of the SRT0 (A) and SRT1 (B) sample.

Next, the specific surface area values of the synthetized photocatalyst were also
measured and they are presented in Table 1. The SRT1 sample had the highest surface
area (2.23 m2/g), which might also have contributed to the better photocatalytic activity.
The porous structure of SrTiO3 has been already reported on several times [21,22], so at
lower Cu content, the copper deposit clogged the pores and, consequently, the specific
surface area of the SRT025 sample was smaller (1.77 m2/g), compared to the SRT0 sample
(2.06 m2/g). However, further increasing the copper content led to an increase in surface
area, since no further copper deposit could enter the pores. As a result of the evolved
Cu deposits (see Figure 3B), surface roughness developed, which had the largest specific
surface area, and, then, the deposition of additional copper in small cavities “smooths” the
surface, which was why the surface area decreased again.

The zeta potential change of the modified SrTiO3 samples is illustrated in Figure 4. The
initial SrTiO3 was also measured for reference and its zeta potential was −40.15 ± 1.14 mV.
Compared to the initial SrTiO3 the copper modified samples had a slightly lower surface
charge, ranging from −39.17 mV to −21.66 mV. The results indicated that the modification
of the initial SrTiO3 with CuOx decreased the negative surface charge of the samples.
According to the literature, the Zeta-potential of bare CuO is greater than −20 mV in
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distilled water [23], and, thus, the change of the surface charge in the case of surface
decorated catalysts is understandable, and consequently also proved the successful CuOx
deposition. The pH was around 9.15 for each sample and around 9 for the reference SrTiO3
(SRT0). According to the literature, the change of the surface charge greatly influences the
adsorption processes and the stability of the suspension [24].
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2.2. Photocatalytic Activity Measurements

Next, the photocatalytic activity of the synthetized catalyst was measured, under the
same experimental conditions, and compared to the commercial (basic) SrTiO3 (SRT0).
Each surface modified sample had higher photocatalytic activity (~14.7–19.1% relative
phenol decomposition) than the reference SrTiO3 (~7% relative phenol decomposition,
0.690 mgphenol/gcat) and SRT1 showed the highest photocatalytic activity (19.1% relative
phenol decomposition, 1.910 mgpheonl/gcat). The results are summarised in Figure 5. (in
Figure 5A the relative phenol decomposition curves can be seen, while in Figure 5B the
degraded amount of phenol after 240 min irradiation is shown). As neither the band gap
(Figure 2C) nor the surface charge (Figure 4) in this sample showed extreme values, better
photocatalytic activity was sought elsewhere. Since the conversion of phenol takes place
through hydroxyl radicals [25], so the amount of hydroxyl radical could be decisive in
our system. The next section deals with this phenomenon. The photodegradation results
showed that the optimum of the copper content was 1 wt.% for maximum photocatalytic
activity, under certain conditions (UV excitation, 0.1 wt.% photocatalyst, and 10 mg/L
initial concentration of phenol as pollutant).
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Next, the photocatalytic test was repeated in the case of the SRT1 sample with the
highest photocatalytic activity to study the stability and reusability of the catalyst. Figure 6
shows the corresponding phenol photodegradation curves and the degraded specific
amount of phenol (mgphenol/gcat) as a function of cycles. As shown in Figure 6, the catalyst
did not exhibit any significant loss after three cycles of the degradation of phenol under
the same conditions. The obtained degradation values were 19.1, 18.3 and 17% for the first,
second and third cycles, respectively. The results confirmed that the obtained photocatalyst
showed good stability and sustainability.
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2.3. Detection of Hydroxyl Radical

The 7-hydroxyoumarin molecule is not detected without a catalyst, only the hydroxyl
radicals formed during the photocatalytic process can produce 7-hydroxycoumarin [26].
The hydroxyl radical production capacity was measured with the same light source
(Figure 7) that we applied during the photocatalytic tests.
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alyst. SRT samples were better ability to produce hydroxyl radicals, because the surface of
CuOx has electron trapping ability (plasmonic effect) [27], so the charge separation takes
longer, and, therefore, more water molecules could be oxidized on the hole side. The
reaction rate constant was larger by an order of magnitude, thus proving that either more
hole-electron pairs were formed and/or the recombination time was longer. The results
showed that increasing the copper content did not linearly increase the hydroxyl radical
production ability; the reason for this was probably the excessive copper coverage of the
SrTiO3 surface.
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3. Materials and Methods
3.1. Catalyst Preparation

