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Department of Chemistry, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn,
Łódzki Square 4, 10-727 Olsztyn, Poland; mateusz.kuczynski@uwm.edu.pl
* Correspondence: tomasz.mikolajczyk@uwm.edu.pl (T.M.); boguslaw.pierozynski@uwm.edu.pl or

bogpierozynski@yahoo.ca (B.P.)

Abstract: This study presents the results of electrochemical investigations on Hydrogen and Oxy-
gen Evolution Reactions (HER and OER), conducted on commercially available carbon fibres and
nickel-coated carbon fibres modified using nanoscale NiFe alloy particles in 0.1 M of NaOH solution.
The obtained results demonstrated enhanced catalytic activity of the NiFe-modified fibre materials,
with approximately 14,700% and 25% improvement in the OER and HER activity (respectively), as
compared to unmodified electrodes. The catalytic properties were evaluated by means of electro-
chemical impedance spectroscopy, Tafel polarisation and cyclic, and linear voltammetry techniques.
The deposited particles’ distribution and quantities present on the investigated materials were anal-
ysed using Scanning Electron Microscopy (SEM) and Energy-Dispersive X-ray spectroscopy (EDX)
methods. These findings provided valuable insights into the electrochemical, catalytic performance
of NiFe-modified carbon fibre/nickel-coated carbon fibre materials, simultaneously highlighting
their potential application as catalyst materials for electrodes in industrial-scale water electrolysers.

Keywords: HER; OER; Ac. impedance spectroscopy; transition metals; electrocatalysts; water
electrolysis; electrodeposition; NiFe-nanomaterials

1. Introduction

As the world faces an energy crisis and serious challenges associated with climate
change, researchers continue searching for new solutions and alternatives in order to replace
conventional fossil fuels [1–3]. Hydrogen’s high energy density makes it a promising
alternative fuel solution. Moreover, its combustion results in the formation of just water
molecules, which is accompanied by energy release in the form of heat (Equation (1)).
Unfortunately, a significant portion (95%) of hydrogen is currently produced by means
of methods that rely on fossil fuels (methane, coal, and oil), through steam methane
reforming or coal gasification, leading to significant carbon dioxide emissions. This type of
hydrogen is commonly known as “gray hydrogen”. On the other hand, water electrolysis
(e.g., realised via PEM: proton exchange membrane or AWE: alkaline water electrolysis
process) combined with renewable energy sources (e.g., solar, wind or water) enables
hydrogen production to become emission-free, where such generated H2 is called “green
hydrogen” [4–6].

2H2 + O2→ 2H2O + Q (1)

Due to the acidic environment prevailing inside the PEM electrolyser cell, these
systems could only utilise catalysts that are highly stable (corrosion-resistant) at low pH
values, i.e., predominantly composed of very costly, semi-noble, and noble metal particles.
In contrast, the alkaline (AWE) systems enable the utilisation of cheaper and more available
transition elements, such as Fe, Ni, Co, Cu, etc. However, these metals are generally less
catalytic towards either of the discussed gas evolution reactions than those of noble/semi-
noble nature. This necessitated a search for new materials that could lower hydrogen
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production costs by reducing the overall energy consumption for the water electrolysis
process [7–10]. Current AWE scientific activities are primarily focused on the investigation
of the catalytic performance of different forms of Ni, Fe, and Co elements. Of particular
interest are materials derived from their respective oxides and hydroxides, as well as various
alloy compositions containing these elements. Thus, their chemical compositions and
synthesis methods are being continuously analysed and are subject to ongoing discussions
within the scientific community [11–20].

Recently, special attention has been given to NiFe-LDH (NiFe Layered Double
Hydroxide)-based materials, which exhibit superior catalytic properties and achieve high
current densities towards the HER and OER reactions. Additionally, notable materials,
such as NiSn, NiCoSn, NiCu, MoS, NiAg, and CoP demonstrate similar catalytic properties
to Pt in the context of the HER [11,20–24]. Furthermore, when analysing the OER catalysts,
it is worthwhile (besides the NiFe alloy) to consider materials such as CoP, NiCoO, and
NiCo-LDH, which also demonstrate promising catalytic properties [14,17,18].

This work aims to shed light on the behaviour of NiFe catalysts on commercially
available carbon fibre (CF) and nickel-coated carbon fibre (NiCCF) materials, and serves as
a preliminary investigation for further studies, enabling the practical implementation of
NiFe alloys in industrial-scale electrolysers. The authors’ decision to combine Ni-coated
carbon fibres (or carbon fibres) with NiFe alloy was inspired by the potential of leveraging
the inherent electrochemical properties of both materials. While NiCCF and CF offer robust
and conductive support materials, NiFe alloy particles further enhance their catalytic (HER,
OER) activities. It should also be stressed here that the current work takes direct advantage
of a number of previously published articles from this laboratory on the HER behaviour of
CF and NiCCF tow catalyst materials (see Refs. [25–29]). Specifically, the CF (NiCCF) and
NiFe catalyst combination aims to address the challenges associated with single-material
systems and seeks to optimize the performance of both the HER and OER reactions under
alkaline conditions.

