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Abstract: This work demonstrates the influence of the catalyst and alkyne nature on the regioselectiv-
ity of rhodium-catalyzed annulation of alkoxy-substituted benzoic acids (such as 3-methoxybenzoic,
3,4-dimethoxybenzoic, and piperonylic acids) with alkynes. Here, X-ray diffraction and DFT calcula-
tion data gave evidence that the observed regioselectivity is provided by both steric and coordination
effects of methoxy groups. The latter is the result of weak non-covalent C–H· · ·O interactions with
the supporting ligand rather than with the rhodium atom. We believe that these results are also valid
for other reactions of the C-H activation of methoxy-substituted arene compounds.
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1. Introduction

Hydroxyl and alkoxy substituents are widely distributed in the structure of natural
heterocyclic compounds [1,2]. Moreover, they are often responsible for diverse bioactivities,
e.g., antibacterial and anticancer activity, and, therefore, are privileged pharmacophore
groups. For example, hydroxy-substituted compounds account for more than 30% of all
marketed drugs [3].

Transition metal-catalyzed annulation via the C-H activation process in arene or vinyl
derivatives is a modern synthetic tool for the creation of heterocyclic compounds, includ-
ing natural and pharmaceutical substances [4–8]. In particular, this approach allowed
researchers to considerably improve the synthesis of the isocoumarin, isoquinoline, and
indole alkaloids, such as sparstolonin B [9], oxopalmatine [10], rosettacin [11,12], oxychel-
erythrine [13], and goniomitine [14], many of which contain hydroxyl or alkoxy groups.
High selectivity is achieved through chelation with directing groups (carboxylic, hydrox-
amic, imine, etc.) [15–18]. Simple substituents without donor atoms, for example, alkyl,
aryl, chlorine or bromine groups, in addition to steric effects, do not considerably affect the
regioselectivity of C-H activation. At the same time, alkoxy groups are unique substituents
that are not full-fledged directing groups, but contribute to the partial orientation of C-H
activation to the ortho-position. For example, Sihag and Jeganmohan showed that annula-
tions of 2-methyl-4-phenylbut-3-yn-2-ol with meta-Cl and meta-Br benzoic acids selectively
afford only less sterically hindered 7-substituted isocoumarins, whereas a similar reaction
with meta-OMe benzoic acid has poor regioselectivity, giving both 5- and 7-regioisomers in
a 1:1 ratio (Scheme 1) [19]. Other researchers have also reported low selectivity for C-H
activation of meta-OMe-substituted aryl compounds [20–25]. Interestingly, the formation of
sterically unfavorable regioisomers has been observed for the formation of a naphthalene
derivative from anisole or even para-OMe benzoic acid [26–28]. The exact reason for the
poor regioselectivity of C-H activation of methoxy-substituted arenes was not clear until
the present study.
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the C-H activation of 3-methoxybenzoic acid 1a, we examined several rhodium complexes 
with different supporting ligands in the coupling reaction with diphenylacetylene 2a (Ta-
ble 1). Mild conditions were chosen, using AgOAc as the oxidant and methanol as the 
solvent at 80 °C [29–31]. It is noteworthy that an increase in the reaction temperature above 
100 °C can lead to undesirable decarboxylation of 1a [27,32–36]. We found that the use of 
rhodium complexes as catalysts with both electron-rich (Cp* [37,38] and CpPh3 = 1,2,4-Ph3-
C5H2 [39]) and electron-deficient (Cp [40–42] and CpE = 1,3-(COOEt)2-C5Me3 [43]) cyclo-
pentadienyl ligands leads to the preferential formation of the sterically unfavorable 5-sub-
stituted regioisomer 3aa (entries 1–4), with the ratio of regioisomers being higher (up to 
2.4:1) for the electron-rich ligands (entries 1 and 2 vs. 3 and 4). Most of the complexes 
demonstrated a high overall conversion (70–90%), while the [CpERhCl2]2 complex gave a 
mixture of 3aa and 3aa’ with a total yield of only 20% (entry 4). The reduced catalytic 
activity of the latter is not clear, since electron-deficient ligands can facilitate C–H activa-
tion [44,45], which is usually the rate-determining step (for a conventional mechanism, 
see Scheme 2). It is believed that too many electron-withdrawing groups in the supporting 
ligand can also prevent with the reductive elimination step. Similar reactions with dieth-
ylacetylene 2b also afforded mixtures of 5- and 7-methoxyisocoumarins 3ab/3ab’ (entries 