Analytical grade chemicals were used for synthesis without further purification: Sr-
TiO3 (Alfa Aesar, Karlsruhe, Germany; >99%), CuSO4 × 5 H2O (Reanal Finomvegyszergyár,
Budapest, Hungary; reagent grade), NaBH4 (Molar Chemicals, Halásztelek, Hungary;
98.5%) andultrapure Millipore Milli-Q water (Budapest, Hungary). CuOx surface modified
strontium titanate (SrTiO3) samples were prepared using dissolved Cu2+ of a calculated
amount and SrTiO3 suspension. First, 10 mL 2.5 g/L Cu2+ solution (Cu ratio is 0.25 wt.%)
was added to 100 mL 10 g/L SrTiO3 suspension. After thorough mixing, an excess (20%)
of reducing agent (NaBH4) was used to successfully reduce all the copper, and, then, the
mixture was stirred at 60 ◦C for 1 h. The samples were then calcinated for 3 h at 300 ◦C
in airflow to oxidize the Cu(OH)2 on the surface. In the case of the other samples, the
preparation procedure was the same, only the nominal Cu content (wt.%) was changed,
the values are in the Table 1. SRT0 was the reference, commercial SrTiO3 catalysts.

3.2. Characterization

The copper-modified SrTiO3 samples’ crystallinity was determined with X-ray diffrac-
tion measurements, which were carried out with a Philips X-ray diffractometer (PW
1830 generator, PW 1820 goniometer, CuKα: λ = 0.1542 nm, 40–50 kV, 30–40 mA) (Philips,
Germany), from 20 to 80◦ (2Θ), at room temperature.

For optical characterization, the diffuse reflectance spectra were recorded with UV–
VIS USB4000 type (Ocean Optics Inc., Dunedin, FL, USA), diode array spectrophotometer.
The spectrums were recorded from 200 to 850 nm wavelength. The bandgap values were
determined using the Kubelka-Munk method [20].
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The morphologies of the samples were analyzed, using a JEOL JEM-1400plus (JEOL
Ltd., Tokyo, Japan) transmission electron microscope (TEM), operating with 120 kV acceler-
ating voltage on Formal foil covered 200 mesh copper grids.

The specific surface area values of the samples were measured by the BET method
from N2 adsorption isotherms (77 ± 0.5 K) by Micromeritics Gemini 2375 Surface Area
Analyzer (Micromeritics, Norcross, GA, USA).

The electrophoretic mobility of the samples was also determined using a HORIBA
SZ-100 Nanoparticle Analyzer (Horiba, Kyoto, Japan). During the measurements, a dispos-
able carbon-coated electrode cell was used. From the measured data, the zeta-potential
values were determined using the Smoluchowski model. The measured aqueous dis-
persions were prepared in 0.001 w/v% concentration from the copper-modified SrTiO3
samples, as well as from the commercially available SrTiO3 for comparison. The zeta-
potential values provided useful information about the aqueous phase hydrodynamic
stability as well [24].

Energy dispersive X-ray spectra were measured with Thermo Scientific Apreo C
scanning electron microscope (Waltham, Massachusetts, USA) with Bruker XFlash 6-30 EDS
detector (Billerica, MA, USA) (30 keV). We also performed the mapping measurements
with this instrument.