2. Results and Discussion
2.1. SEM/EDX Characterisation of CF, NiCCF, NiFe/CF and NiFe/NiCCF Electrodes

Figures 1a–c and 2a–c show that the structures of the deposited NiFe alloy were of
somewhat non-regular and discontinuous structure based on the base material’s surface.
The grain size of the deposited alloy fluctuated between 40–60 nm with visible agglomerates
of NiFe particles reaching sizes up to 150 nm. NiFe alloy content in the NiFe/CF samples
was ca. 10 wt.% (assessed by a weighing method and the SEM coupled with EDX spec-
troscopy evaluations). The weighing method showed the same results for the NiFe/NiCCF
sample, as for the NiFe/CF specimen. For the SEM/EDX analysis, notable discrepancies
were observed in the percentage composition of individual elements (see Table 1). The
above could be attributed to the presence of a homogeneous nickel coating, which impairs
the accessibility of carbon during the SEM/EDX examination. The total composition and
arrangement of elements of the NiFe/CF, NiCCF, and NiFe/NiCCF electrodes is shown in
Table 1 and Figures 1 and 2.
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Figure 1. SEM micrograph pictures of NiFe/CF (a), taken at 4290× magnification with EDX pattern 
(b) and EDX elemental mappings (c). Figure 1. SEM micrograph pictures of NiFe/CF (a), taken at 4290×magnification with EDX pattern

(b) and EDX elemental mappings (c).
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Figure 2. SEM micrograph pictures of NiFe/NiCCF (a), taken at 50,000× magnification with EDX 
pattern (b) and EDX elemental mappings (c). 

2.2. Electrochemical Characterisation 
2.2.1. Cyclic Voltammetry 

Figure 2. SEM micrograph pictures of NiFe/NiCCF (a), taken at 50,000× magnification with EDX
pattern (b) and EDX elemental mappings (c).
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Table 1. EDX-derived (for an acceleration voltage of 15 kV) chemical composition of surface elements
for NiFe/CF, NiCCF, and NiFe/NiCCF samples.

NiFe/CF

Element Spectrum 1 [wt.%] Spectrum 2 [wt.%] Spectrum 3 [wt.%]

C 76.33 76.91 74.65

O 13.19 14.07 12.88

Ni 8.78 7.79 10.50

Fe 1.69 1.24 1.97

NiCCF

Element Spectrum 1 [wt.%] Spectrum 2 [wt.%] Spectrum 3 [wt.%]

C 5.07 4.72 5.28

O 0.77 1.01 1.30

Ni 94.16 94.27 93.42

NiFe/NiCCF

Element Spectrum 1 [wt.%] Spectrum 2 [wt.%] Spectrum 3 [wt.%]

C 2.85 3.73 2.66

O 1.28 1.46 2.53

Ni 91.28 88.96 90.21

Fe 4.59 5.85 4.60

2.2. Electrochemical Characterisation
2.2.1. Cyclic Voltammetry

The cyclic voltammetry (CV) graphs present a comparison of electrochemical be-
haviour for all examined electrodes (CF, NiCCF, NiFe/CF, and NiFe/NiCCF) in 0.1 M
NaOH solution (three sweeps were carried out over the potential span of −1.0–1.8 V vs.
RHE with a scan-rate of 50 mV s−1—the last cycles are presented) in Figure 3a,b. The
deposition of NiFe alloy on the surfaces of CF and NiCCF materials resulted in a significant
enhancement of the HER and OER catalysis. Additionally, the recorded cyclic voltammo-
grams for the NiFe/CF electrodes exhibited two anodic (A, B) and three cathodic (C, D, E)
peaks (see marked peaks in Figure 3: A (0–700 mV), B (1400–1700 mV), C (1000–1500 mV),
D (350–700 mV) and E (−100–300 mV)). Peak A corresponds to the oxidation of iron (Equa-
tions (2)–(4)) and nickel (Equations (5)–(7), where α-Ni(OH)2 ageing is applied; see Bode
cycle diagram in Figure 12 of Ref. [30] for more details) along with the corresponding
reduction peaks D (Fe3+/Fe2+) and E [Fe2+/Fe0 and Ni(OH)2/Ni0]. On the other hand,
peak B is related to the formation of β-NiOOH oxyhydroxide phase (Equation (8)); peak C
corresponds to its reduction (β-NiOOH/β-Ni(OH)2) [31–38]. However, as no ageing was
applied in this work to in situ formed nickel hydroxide, its significant portion would further
be converted upon charging to form γ-NiOOH phase (Equation (9)). Hence, the recorded
peaks B/C in Figure 3a most likely correspond to mixed features of β-NiOOH/β-Ni(OH)2
and γ-NiOOH/α-Ni(OH)2 transitions.

Fe0 → Fe2+ + 2e− (2)

Fe0 + 2OH− → Fe(OH)2 + 2e− (3)

Fe2++ 3OH− → Fe(OH)3 + e− (4)

Ni0 + 2OH− → α-Ni(OH)2 + 2e− (5)



Catalysts 2023, 13, 1468 6 of 20

α-Ni(OH)2 → β-Ni(OH)2 (6)

Ni0 + 2OH− → β-Ni(OH)2 + 2e− (7)

β-Ni(OH)2 + OH− → β-NiOOH + H2O + e− (8)

α-Ni(OH)2 + OH− → γ-NiOOH + H2O + e− (9)
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NiFe/CF −0.222 0.264
NiCCF −0.253 0.254