Scheme 1. Iridium-catalyzed annulations of 2-methyl-4-phenylbut-3-yn-2-ol with meta-substituted
benzoic acids [19]. Reaction conditions are as follows: [Cp*IrCl2]2 (3 mol%), LiOAc·2H2O (1 equiv),
Ag2CO3 (1.1 equiv) in DCE at 80 ◦C for 20 h.

Herein we report an extensive study of the impact of the catalyst and alkyne nature
on the regioselectivity of C-H activation of alkoxy-substituted benzoic acids, as well as the
mechanistic aspects of these reactions based on X-ray and DFT studies.

2. Results and Discussion
2.1. C-H Activation of 3-Methoxybenzoic Acid

First of all, to evaluate the influence of the catalyst nature on the regioselectivity of the
C-H activation of 3-methoxybenzoic acid 1a, we examined several rhodium complexes with
different supporting ligands in the coupling reaction with diphenylacetylene 2a (Table 1).
Mild conditions were chosen, using AgOAc as the oxidant and methanol as the solvent at
80 ◦C [29–31]. It is noteworthy that an increase in the reaction temperature above 100 ◦C
can lead to undesirable decarboxylation of 1a [27,32–36]. We found that the use of rhodium
complexes as catalysts with both electron-rich (Cp* [37,38] and CpPh3 = 1,2,4-Ph3-C5H2 [39])
and electron-deficient (Cp [40–42] and CpE = 1,3-(COOEt)2-C5Me3 [43]) cyclopentadienyl
ligands leads to the preferential formation of the sterically unfavorable 5-substituted
regioisomer 3aa (entries 1–4), with the ratio of regioisomers being higher (up to 2.4:1) for
the electron-rich ligands (entries 1 and 2 vs. 3 and 4). Most of the complexes demonstrated
a high overall conversion (70–90%), while the [CpERhCl2]2 complex gave a mixture of 3aa
and 3aa’ with a total yield of only 20% (entry 4). The reduced catalytic activity of the latter
is not clear, since electron-deficient ligands can facilitate C–H activation [44,45], which
is usually the rate-determining step (for a conventional mechanism, see Scheme 2). It is
believed that too many electron-withdrawing groups in the supporting ligand can also
prevent with the reductive elimination step. Similar reactions with diethylacetylene 2b
also afforded mixtures of 5- and 7-methoxyisocoumarins 3ab/3ab’ (entries 5–8), but with a
ratio of regioisomers close to 1:1. Moreover, in the case of the [CpERhCl2]2 complex the less
sterically hindered 7-methoxyisocoumarin 3ab’ becomes predominant (entry 8). Thus, we
can conclude that the regioselectivity of annulation of 1a with alkynes depends not only on
the supporting ligand, but also on the nature of the alkyne, which unambiguously suggests
the importance of the alkyne insertion step for regioselectivity.
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Table 1. Catalyst screening in the annulation of 3-methoxybenzoic acid 1a with alkynes a.
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Entry R Catalyst Total Yield, % b Ratio of 5/7-Isomers c

1 Ph [Cp*RhCl2]2 90 2.4:1
2 Ph [CpPh3RhI2]2 66 2.2:1
3 Ph [CpRhI2]n 91 1.85:1
4 Ph [CpERhCl2]2 20 1.72:1
5 Et [Cp*RhCl2]2 97 1.40:1
6 Et [CpPh3RhI2]2 97 1.25:1
7 Et [CpRhI2]n 94 1.10:1
8 Et [CpERhCl2]2 95 0.90:1