3.3. Photocatalytic Activity Measurements

The photocatalytic efficiency of the SRTX (X denoted as nominal copper contents)
samples was measured in aqueous suspension at room temperature. Phenol was used
as model pollutant and the experiments were performed in an opened glass reactor. The
used light source was fixed at 5 cm distance from the surface of continuously stirred
(3500 rpm) 50 mL suspensions. The light source used during the photocatalytic tests
emitted in the UV range (local λmax = 366 nm (Figure 8). The photocatalyst concentration
in the suspension was 0.1 wt.%, while the initial phenol concentration was 10 mg/L. The
suspensions were irradiated for 90 min during the tests. The decreasing concentration of
the model pollutant was followed by an Agilent 1290 Infinity II liquid chromatograph with
UV detector (detection wavelength was 254 nm), the column was an InfinityLab Poroshell
120 ECsingle bondC18, while the mobile phase was 20/80 methanol/water with 1 mL/min
flow rate. Before the irradiation, the suspensions were kept in the dark for 30 min to ensure
adsorption equilibrium. The collected samples were centrifuged two times and filtered
through 0.1 µm Millex-VV PVDF filter before chromatographic analysis. With the best
photocatalyst, we performed two rounds of reusability experiments in order to examine
the stability of the catalyst, and the stability of the given catalyst could be deduced from
the change in photocatalytic activity.

3.4. Detection of Hydroxyl Radical

The hydroxyl radicals were detectable by their reaction with coumarin (Figure 9) [26].
Coumarin reacts with the hydroxyl radical if it is present in the system and the result of
the reaction is 7-hydroxycoumarin, a molecule which is detectable through its emission
(λmax = 453 nm). The capacity of the hydroxyl radical production was measured for the ini-
tial SrTiO3 and all SRTX samples. The experiments were preceded by the calibration of the
spectrofluorometer (HORIBA Jobin Yvon Fluoromax-4) with 7-hydroxycoumarin, the con-
centration dependence was linear over the range used (1 × 10−8 mol/L–5 × 10−6 mol/L),
R2 = 0.9999.
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For measurements, the initial coumarin concentration was 1 × 10−4 mol/L, and
the photocatalyst concentration was 0.1 wt.%. The UV light source was placed at 5 cm
distance from the suspensions surface. The actual 7-hydroxycoumarin concentration
change was determined by a Jasco FP-8500 spectrofluorometer. The excitation wavelength
of 7-hydroxycoumarin was 345 nm, while the detection wavelength was 453 nm. Before
the measurements, the samples were centrifuged two times to completely remove the
dispersed photocatalyst particles.

4. Conclusions

Plasmonic strontium titanate-based photocatalyst, with varied surface copper con-
tent (CuOx), having improved photocatalytic activity was synthetized. The successful
modification of the photocatalyst surface was proven by XRD (increased the primary crys-
tallite size from 5.3 nm to ~8.5 nm), diffuse reflectance and zeta-potential measurements.
EDX, SEM-mapping and TEM measurements proved the presence of copper nanoparticles
(d = ~5–40 nm) on the surface of SrTiO3 particles (d = ~500–1500 nm), According to the BET
measurements, the SRT1 sample had the largest specific surface area (2.23 m2/g), which
probably also contributed to its increase in photocatalytic activity. Through the breakdown
of the phenol test molecule, we established that the SRT1 sample had the highest photo-
catalytic activity (1.910 mgphenol/gcat), so the optimal copper content was around 1 wt.%.
According to the reusability tests, the photocatalytic activity decreased minimally. When
examining the origin of 7-hydroxycoumarin, which is related to the amount of hydroxyl
radical produced, we found that the reason for the increase in photocatalytic activity could
be explained by the increased amount of hydroxyl radical. The 7-hydroxycoumarins con-
centrations were 2.8 × 10−7 and 2.4 × 10−6 µmol × L−1 × s−1, in the case of STR0 and
STR1, respectively. An increase in the amount of hydroxyl radicals indicated that more
surface adsorbed water molecules were oxidized, which was due to the plasmonic effect of
CuOx, which increases the charge recombination time, i.e., water molecules have more time
to oxidize into hydroxyl radicals. Consequently, at optimal Cu content (1%) the plasmonic
enhancement of the surface CuOx particles decreased the electron-hole recombination rate.
However, further increasing the Cu content meant the particles might block the active sites
of the catalyst.
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