NiFe/NiCCF −0.309 0.498

Figure 3. Cyclic voltammogram curves of (a) CF and NiFe/CF; (b) CF, NiCCF, NiFe/CF, and
NiFe/NiCCF electrodes in contact with 0.1 M NaOH medium, carried out at a scan-rate of 50 mV s−1

over the potential span from −1.0 to 1.8 V vs. RHE.
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Figure 4 presents the cyclic voltammetry (CV) curves for all examined fibre-based
electrodes. The comparison reveals noticeable differences among the samples. Specifically,
as expected for the unmodified NiCCF electrode, no cathodic peaks (peaks D and E)
corresponding to iron reduction are observed there. Additionally, it could be noticed
that the current densities recorded on the NiFe/NiCCF electrode for peaks A and C are
significantly higher than those obtained on the NiFe/CF sample. However, in the case of
the NiFe/NiCCF sample, peak B is hardly visible. Most importantly, the presence of NiFe
alloy significantly reduces overpotentials for the OER and HER processes. Furthermore,
the NiFe (at 10 wt.%)/CF electrode exhibits similar OER/HER catalytic properties to those
demonstrated by commercially manufactured NiCCF products, with an average Ni content
at 45 wt.% (see Figure 3b and Table 2 below for more details and corresponding data in SF:
Figure S2 and Table S1).
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Figure 4. (a) Electrochemical impedance Nyquist plots for the HER on CF, NiCCF, NiFe/CF, and
NiFe/NiCCF electrode surfaces in contact with 0.1 M NaOH (at 293 K) for the potential of −200 mV
vs. RHE; (b–d) equivalent circuits used to fit the above process, where Cp is the Faradaic pseudo-
capacitance, Rp is the Faradaic resistance and Cdl is the double-layer capacitance (both capacitance
parameters are CPE: constant phase element−modified), jointly in series with an uncompensated
solution resistance, Rs. The data derived from the equivalent circuits are represented by the solid lines.

Table 2. Current densities for HER (η = 0.35 V) and OER (η = 0.57 V) recorded from CV curves.

Sample Current Densities [mA cm−2]

HERη=0.35V OERη=0.57V

CF −0.042 0.077

NiFe/CF −0.222 0.264

NiCCF −0.253 0.254

NiFe/NiCCF −0.309 0.498

2.2.2. A.c Impedance-HER

Figure 4a (and corresponding Figure S3) and Table 3 show the impedance spectroscopy
results for modified electrodes and electrodes made of base materials, examined in 0.1 M
NaOH. The electrochemical parameters, such as charge transfer resistance (Rct), porosity
resistance for reaction intermediates (Rp), double-layer capacitance (Cdl), and pseudo-
capacitance (Cp) parameters were obtained using two constant phase element (CPE)—
modified Randles equivalent circuit model (Figure 4b–d). The impedance measurements of
unmodified electrodes (CF) for potentials (from−100 to−600 mV vs. RHE) showed one de-
pressed semicircle (associated with porosity response at high frequency) and linear part of
the plot corresponding to CPE-modified capacitive response, recorded at medium and low
frequencies. Then, between the potentials of −700 and −900 mV vs. RHE, a second semicir-
cle corresponding to HER becomes visible on the EIS plot (medium and low frequencies).
The Rp and Cp parameters presented for pure CF are mostly potentially independent as
they could be associated with a response similar to the porous surface, simulated by the tow
material [39]. In contrast, the Cdl parameter increased correspondingly from 83.8 to 214.3 µF
cm−2 for the potentials of −100 and −900 mV. This phenomenon is probably associated
with very poor catalytic properties and a strongly electrochemicaly non-uniform surface
of the CF electrode; thus, increasing surface area becomes activated along with rising
overpotential [39,40]. The Rct parameter (observed in the range of −700 to −900 mV) de-
creased from 19,156.8 to 1780.7 Ω cm2, respectively, which is characteristic of the kinetically
controlled potential ranges.



Catalysts 2023, 13, 1468 9 of 20

Table 3. Electrochemical parameters for the HER, obtained at as received CF, NiFe/CF, NiCCF, and
NiFe/NiCCF electrodes in contact with 0.1 M NaOH supporting solution. The results obtained here
were recorded by fitting the CPE-modified Randles equivalent circuit (the superscripts attached to
potential value correspond to the model from Figure 4b–d) to the experimentally obtained impedance
data (reproducibility usually below 10%, χ2 = 1.56 × 10−6 to 1.74 × 10−5).