a Reaction conditions are as follows: 0.25 mmol (38 mg) of 1a, 0.5 mmol of alkyne, 2.0 mol % (based on Rh) of the
catalyst, 0.5 mmol (83 mg) of AgOAc, and methanol (2 mL) at 80 ◦C for 8 h. b Total yields are given after preliminary
purification by column chromatography. c Regioisomeric ratios are determined by 1H NMR spectroscopy.
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All regioisomers 3aa/3aa’ and 3ab/3ab’ were separated and isolated individually us-
ing column chromatography. The structures of isocoumarins 3aa and 3aa’ were determined
by X-ray diffraction (Figures 1 and 2). In both cases, the symmetry-independent part of
the unit cell contains two formula units. In 3aa, the methoxy group is located in the plane
of the isocoumarin fragment (the maximum value of dihedral angle C6-C5-O3-C9 is 4.5◦),
with the methyl substituent turning opposite to the incoming alkyne moiety in accordance
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with a strong steric hindrance. In contrast, in the less sterically hindered isomer 3aa’, the
dihedral angle C6-C7-O3-C9 reaches 22.4◦. The X-ray data suggests that the predominant
formation of 3aa should be provided by some additional coordination other than simple
chelation of the carboxyl group.
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Figure 1. Structure of compound 3aa (one of two symmetry-independent molecules). Ellipsoids
are shown at the 50% level. Hydrogen atoms are omitted for clarity. Selected bond lengths (Å) for
the first/second symmetry-independent species are as follows: C1−O1 1.206(1)/1.208(3), C1−O2
1.368(3)/1.370(3), C3−O2 1.387(3)/1.389(3), C5−O3 1.360(3)/1.356(3), C1−C8a 1.459(4)/1.454(4),
C3−C4 1.336(4)/1.346(4), C4−C4a 1.465(4)/1.460(4), C4a−C8a 1.400(4)/1.408(4), C4a−C5
1.412(4)/1.419(4), C5−C6 1.382(4)/1.381(4), C6−C7 1.376(4)/1.386(4), C7−C8 1.377(4)/1.370(4), and
C8−C8a 1.390(4)/1.389(4).
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Figure 2. Structure of compound 3aa’ (one of two symmetry-independent molecules). Ellipsoids
are shown at the 50% level. Hydrogen atoms are omitted for clarity. Selected bond lengths (Å) for
the first/second symmetry-independent species are as follows: C1−O1 1.208(2)/1.198(2), C1−O2
1.371(2)/1.371(2), C3−O2 1.384(2)/1.393(2), C7−O3 1.363(2)/1.366(2), C1−C8a 1.462(3)/1.472(3),
C3−C4 1.349(3)/1.352(3), C4−C4a 1.457(3)/1.462(3), C4a−C8a 1.400(3)/1.403(3), C4a−C5
1.405(3)/1.403(3), C5−C6 1.383(3)/1.382(3), C6−C7 1.396(3)/1.395(3), C7−C8 1.386(3)/1.386(3), and
C8−C8a 1.392(3)/1.386(3).



Catalysts 2023, 13, 389 5 of 14

2.2. C-H Activation of 3,4-Dimethoxybenzoic and Piperonylic Acids

To further emphasize the importance of both steric and coordination effects of the
methoxy group, we involved 3,4-dimethoxybenzoic and piperonylic acids (1b and 1c) in
annulation with alkynes catalyzed by the [Cp*RhCl2]2 complex (Scheme 3). In each case, the
reaction proceeds with excellent regioselectivity, giving only one of the two possible isomers.
For example, annulation of 1b with 2a,b afforded the less sterically hindered isocoumarins
3ba’ and 3bb’ in accordance with steric control, which is provided by repulsion of two
adjacent methoxy groups and shielding of one of two possible positions for C-H activation
(see below). On the other hand, the reactions of 1c selectively gave opposite regioisomeric
isocoumarins 3ca and 3cb as a result of C-H activation of the position nearest to the ether
substituent due to coordination control. In the case of reactions with diphenylacetylene
2a, only trans-stilbene was isolated as a side product, which can be formed as a result of
catalytic transfer hydrogenation by methanol [46,47].
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Scheme 3. Rhodium-catalyzed annulations of 1b and 1c with alkynes.