E/mV Rp/Ω cm2 Cp/µF cm−2 Rct/Ω cm2 Cdl/µF cm−2

CF

−100 d 91.7 ± 0.1 435.3 ± 28.0 - 83.8 ± 0.1

−200 d 107. 1 ± 0.1 642.2 ± 48.4 - 88.2 ± 0.2

−300 d 127.6 ± 0.1 954.8 ± 79.4 - 94.4 ± 0.2

−400 d 144.2 ± 0.1 914.4 ± 64.2 - 104.3 ± 0.3

−500 d 149.6 ± 0. 1 867.3 ± 56.5 - 116.0 ± 0.4

−600 d 112.7 ± 3.8 495.5 ± 61.7 - 134.2 ± 0.3

−700 b 86.2 ± 4.5 652.2 ± 7.9 19,156.8 ± 715.9 154.9 ± 1.0

−800 b 71.5 ± 3.9 620.2 ± 10.1 4403.1 ± 56.9 176.1 ± 1.4

−900 b 66.7 ± 5.8 352.8 ± 7.8 1780.7 ± 26.9 214.3 ± 3.2

NiFe/CF

−100 b 222.5 ± 11.4 834.8 ± 12.0 1572.9 ± 15.5 325.3 ± 2.1

−200 b 333.9 ± 89.4 996.4 ± 86.1 405.6 ± 61.8 363.4 ± 22.3

−300 c - - 370.9 ± 6.1 287.4 ± 11.7

−400 c - - 263.5 ± 10.6 363.6 ± 29.8

−500 c - - 189.0 ± 5.2 378.1 ± 28.2

−600 c - - 142.2 ± 4.9 338.9 ± 34.7

−700 c - - 120.7 ± 6.8 371.5 ± 57.2

NiCCF

−100 b 169.1 ± 5.8 113.2 ± 3.3 745.4 ± 10.3 137.5 ± 2.0

−200 b 132.6 ± 6.0 108.4 ± 4.1 490.3 ± 8.6 119.6 ± 2.4

−300 b 149.7 ± 11.1 91.3 ± 3.7 244.9 ± 12.7 118.2 ± 5.4

−400 b 130.1 ± 11.2 161.7 ± 39.9 213.2 ± 11.2 129.8 ± 15.1

−500 c - - 202.9 ± 6.0 111.2 ± 4.1

−600 c - - 214.8 ± 6.7 110.9 ± 4.2

NiFe/NiCCF

−100 b 68.2 ± 4.8 172.5 ± 16.3 563.7 ± 12.3 446.7 ± 9.6

−200 c - - 454.2 ± 10.4 363.7 ± 16.7

−300 c - - 306.5 ± 9.8 321.4 ± 23.7

−400 c - - 217.6 ± 5.8 221.6 ± 17.8

−500 c - - 215.0 ± 31.2 259.9 ± 64.7

The impedance Nyquist plots for the NiFe/CF electrodes showed two depressed
semicircles in the potential range of −100 to −200 mV, where the high-frequency semicircle
corresponds to the porosity of the electrode, and the low-frequency semicircle is related
to the kinetics of the hydrogen evolution reaction. Notably, the presence of a semicircle
connected to the HER process at lower overpotentials for modified electrodes suggests
that these electrodes possess higher catalytic activity compared to the base CF electrode.
The semicircle corresponding to Rp and Cp parameters was no longer visible for more
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negative potentials, as the CF tow material spread due to extended formation of H2 bubbles,
thus losing its somewhat porous structure. The value of the Rct parameter was radically
reduced—by about 160 times, as compared to the Rct values obtained for unmodified CF at
the potential of −700 mV. Also, the NiFe modification caused the value of Cdl parameter to
increase by 2.4 times for the same potential value. These results show that the presence of
NiFe alloy significantly improves the CF material’s catalytic properties towards the HER.
It is important to note that when focusing solely on the catalytic effect, independent of
surface area changes, the enhancement of electrochemical performance is primarily driven
by the catalytic properties of the NiFe alloy surface modifier (ca. 67 times, excluding the
surface area augmentation).

Also, for the NiFe/CF electrode, increasing cathode overpotentials steadily caused the
Rct parameter to be reduced from 1572.9 Ω cm2 to 120.7 Ω cm2 for the tested potential range.
However, no significant changes were observed in the Cdl parameter values with rising
cathode overpotentials. The fluctuation in the Cdl parameter values could be associated
with the simultaneous blocking of the electrode surface by freshly formed H2 bubbles and
“opening” of the CF tow material by these bubbles, thus leading to increased accessibility
to the electrode’s surface area [29].

The EIS measurements for unmodified NiCCF resulted in two distinct semicircles in the
potential range of−100 to−400 mV. The values of Rp and Cp parameters were independent
of the applied potential and ranged between 130.1, 168.1 Ω cm2 and 91.3, and 161.7 µF
cm−2, respectively. However, similarly to the EIS response for the NiFe/CF electrode, the
Cp and Rp parameters were no longer visible at higher overpotentials. Similarly to the
NiFe/CF catalyst material, the Rct parameter for the NiCCF electrode showed a decreasing
trend with increasing overpotential, while the Cdl showed some unspecific fluctuations.
Compared to the NiCCF electrode, the NiFe-modified CF catalyst exhibited considerably
lower Rct parameter values, but primarily at significant cathodic overpotentials (Table 3).

The modification of the NiCCF electrode with NiFe alloy reduced the charge transfer
resistance parameter by approximately 25% at the electrode potential of −100 mV. In con-
trast, the values of the Cdl parameter for the modified electrodes increased by approximately
three times, as compared to unmodified ones. This suggests that the modification primarily
influences the active surface area of the electrodes rather than its catalytic properties. Also,
the behaviour of the Rct and the Cdl parameters for the NiFe-modified nickel-coated carbon
fibre electrodes with rising overpotentials was similar to that observed for the unmodified
ones; however, the recorded Cdl values for the former case were somewhat reduced, as
compared to those derived for the latter ones.

The relationship of −log Rct and overpotential (η) for kinetically controlled reactions
was selected here over the potential range−100 to−600 mV vs. RHE with 100 mV potential
increments. The exchange current densities, j0, were calculated for the HER based on the
Butler–Volmer equation and the relation between the j0 and the Rct parameter for the
overpotential approaching 0 (see Equation (10) below) [26].

j0 =
RT

zFRct
(10)

Such calculated j0 reached the values of 1.8 × 10−11, 1.7 × 10−6, 1.4 × 10−6, and
1.7 × 10−6 A cm−2 for CF, NiFe/CF, NiCCF, and NiFe/NiCCF catalyst samples, respec-
tively. The j0 values for the NiFe/CF, NiCCF, and NiFe/NiCCF electrodes showed com-
parable results, where the observed differences in the j0 values between the NiFe/CF and
NiFe/NiCCF samples were indeed insignificant. This indicates that even with a lower
catalyst (NiFe) loading, the samples achieved similar activities to that exhibited by the com-
mercial product, which contains over four times as much Ni catalyst. The results presented
in Table 4 (and corresponding Table S2) suggest that NiFe alloy deposited on carbon fibre
is more cost-effective, compared to the same base material, but activated by noble metals.
This conclusion can be drawn based on the comparable performance of NiFe to Pd- or
Ru-modified carbon fibres (see Table 4 for details). Therefore, the utilisation of NiFe alloy
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provides a more economically viable alternative for diverse energy-related applications,
including the oxidation of organic compounds, such as urea to serve as a more efficient
and cost-effective anode option for the production of electrolytic hydrogen energy carrier,
as compared to traditional water electrolysis strategies. Additionally, NiFe alloy could
also serve as a superior active material for electrochemical supercapacitors. Its remarkable
electrical conductivity and high surface area jointly contribute to efficient energy storage
and charge/discharge characteristics, improving the supercapacitors’ overall performance
and durability [41–43].