The structures of isocoumarins 3ba’ and 3ca were determined by X-ray diffraction
(Figures 3 and 4). The symmetry-independent part of the unit cell for 3ba’ contains two
formula units. The X-ray data for both independent molecules unambiguously confirm
the shielding of the closest aromatic protons to methoxy groups, which prevents their C-H
activation. On the contrary, from the structure of 3ca it can be concluded that in the starting
piperonylic acid 1c, these positions are open to C-H activation.

2.3. DFT Investigation

The general mechanism of rhodium-catalyzed coupling of benzoic acids with alkynes
has recently been investigated computationally by Nagashima and Tanaka [44]. They
demonstrated that the use of electron-deficient supporting ligands, such as Cp and CpE,
facilitates the C-H activation step, making alkyne insertion a rate-determining step. To ex-
plain the regioselectivity of C-H activation of 3-methoxybenzoic acid 1a, we performed DFT
calculations for these two key steps at the M06L(D3)/LANL2DZ level. Unexpectedly, in
contrast to the parent benzoic acid, in the case of 1a, the alkyne insertion has a considerably
higher energy of the transition state than for C-H activation, not only for electron-deficient
supporting ligands, but also for electron-rich ones (Cp* and CpPh3). For example, for the
formation of both regioisomers in the case of the reaction catalyzed by [Cp*RhCl2]2, the
transition states of diphenylacetylene insertion TS1_T_Cp* and TS’1_T_Cp* have higher
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Gibbs free energies (by ca. 8 kcal mol−1) than the transition states of the C-H activation
TS0_Cp* and TS’0_Cp* (Figure 5). The same pattern was observed for the reaction with
diethylacetylene, as well as for annulations catalyzed by all other rhodium complexes (see
Supporting Information for energy profiles). It allows us to consider the transition state
for the alkyne insertion as a rate-determining transition state [48]. At the same time, the
C-H activation step still has the highest activation energy for annulations, with dipheny-
lacetylene catalyzed by [Cp*RhCl2]2 and [CpPh3RhI2]2. It is interesting to note that just
these reactions provided the highest excess of the 5-methoxy regioisomer.
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omitted for clarity. Selected bond lengths (Å) are as follows: C1-O1 1.2060(16), C1-O2 1.3742(16),
C3-O2 1.3840(15), C5-O3 1.3719(16), C6-O4 1.3670(16), C1-C8a 1.4552(18), C3-C4 1.3470(18), C4-C4a
1.4588(18), C4a-C8a 1.4208(18), C4a-C5 1.3897(18), C5-C6 1.3852(19), C6-C7 1.3718(19), C7-C8 1.386(2),
and C8-C8a 1.3969(19).
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the Int0_Cp* intermediate at the M06L(D3)/LANL2DZ level with CPCM correction for methanol
solvation (in kcal·mol−1, at 298 K).

Another important feature was found to be the lower energies of the intermediate and
transition states for the pathway of formation of sterically unfavorable 5-OMe-regioisomers
as compared with those for 7-OMe-regioisomers. The reaction with diethylacetylene
catalyzed by [CpERhCl2]2 is the only exception (Figure 6), where the transition state for
the 5-OMe-regioisomer TS1_H_CpE has a higher Gibbs free energy (by ca. 0.4 kcal mol−1)
than for the 7-OMe-regioisomer TS’1_H_CpE. These theoretical data correlate well with
the experimentally observed regioselectivity of the annulation of 1a (see above).

However, the primary analysis of the optimized structures did not reveal covalent inter-
actions of the methoxy group, which could provide stabilization of the 5-OMe-regioisomers.
The maximum energy difference between the regioisomers (ca. 7–8 kcal mol−1) is observed
for the first intermediates Int’1 and Int1, where the latter is stabilized by an intramolecular
classical hydrogen bond between the methoxy group and coordinated acetic acid, which is
absent for the other intermediate and transition states (Figure 7). Therefore, we assumed
that weaker stabilizing forces also exist. It is known that weak non-covalent interactions
play a crucial role in organo and metal complex catalysis [49–51]. To search for weak
non-covalent interactions, we performed the AIM analysis [52] for the transition states of
both steps. It was found that there are weak C–H· · ·O interactions (the electron density at
the bond critical points ρ(r) is less than 0.01 e bohr–3) between CH3 or CH moieties of the
supporting ligand and the oxygen atom of the methoxy group, when this group is located
close to the C-H activated site (for example, see Figure 8a), which makes the formation of
5-OMe-regioisomers more favorable. In the case of the reaction with diethylacetylene cat-
alyzed by [CpERhCl2]2, the observed reverse regioselectivity may be caused by additional
C–H· · ·O interactions between the CH2 moiety of alkyne and the oxygen atoms of the ester
groups of the CpE ligand at the second step (Figure 8b). The values of the Laplacian of the
electron density ∇2ρ(r), as well as the Cremer and Kraka energy density H(r), are positive,
which give evidence of the non-covalent nature of all these interactions [53,54].
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of the electron density distribution at the selected bond critical points are as follows: H40-O47
(ρ(r) = 0.008 e bohr–3, ∇2ρ(r) = 0.035 e bohr–3, H(r) = 0.002 a.u.); H28-O47 (ρ(r) = 0.007 e bohr–3,
∇2ρ(r) = 0.030 e bohr–3, H(r) = 0.002 a.u.); H34-O51 (ρ(r) = 0.005 e bohr–3, ∇2ρ(r) = 0.018 e bohr–3,
H(r) = 0.001 a.u.).

3. Materials and Methods
3.1. General Information

All catalytic reactions were carried out in air using distilled methanol. All other
reagents were purchased from Acros or Aldrich and were used as received. Catalysts
[Cp*RhCl2]2 [37], [CpPh3RhI2]2 [39], [CpRhI2]n [40], and [CpERhCl2]2 [43] were prepared
as described in the literature. Column chromatography was carried out using Macherey-
Nagel silica gel 60 (particle size 0.04–0.063 mm) or neutral alumina. The 1H and 13C{1H}
NMR spectra were recorded on a Varian Inova 400 spectrometer operating at 400 and
101 MHz, respectively. Chemical shifts are given in ppm using residual solvent signals as
internal standards. The HRMS spectra (ESI) were recorded on a TripleTOF 5600+ mass
spectrometer (SCIEX).

3.2. Reactions of 3-Methoxybenzoic Acid 1a with Alkynes

3-Methoxybenzoic acid 1a (38 mg, 0.25 mmol, 1 equiv), alkyne 2a or 2b (0.5 mmol,
2 equiv), the Rh complex (2.0 mol%), AgOAc (84 mg, 0.5 mmol, 2 equiv), and MeOH (2 mL)
were placed in a Schlenk tube equipped with a stir bar. The reaction mixture was stirred
at 80 ◦C for 8 h. After cooling, the formed precipitate was centrifuged off, the solvent
was removed in vacuo, and the residue was chromatographed on silica (1 × 15 cm). The
first colorless band containing unreacted alkyne was eluted with petroleum ether. The
second (5-OMe-isomer) and third (7-OMe-isomer) bands were eluted with a mixture of
petroleum ether and dichloromethane. In the case of reaction with diphenylacetylene 2a,
column chromatography should be repeated until complete separation of the regioisomers.
Evaporation of the solvents gave the corresponding isocoumarins as colorless crystalline
solids. Yields are given in Table 1.

5-Methoxy-3,4-diphenyl-1H-isochromen-1-one (3aa). Alkyne—diphenylacetylene 2a.
Eluent—petroleum ether/CH2Cl2 (1:1). 1H NMR (400 MHz, CDCl3) δ 8.03 (d, J = 7.9 Hz,
1H), 7.46 (t, J = 8.0 Hz, 1H), 7.23–7.18 (m, 5H), 7.17–7.09 (m, 6H), 3.32 (s, 3H). 13C{1H} NMR
(101 MHz, CDCl3) δ 162.4, 156.3, 151.1, 137.8, 133.7, 130.8 (2C), 129.7 (2C), 129.2, 128.6, 127.8,
127.7 (2C), 127.5 (2C), 126.8, 122.2, 122.1, 117.7, 115.6, 56.1; HRMS (ESI) m/z—[M+H]+

calculated for C22H17O3 329.1172, found—329.1178.
7-Methoxy-3,4-diphenyl-1H-isochromen-1-one (3aa’). Alkyne—diphenylacetylene 2a.