Table 4. Exchange current densities for the HER (calculated based on the Butler–Volmer equation) in
0.1 M NaOH.

Material
HER

j0 [A cm−2] Ref.

CF 1.8 × 10−11 This work

NiFe/CF 1.7 × 10−6 This work

NiCCF 1.4 × 10−6 This work

NiFe/NiCCF 1.7 × 10−6 This work

Ru/NiCCF 5.4 × 10−5 [44]

Pd/CF 1.7 × 10−5 [28]

Ru/CF 7.7 × 10−6 [40]

2.2.3. Tafel-HER

The Tafel polarisation plots recorded for CF, NiFe/CF, NiCCF, and NiFe/NiCCF
electrodes are shown in Figure 5 (corresponding to Figure S4). The recorded cathodic slopes
(bc) and exchange current densities for the HER are presented in Table 5. The potential
range in which these parameters were measured was −50 to −200 mV for the NiFe/CF,
NiCCF, and NiFe/NiCCF samples. However, as the onset of hydrogen evolution was
observed at much more negative potentials on the CF sample, the potential range −700 to
−900 mV/RHE was chosen for this electrode. This phenomenon was also reflected in the
EIS results. The values of the Tafel-plot-derived j0 parameter are similar to those obtained
by means of the Butler–Volmer equation-based method and demonstrate significantly
improved catalytic properties after the NiFe electrode modification. Furthermore, these
electrodes exhibited a more positive onset potential, as compared to the unmodified ones
in Figure 6 (and related Figure S5). Furthermore, the obtained values of the exchange
current density are comparable with the literature values presented in Tables 4 and 5 (and
corresponding Table S3).
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Figure 5. Quasi-potentiostatic cathodic polarisation curves for the hydrogen evolution reaction
(HER), obtained at CF, NiFe/CF, NiCCF, and NiFe/NiCCF electrodes in 0.1 M NaOH electrolyte. The
polarisation curves were recorded at a scanning rate of 0.5 mVs− 1. The impedance-based solution
resistance, iR, correction was also applied.
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Figure 6. Linear Sweep Voltammetry (LSV) curves of CF, NiFe/CF, NiCCF, and NiFe/NiCCF
electrodes in 0.1 M NaOH solution, carried out with a scan rate of 0.5 mV s−1 for the HER
(iR-corrected).

Then, for carbon-based electrodes, modified with 10 wt.% of NiFe alloy, the recorded
j0 for the HER approached those typically derived for unmodified nickel electrodes [45].
Nevertheless, their catalytic efficiency towards the HER is about six times lower than that
recorded for platinum electrodes. Interestingly, it is possible to find transition metal alloys
that closely approach their HER parameters and the performance of platinum or even
exhibit superior behaviour to the Pt (including one that is based on a NiFe catalyst [21,46]).
This implies that the NiFe catalysts evaluated in this work may need to be optimised in
order to enhance their HER performance.

Table 5. HER kinetic parameters for the selected catalytic materials.

Material bc [mV dec−1] j0 [A cm−2] Ref. Electrolyte

CF −108 3.1 × 10−13 This work 0.1 M NaOH

NiFe/CF −62 1.7 × 10−6 This work 0.1 M NaOH

NiCCF −63 1.5 × 10−6 This work 0.1 M NaOH

NiFe/NiCCF −67 1.2 × 10−6 This work 0.1 M NaOH

NiFe/NiFoam 157 1.7 × 10−5 [46] 1.0 M KOH

Ni - 2.3 × 10−6 [45] 0.1 M NaOH

Pt −150 1.0 × 10−5 [47] 0.1 M NaOH

NiSn/Cu −121 6.9 × 10−7 [11] 1.0 M KOH

NiCoSn/Cu −122 1.2 × 10−5 [11] 1.0 M KOH

NiCu/C −57 2.5 × 10−5 [21] 1.0 M KOH

2.2.4. A.c. Impedance-OER

The impedance spectroscopy results for all examined electrode types are shown
in Table 6. The OER behaviour presented in Figure 7 demonstrates that introducing
modifications to the based carbon fibre electrodes resulted in considerably increasing the
reactivity of the tested electrodes. The Rp and Cp parameters independently fluctuate in
the span of the applied electrode potentials (also, see an explanation of the behaviour of
these parameters in Section 2.2.2). The catalytic modification in the case of the CF electrode
caused the recorded Rp value to decrease from 150.7 to 41.6 Ω cm2 (at the potential of
1400 mV), while the Cp value increased from 276.0 to 1982.0 µF cm−2 at the same electrode
potential. On the other hand, the Rct and Cdl parameters’ values strongly depended on the
applied potential. Specifically, the Rct parameter decreased along with increasing potential.
In comparison, a decrease in the Cdl parameter upon the potential augmentation was
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slightly less pronounced (probably caused by a stronger blocking effect of O2 bubbles,
compared to the tow “opening” effect, also see the explanation for the behaviour of this
parameter given in Section 2.2.2). Additionally, the catalytic modification caused a decrease
in the Rct parameter by approximately 147 times, while the Cdl parameter increased by
approximately 13 times at the potential of 1600 mV. Similarly, as for the HER measurements,
the catalytic properties of the CF electrodes were significantly enhanced by the presence of
NiFe catalyst deposits (ca. 13 times) rather than an increase in the electrochemically active
surface area of the composite material.

Table 6. Electrochemical parameters for the OER, obtained at as received CF, NiFe/CF, NiCCF,
and NiFe/NiCCF electrodes in contact with 0.1 M NaOH supporting solution. The results were
recorded by fitting the CPE-modified Randles equivalent circuit (the superscripts attached to potential
value correspond to the model from Figure 4b–d) to the experimentally obtained impedance data
(reproducibility usually below 10%, χ2 = 1.31 × 10−6 to 5.37 × 10−6).

E/mV Rp/Ω cm2 Cp/µF cm−2 Rct/Ω cm2 Cdl/µF cm−2

CF

1400 d 150.7 ± 5.4 276.0 ± 12.4 - 83.29 ± 0.25

1500 d 124.8 ± 7.3 209.0 ± 20.3 - 79.54 ± 0.01

1600 b 197.5 ± 9.0 292.5 ± 25.8 44,694.0 ± 546.4 70.97 ± 0.11

1700 b 193.9 ± 9.0 294.6 ± 25.8 17,117.1 ± 88.0 69.74 ± 0.11

1800 b 158.0 ± 13.4 249.4 ± 42.5 4828.2 ± 26.4 71.07 ± 0.25

NiFe/CF

1400 d 41.6 ± 4.9 1982.0 ± 479.1 - 276.7 ± 0.1

1500 b 39.0 ± 4.3 2626.2 ± 427.3 1389.8 ± 30.3 959.2 ± 2.4

1600 c - - 303.50 ± 12.9 917.6 ± 40.3

1700 c - - 140.83 ± 10.5 859.6 ± 13.2

1800 c - - 85.45 ± 7.9 740.4 ± 50.3

NiCCF

1400 d 246.4 ± 12.6 966.81 ± 54.25 - 1315.5 ± 6.9

1500 b 340.7 ± 9.7 1316.70 ± 27.82 1718.4 ± 37.0 1333.6 ± 14.1

1600 b 89.2 ± 6.3 446.97 ± 86.27 386.9 ± 4.2 1201.5 ± 32.7

1700 b 91.4 ± 13.0 2353.14 ± 338.99 202.1 ± 22.4 1594.5 ± 78.7

1800 b 75.7 ± 12.9 1381.01 ± 165.61 110.3 ± 17.7 1709.7 ± 162.0

NiFe/NiCCF

1400 d 199.9 ± 13.0 345.1 ± 64.7 - 1489.7 ± 135.9

1500 b 392.3 ± 33.6 1051.3 ± 69.5 708.9 ± 26.1 2339.0 ± 100.6

1600 b 81.6 ± 36.5 1115.8 ± 180.3 194.1 ± 42.8 1260.8 ± 10.7

1700 b 15.9 ± 1.9 30.2 ± 5.2 133.8 ± 5.1 963.1 ± 65.6

1800 c - - 57.9 ± 2.6 168.7 ± 15.4
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Figure 7. Electrochemical Nyquist impedance plots for the OER on CF, NiCCF, NiFe/CF, and
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In the case of the catalytic modifications based on the NiCCF electrode, there were
no significant differences in the Rp and Cp parameters between the NiCCF and the
NiFe/NiCCF samples. Although the values of these parameters were somewhat fluc-
tuating regardless of the applied potential, their values generally decreased along with
increasing electrode potential. This behaviour could most likely be attributed to a more
pronounced “opening” effect of the tow material by freshly-formed O2 bubbles, again
resulting in a loss of its somewhat porous nature.

Understandably, the Rct parameter for the NiCCF electrodes exhibited a significant
decrease when modified with the NiFe alloy. At a potential of 1600 mV, the Rct value
exhibited a reduction of approximately two times, indicating an improved catalytic effect
of the NiFe alloy. However, it is noteworthy that the value of the Cdl parameter remained
relatively unchanged at this potential, suggesting that the surface area of the NiCCF elec-
trode did not experience significant alteration. These findings highlight the sole catalytic
effect of the NiFe modification, independent of any notable changes in the surface area,
as being a primary driver behind the observed enhancement of the electrochemical per-
formance, observed at most examined potentials. For both types of electrodes, there is a
noticeable decrease in the reaction resistance as the potential increases. Specifically, for
the NiCCF electrodes, the resistance decreased from 1718.4 to 110.3 Ω cm2, while for the
NiFe/NiCCF samples, it became reduced from 708.9 to 57.9 Ω cm2 in the potential range
of 1500–1800 mV. The Cdl parameter, in this case, did not change significantly with the
potential for the unmodified NiCCF electrodes, which is similar to the behaviour previ-
ously recorded for this parameter for the process of hydrogen evolution (see explanation in
Section 2.2.2). However, for the NiFe/NiCCF sample, a radical decrease in the double-layer
capacitance value with the rising electrode potential was observed, namely from 2339.0 to
168.7 µF cm−2 for the potential span 1500-1800 mV. This behaviour is significantly different
from that of other electrodes, probably because the effect of blocking the carbon tow’s
surface by the O2 bubbles was considerably more prominent than an enlargement of the
electrochemically accessible surface area, obtained through the physical “opening” of the
tow material. Furthermore, the effect of improved OER performance is also evident in the
values of the j0 parameter obtained from the analysis of the Butler–Volmer equation, which
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came to 2.6 × 10−10, 9.4 × 10−8, 9.8 × 10−8 and 5.7 × 10−7 A cm−2 for the CF, NiFe/CF,
NiCCF and NiFe/NiCCF samples, respectively.