Eluent—petroleum ether/CH2Cl2 (1:1). 1H NMR (400 MHz, CDCl3) δ 7.81 (d, J = 2.7 Hz,
1H), 7.41–7.39 (m, 2H), 7.34–7.28 (m, 2H), 7.26–7.10 (m, 8H), 3.93 (s, 3H). 13C{1H} NMR
(101 MHz, CDCl3) δ 162.5, 159.6, 149.1, 134.6, 133.1 (2C), 132.7, 131.3, 129.19 (2C), 129.16 (2C),
128.8, 128.2, 128.0 (2C), 127.2, 124.3, 121.7, 116.9, 110.0, 56.0; HRMS (ESI) m/z—[M+H]+

calculated for C22H17O3 329.1172, found—329.1178.
3,4-Diethyl-5-methoxy-1H-isochromen-1-one (3ab). Alkyne—diethylacetylene 2b.

Eluent—petroleum ether/CH2Cl2 (3:1). 1H NMR (400 MHz, CDCl3) δ 7.94 (d, J = 7.9 Hz,
1H), 7.38 (t, J = 8.0 Hz, 1H), 7.17 (d, J = 8.1 Hz, 1H), 3.89 (s, 3H), 2.83 (q, J = 7.2 Hz, 2H), 2.60
(q, J = 7.4 Hz, 2H), 1.25 (t, J = 7.5 Hz, 3H), 1.15 (t, J = 7.3 Hz, 3H). 13C{1H} NMR (101 MHz,
CDCl3) δ 163.1, 155.8, 154.3, 127.9, 124.3, 122.9, 122.0, 116.4, 113.4, 55.9, 24.2, 22.0, 15.6, 12.9;
HRMS (ESI) m/z—[M+H]+ calculated for C14H17O3 233.1178, found—233.1182.

3,4-Diethyl-7-methoxy-1H-isochromen-1-one (3ab’). Alkyne—diethylacetylene 2b.
Eluent—petroleum ether/CH2Cl2 (3:1). 1H NMR (400 MHz, CDCl3) δ 7.73 (d, J = 2.8 Hz,
1H), 7.47 (d, J = 8.9 Hz, 1H), 7.32 (dd, J = 8.9, 2.8 Hz, 1H), 3.90 (s, 3H), 2.68–2.55 (m, 3H),
1.27 (t, J = 7.5 Hz, 4H), 1.18 (t, J = 7.5 Hz, 3H). 13C{1H} NMR (101 MHz, CDCl3) δ 163.3,
158.7, 153.1, 131.6, 124.4, 124.3, 122.1, 113.1, 110.3, 55.9, 24.0, 19.6, 14.6, 12.8; HRMS (ESI)
m/z—[M+H]+ calculated for C14H17O3 233.1178, found—233.1182.
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3.3. Reactions of 3,4-Methoxybenzoic Acid 1b with Alkynes

3,4-Methoxybenzoic acid 1b (42 mg, 0.25 mmol, 1 equiv), alkyne (0.5 mmol, 2 equiv),
complex [Cp*RhCl2]2 (1.5 mg, 1.0 mol%), AgOAc (84 mg, 0.5 mmol, 2 equiv), and MeOH
(2 mL) were placed in a Schlenk tube equipped with a stir bar. The reaction mixture was
stirred at 80 ◦C for 8 h. After cooling, the formed precipitate was centrifuged off, the
solvent was removed in vacuo, and the residue was chromatographed on silica (1 × 15 cm).
The first colorless band containing unreacted alkyne was eluted with petroleum ether.
The second band was eluted with dichloromethane. Evaporation of the solvents gave
isocoumarins 3ba’ or 3bb’ as colorless crystalline solids.

6,7-Dimethoxy-3,4-diphenyl-1H-isochromen-1-one (3ba’). Alkyne—diphenylacetylene
2a. Yield—80 mg (89%). 1H NMR (400 MHz, CDCl3) δ 7.77 (s, 1H), 7.46–7.39 (m, 3H),
7.33–7.26 (m, 4H), 7.23–7.15 (m, 3H), 6.57 (s, 1H), 4.01 (s, 3H), 3.74 (s, 3H). 13C{1H} NMR
(101 MHz, CDCl3) δ 162.2, 154.9, 150.1, 149.7, 134.7, 134.5, 133.1, 131.2 (2C), 129.2 (2C), 129.1
(2C), 128.8, 128.2, 127.9 (2C), 116.8, 113.8, 109.5, 106.3, 56.4, 56.0; HRMS (ESI) m/z—[M+H]+

calculated for C23H19O4 359.1283, found—359.1274.
3,4-Diethyl-6,7-dimethoxy-1H-isochromen-1-one (3bb’). Alkyne—diethylacetylene 2b.

Yield—63 mg (96%). 1H NMR (400 MHz, CDCl3) δ 7.69 (s, 1H), 6.88 (s, 1H), 4.01 (s, 3H), 3.97
(s, 3H), 2.68–2.56 (m, 4H), 1.27 (t, J = 7.5 Hz, 3H), 1.21 (t, J = 7.5 Hz, 3H). 13C{1H} NMR (101
MHz, CDCl3) δ 163.0, 155.1, 154.3, 149.0, 133.6, 114.2, 112.9, 110.1, 103.6, 56.4, 56.3, 24.2, 19.7,
14.5, 12.8; HRMS (ESI) m/z—[M+H]+ Calculated for C15H19O4 263.1283, found—263.1276.

3.4. Reactions of Piperonylic Acid 1c with Alkynes

Piperonylic acid 1c (41.5 mg, 0.25 mmol, 1 equiv), alkyne (0.5 mmol, 2 equiv), complex
[Cp*RhCl2]2 (1.5 mg, 1.0 mol%), AgOAc (84 mg, 0.5 mmol, 2 equiv), and MeOH (2 mL)
were placed in a Schlenk tube equipped with a stir bar. The reaction mixture was stirred at
80 ◦C for 8 h. After cooling, the formed precipitate was centrifuged off, the solvent was
removed in vacuo, and the residue was chromatographed on silica (1 × 15 cm). The first
colorless band containing unreacted alkyne was eluted with petroleum ether. The second
band was eluted with dichloromethane. Evaporation of the solvents gave isocoumarins 3ca
or 3cb as colorless crystalline solids.

8,9-Diphenyl-6H-[1,3]dioxolo [4,5-f]isochromen-6-one (3ca). Alkyne—diphenylacetylene
2a. Yield—78 mg (91.5%). 1H NMR (400 MHz, CDCl3) δ 8.08 (d, 1H), 7.32–7.24 (m, 7H),
7.21–7.14 (m, 3H), 7.02 (d, J = 8.3 Hz, 1H), 5.80 (s, 2H). 13C{1H} NMR (101 MHz, CDCl3) δ
161.6, 153.3, 151.3, 142.7, 135.1, 133.0, 131.2 (2C), 129.4 (2C), 128.9, 128.1 (2C), 127.9, 127.8
(2C), 126.3, 122.0, 115.0, 113.5, 109.6, 102.1; HRMS (ESI) m/z—[M+H]+ Calculated for
C22H15O4 343.0971, found—343.0963.

8,9-Diethyl-6H-[1,3]dioxolo [4,5-f]isochromen-6-one (3cb). Alkyne—diethylacetylene
2b. Yield—60 mg (98%). 1H NMR (400 MHz, CDCl3) δ 7.96 (d, J = 8.3 Hz, 1H), 6.94
(d, J = 8.4 Hz, 1H), 6.11 (s, 2H), 2.69 (q, J = 7.4 Hz, 2H), 2.56 (q, J = 7.5 Hz, 2H), 1.25
(t, J = 7.5 Hz, 3H), 1.14 (t, J = 7.4 Hz, 3H). 13C{1H} NMR (101 MHz, CDCl3) δ 162.3, 154.9,
152.7, 141.4, 126.4, 122.5, 115.9, 111.3, 108.8, 101.9, 23.7, 20.8, 15.4, 12.7; HRMS (ESI) m/z—
[M+H]+ Calculated for C14H15O2 247.0971, found—247.0964.