2.2.5. Tafel-OER

Figure 8 (and corresponding Figure S7) shows the Tafel polarisation curves obtained
for CF, NiFe/CF, NiCCF, and NiFe/NiCCF electrodes. The values of the anodic slope (ba)
and the current density at an overpotential of 0.3 V (j(η=0.3V)) for the OER are provided in
Table 7 (and the corresponding Table S4). The potential range for which the linear part
of the plots was determined is confined to the potential range: 1500–1600 mV. Figure 9
(and corresponding Figure S8) shows that the modified samples exhibited a lower OER
onset potential than that of basic materials. The current densities and ba parameters
obtained for the electrodes modified with NiFe were similar to those achieved by catalysts
based on noble metals, such as platinum, ruthenium, and iridium. Additionally, it can
be observed in Table 7 that apart from NiFe, there are various combinations of transition
metals that can exhibit similar catalytic properties. This significantly increases the number
of potential catalysts that could be utilised in this application. By exploring different metal
combinations, there is a possibility to discover more efficient and cost-effective catalytic
materials that meet specific requirements for the examined electrochemical processes.
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Figure 8. Quasi-potentiostatic cathodic polarisation curves for the oxygen evolution reaction (OER)
obtained for CF, NiFe/CF, NiCCF, and NiFe/NiCCF electrodes in 0.1 M NaOH solution. The polari-
sation curves were recorded at a scan rate of 0.5 mVs−1. The black line represents the overpotential
of 300 mV. Arrows on the graph show the logarithm of the current density (log j) for each sample;
the colour of the arrow matches the colour of the corresponding sample plot. The iR correction was
applied to account for the solution resistance, based on the impedance measurements.
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Figure 9. Linear Sweep Voltammetry (LSV) curves of CF, NiFe/CF, NiCCF, and NiFe/NiCCF
electrodes in 0.1 M NaOH solution, carried out with a scanning rate of 0.5 mV s−1 for OER
(iR-corrected).
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The current density values recorded on the examined materials at an anodic over-
potential of 300 mV were similar to those achieved by bulk NiFe-LDH (Layered Double
Hydroxide) materials [18]. While NiFe-modified CF and NiCCF electrodes did not exhibit
as high current densities as certain other catalytic materials, such as IrO2 or CoP, they
were simple to prepare and could readily be utilised for commercial purposes [17]. How-
ever, additional research may be necessary in order to optimize their catalytic capabilities,
particularly with regard to the HER activity.

Please note that the respective overpotentials for all the examined fibre-based catalysts
at the current density of 10 mA cm−2 are missing in Table 7 (also, see the results given in
Figures 8 and 9). However, it has to be noted that when the catalysts’ surface becomes read-
justed to its electrochemically active part (see Table S4 in the supplementary information
file), then the respected overpotential recorded at the current density of 10 mA cm−2 is
as follows: 560, 290, 305, and 270 mV for CF, NiFe/CF, NiCCF, and NiFe/NiCCF, corre-
spondingly. These results are in fact fully in line (or even somewhat superior to) with those
presented in Table 7 (Table S4) for other NiFe-based catalysts.

Table 7. OER kinetic parameters for the selected catalytic materials.

Material Electrolyte ba [mV dec−1] j(η=0.3V) [A cm−2] η(j=10mAcm−2) [mV] Ref.

CF 0.1 M NaOH 261 9.7 × 10−6 - This work

NiFe/CF 0.1 M NaOH 40 9.1 × 10−5 - This work

NiCCF 0.1 M NaOH 74 4.1 × 10−5 - This work

NiFe/NiCCF 0.1 M NaOH 60 1.7 × 10−4 - This work

RuO2/GC 0.1 M NaOH 44 ~5.0 × 10−4 - [48]

Co3O4/GC 0.1 M KOH 69 5.9 × 10−6 - [49]

CoAl2O4/GC 0.1 M KOH 56 3.9 × 10−7 - [49]

ZnCo2O4/GC 0.1 M KOH 113 5.6 × 10−7 - [49]

Pt 1.0 M KOH 66 4.0 × 10−4 - [12]

Ni/Fe 1.0 M NaOH 38 3.3 × 10−5 - [16]

Co/Fe 1.0 M NaOH 46 1.2 × 10−5 - [16]

IrO2/GC 1.0 M KOH 76 3.9 × 10−3 - [17]

CoP/C 1.0 M KOH 71 5.0 × 10−3 - [17]

NiFe-LDH/GC 1.0 M KOH 35 ~9.0 × 10−4 320 [13]

Ni0.25Co0.75Ox 1.0 M KOH 36 7.9 × 10−5 377 [14]

NiCo-LDH/GC 1.0 M KOH 41 - 335 [18]

MnFe2O4/GC 0.1 M KOH 114 - 470 [15]

NiFe2O4/GC 0.1 M KOH 98 - 440 [15]

In order to further assess the practical utilisation of our NiFe catalysts, we also con-
ducted extended stability tests spanning 48 h. Figure S9 demonstrates a consistent electro-
chemical performance over time, with only minor variations over the recorded cell voltage
for both HER and OER processes. The voltage jump observed in the graph is attributable
to the temporary halt of the experiment for carrying out EIS measurements.

3. Materials and Methods
3.1. Solutions and Chemical Reagents

All solutions were prepared using a Spring 30 s ultra-pure water purification system
from Hydrolab (with a resistivity of 18.2 MΩ cm). The 0.1 M NaOH supporting solution
was prepared from sodium hydroxide pellets (99.9%, POCH, Gliwice, Poland). In addition,
0.5 M H2SO4 was made of sulphuric acid (98% Merck, Darmstadt, Germany) for charging a
palladium reversible hydrogen electrode (RHE).
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3.2. Electrodes and Electrochemical Cell

Electrochemical experiments were carried out in a typical electrochemical cell. The
cell was made of Pyrex glass and contained three electrodes: carbon fibre (CF; Hexcel
12K AS4C, 12,000 single filaments of 7 µm diameter each) or nickel-coated carbon fibre
(NiCCF; Toho-Tenax 12K50, 12,000 single filaments of about 7.5 µm diameter each and
ca. 45 wt.% Ni)-based working electrode (WE), Pd RHE (Pd wire, 99.99% purity, 1.0 mm
diameter, Sigma-Aldrich) as reference electrode (RE) and Pt counter electrode (CE; Pt wire,
99.99% purity, 1.0 mm diameter, Sigma-Aldrich). All electrodes were placed in separate
compartments. In addition, before commencing experiments, atmospheric air was removed
from the cell by bubbling with argon (Ar 5.0 grade, Eurogas Bombi, Dywity, Poland).
Furthermore, argon gas flow was kept above the solutions throughout the experiments.

CF/NiCCF base electrodes were 1.5 cm long, with geometrical surface areas (GSA) of
39 cm2 for CF and 43 cm2 for NiCCF (based on the manufacturer-provided data). In the
main manuscript, we reported electrochemical parameters based on the GSA of the CF
or NiCCF base electrodes. However, in order to provide a more subtle understanding of
the electrochemical behaviour, we also included additional results based on the electro-
chemically active surface area (ECSA) in the supplementary file (SF). The ECSA, estimated
from the double-layer capacitance (Cdl), as shown in Figure S1, provides a more accurate
measure of the active sites available for electrochemical reactions [50,51]. Nevertheless, it
was observed that the parameters based on the ECSA seemed overly optimistic, possibly
due to the specific conditions or assumptions made during ECSA estimation. Therefore, to
maintain a conservative and broadly comparable approach, we have chosen to present the
GSA-based results in the main manuscript. By reporting both the GSA- and ECSA-based
parameters, we aim to give a comprehensive view of the electrochemical performance of
our electrodes, thus allowing for a more in-depth interpretation and comparison of the
obtained results. In order to remove a protective epoxy resin coating, the CF samples were
heat-treated (at a low oxygen atmosphere for 4 h at 623 K), while the NiCCF samples were
initially de-sized in acetone. Before running the experiments, the electrodes were oxidized
in 0.1 M NaOH solution at an anodic current density of 0.3 mA cm−2 for 300 s. Catalyst
electrodeposition was then performed according to the conditions and bath compositions
presented in Table S5 (Supplementary Information File). Procedures for the preparation of
laboratory equipment were as previously described in works by Pierożyński [26,27,29].

3.3. Experimental Methodology

All electrochemical measurements were performed at 293 K employing an AUTM
204 + FRA 32M Multi-Autolab potentiostat/galvanostat system. This work covers the
employment of Tafel quasi-steady-state polarisation, electrochemical ac. impedance spec-
troscopy (EIS), and cycling voltammetry (CV) techniques. For EIS, the generator provided
an output signal of a known amplitude of 5 mV, and the frequency range was typically
swept between 1.0× 10−5 and 0.5× 10−1 Hz. The instruments were controlled by Nova 2.1
software for Windows (Metrohm Autolab B.V., Opacz-Kolonia, Poland). Impedance data
analysis was performed with ZView 2.9 software package (Windows, Scribner Associates,
Inc. Berwyn, PA, USA), where the impedance spectra were fitted with a complex, non-linear,
least-squares immittance fitting program, LEVM 6, written by J.R. Macdonald [52]. For
CV measurements, three sweeps were carried out over the potential span of −1.0–1.8 V vs.
RHE with a scanning rate of 50 mV s−1. Moreover, Tafel polarisation experiments (recorded
at a scanning rate of 0.5 mV s−1) for the HER and OER experiments were conducted for
all examined samples. Additionally, SEM/Energy-Dispersive X-ray (EDX) surface spec-
troscopy characterisation of all examined CF, NiCCF, and NiFe-modified CF, and NiCCF
samples was carried out by means of Merlin FE-SEM microscope (Zeiss), equipped with
Bruker XFlash 5010 EDX instrumentation (with 125 eV resolution).
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4. Conclusions

In summary, the NiFe alloy deposited at a 10% by weight via NiFe electrodeposition
on CF and NiCCF serves as a promising catalyst that could potentially be used as a material
for practical electrodes in alkaline water electrolysers. The incorporation of the NiFe alloy
into CF entities significantly reduced (160 times at a potential of −700 mV vs. RHE) the
HER-associated charge transfer resistance along with nearly 150 times Rct reduction for
the corresponding OER (at a potential of 1500 mV). Similarly, for NiCCF electrodes, the
reduction in the charge transfer resistance was approximately 25% and 50% for the HER
and OER, respectively. These findings highlight the effectiveness of the NiFe alloy in
improving the electrochemical performance of both CF and NiCCF electrodes in alkaline
water electrolysis applications.

Notably, when the recorded electrochemical parameters were normalised to the electro-
chemically active surface area (ECSA), the values appeared significantly higher than those
obtained when normalised to the geometrical surface area (GSA). This could potentially
point to an exceptionally high density of active sites on the electrode surface. However,
given that these ECSA-normalised values seemed overly optimistic, we chose to employ
a dual approach, reporting parameters based on both the GSA and ECSA data to offer a
more balanced and comprehensive understanding of the catalyst performance.

Additionally, the recorded current density levels for both hydrogen and oxygen evo-
lution reactions indicate that the NiFe alloy deposited on carbon-based materials could
serve as a cost-effective and efficient alternative to noble metals and nickel-based materials
that are currently used in commercial alkaline water electrolysers. Furthermore, the devel-
opment of new catalysts based on transition metal alloys will enable further increase in
the water electrolysis efficiency. However, in order to design a highly catalytic, Ni-based
AWE stack system for optimised production of green hydrogen, further refining of catalyst
composition along with additional electrochemistry work will be required.
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