3.5. X-ray Diffraction Study

The X-ray diffraction data were collected with a Bruker Quest D8 CMOS diffrac-
tometer using graphite monochromated Mo-Kα radiation (λ = 0.71073 Å,ω-scans). Using
Olex2 [55], the structures were solved with the ShelXT [56] structure solution program
using intrinsic phasing and refined with the XL [57] refinement package using least-squares
minimization against F2 in anisotropic approximation for non-hydrogen atoms. Positions
of hydrogen atoms were calculated, and they were refined in the isotropic approximation
in the riding model. Crystal data and structure refinement parameters are given in Table 2.
Crystallographic data have been deposited with the Cambridge Crystallographic Data
Centre as supplementary publications CCDC 2236072-2236075 and can be found in the
Supplementary Materials.
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Table 2. Crystal data and structure refinement parameters for 3aa, 3aa’, 3ba’, and 3ca.

3aa 3aa’ 3ba’ 3ca

Formula unit C22H16O3 C22H16O3 C23H18O4 C22H14O4
Molecular weight 328.35 328.35 358.37 342.33

Crystal system Monoclinic Triclinic Monoclinic Triclinic
Space group P21/c P-1 P21/n P-1

Z 8 4 8 2
a (Å) 9.3656(9) 9.3355(2) 10.2837(5) 6.8314(2)
b (Å) 15.4672(19) 14.0312(4) 33.7768(15) 9.6009(2)
c (Å) 22.587(2) 14.1181(4) 10.3573(4) 12.8243(3)

α (deg) 90 60.4420(10) 90 71.7570(10)
β (deg) 93.808(5) 87.511(2) 100.700(2) 79.6350(10)
γ (deg) 90 82.039(2) 90 85.8540(10)
V (Å3) 3264.8(6) 1592.46(7) 3535.1(3) 785.69(3)

Dcalc (g cm–3) 1.336 1.370 1.347 1.447
Linear absorption µ (cm–1) 0.88 0.91 0.92 1.00

F(000) 1376 688 1504 356
2θmax (deg) 54 56 56 56

Reflections collected 34,022 19,932 27,437 9892
Independent reflections 6973 7685 8518 3782

Observed reflections (I > 2σ(I)) 3653 5218 6190 3027
Number of parameters 453 453 491 235

R1 0.0705 0.0575 0.0485 0.0415
wR2 0.1615 0.1499 0.1133 0.1034

GOOF 1.030 1.021 1.022 1.023
∆ρmax/∆ρmin (e Å−3) 0.313/−0.235 0.541/−0.330 0.286/−0.235 0.305/−0.237

3.6. DFT Calculations

Geometry optimizations were performed using the ORCA program (version 5.0.3) [58]
at the M06L(D3)/LANL2DZ [59] level with corrections for solvation in methanol (the
CPCM model implemented in the Orca program). The optimized geometries were verified
for one imaginary frequency for the transition states and none for the intermediate states.
The AIM analysis of the electron density for the transition states was studied within Bader’s
atoms in molecules theory [52] using the AIMAll program packages [60].

4. Conclusions

In summary, we have shown that the rhodium-catalyzed annulation of 3-methoxybenzoic
acid 1a with alkynes results predominantly in the formation of sterically unfavorable 5-
methoxyisocoumarins, with the ratio of regioisomers depending on the nature of the alkyne
as well as the supporting ligand. The DFT calculations indicate that the favorable formation
of 5-methoxy isomers is supported by weak non-covalent C–H· · ·O interactions between
the methoxy group and the supporting ligand. These secondary interactions can explain
the high regioselectivity of the annulation of piperonylic acid 1c with the formation of
only angular isomers. On the contrary, the selective formation of distal regioisomers from
3,4-dimethoxybenzoic acid 1b is provided by steric hindrance, resulting from the repulsion
of two adjacent methoxy groups.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/catal13020389/s1, copies of NMR spectra, calculated energy
profiles, optimized geometries. and theoretical molecular graphs.
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