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Abstract: In recent years, environmental pollution has become more serious, especially the organic
pollutants. Metal organic frameworks (MOFs) are promising materials used to degrade pollutants
recently. Among them, Materials Institute Lavoisier frameworks (MILs) have been widely engaged
due to their good stability and unique structural characteristics. This paper systematically analyses
and summarizes the progress of MILs in degradation of organic pollutant by Fenton reaction in
recent years. The MILs, especially four types of MILs, including MIL-100, MIL-101, MIL-88, and
MIL-53, are first described and classified. Then, the common synthesis methods (hydrothermal
synthesis, steam-assisted synthesis, and microwave-assisted synthesis) of MIL are summarized and
compared. Modification and activation of MILs to obtain good degradation effect are also introduced
and discussed. Finally, the applications of MILs in Fenton reaction are reviewed and their future
development is prospected.

Keywords: metal organic frameworks; MILs; Fenton reaction; degradation

1. Introduction

With population growth, economic development, and the growth in the living stan-
dard, the water pollution caused by the discharge of industrial, domestic, and agricultural
wastewater has seriously endangered the health of human life [1]. Every year, hundreds of
millions of tons of industrial wastewater are discharged into rivers. The most threatening
are persistent organic pollutants (POPs), which are not subject to natural degradation [2,3].
Due to their special properties, POPs can migrate to distant locations and have high
stability [4]. Traditional sewage treatment plants cannot effectively remove them using
traditional treatment methods. Overusing POPs and slow decomposition will cause their
residues to flow into the aquatic environment [5]. After entering the human system, POPs
can bioaccumulate and harm human health, posing varying degrees of threat to cardiovas-
cular, endocrine, nervous, and immune systems [6]. Therefore, in addition to preventing
water pollution, it is also crucial to research sufficient and effective water treatment methods
to achieve the effect of removing these organic pollutants.

Advanced oxidation processes (AOPs) have attracted wide attention over the past
two decades as the effective chemical oxidation process for organic pollutants. The Fenton
oxidation process has been an extremely significant research area due to its mild reaction
conditions, simple operation, and easy control [7]. It is the process by which H2O2 and Fe2+

convert an organic compound into an inorganic compound. As the main active substance,
hydroxyl radicals (•OH) are vital in degradation. Usually, Fe2+/Fe3+ coexist in the Fenton
system and react with H2O2, both of which are occurring simultaneously (Equations (1)
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and (2)). It is not difficult to see that their redox cycle efficiency largely determines the
reaction system’s degradation efficiency.

Fe2+ + H2O2 → Fe3+ + OH− + •OH (1)

Fe3+ + H2O2 → Fe2+ + H+ + HO2
− (2)

For the degradation of some organic pollutants, many researchers have valued MOFs
due to their uniform distribution of elements, ultra-high surface sensitivity, simple syn-
thesis, and abundant porous structure [8]. These advantages lead to MOFs being more
widely used in the degradation of organic pollutants in recent years instead of homoge-
neous catalysts. Homogeneous catalysts, especially, have disadvantages, such as a narrow
operating pH range and easy-to-produce sludge. MILs are special MOFs that can use
trivalent transition metal ions (such as Fe, Al, and Cr) to coordinate with carboxylic acid lig-
ands [9]. MILs have a very high surface area and can be used to adsorb and remove organic
contaminants from water [10]. Wang et al. synthesized NH2-MIL-53(Fe) and confirmed
its strong adsorption of Congo red [11]. Tran et al. successfully absorbed and degraded
hazardous pollutants by utilizing the respiration of NH2-MIL-53(Al) materials [12]. Xiao
et al. prepared MIL-101(Fe, Co) for the degradation of Rhodamine B in the water, and the
degradation efficiency was achieved at 99% within 15 min [13]. Moreover, Tan et al. also
found that MIL-88A had a strong adsorption and degradation effect on specific dyes under
visible light irradiation [14]. MILs are also widely used in gas storage and separation, drug
transportation, etc.

Approximately 300 journal articles have been published on the application of MILs
in Fenton catalysis, as presented in Figure 1. As far as we know, the synthesis of MILs,
their modification and activation, and their applications in different Fenton reactions have
not been summarized at the forefront, so it is important to summarize and prospect the
Fenton-based degradation systems involved in MILs. In this review, we summarize the
classification and research progress of MILs as catalysts in Fenton reactions and system-
atically describe the use and application of MILs in many ways. At the same time, the
processing and modification of basic materials in MILs are extracted, including (1) metal
sites, (2) ligands, and (3) activation. Ultimately, we express our vision for the research and
application of MILs in the Fenton, electro-Fenton, and photo-Fenton reaction systems.
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2. Research Progress of MILs as Catalysts in Fenton Reaction

Hydrogen peroxide (H2O2) and divalent iron ions (Fe2+) are used to convert organic
matter into an inorganic state in a Fenton reaction. Fenton reaction has a greater ability
to remove organic pollutants than others. Therefore, it is naturally widely used in the
treatment of industrial wastewater and recognized by the outside world [7].

At present, there are many studies on using MILs in Fenton-like reactions to catalyze
degradation of organic pollutants in water [15]. Among all MOF species, they are highly
stable and have many applications in catalysis due to their unique pore structures.
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2.1. The Development of MILs

MOFs are new kinds of porous materials, which are generally coordinated polymer
composed of the spatial extension of organic ligands with metal ions as the connection
points [16]. They have the advantages of organic–inorganic mixture, ultra-high surface
sensitivity, large specific surface area, highly adjustable porosity, topology diversity, and
tailoring [17]. Because of the remarkable structural properties, they have been widely used
in various technical and industrial fields. However, since the reaction environments faced
by MOFs often require exposure to high temperatures, chemicals, and water [18], it is very
important to select a MOF with strong stability and unique properties to remove multiple
pollutants exposed to harsh environments.

MILs were first discovered by Professor Férey of the University of Versailles in France
and his research group. MILs have received wide attention because of their huge specific
surface area and stable structural peculiarity, as well as their amazing applications in catal-
ysis [10]. It is worth emphasizing that detailed degradation process of organic pollutants by
MILs is involved mainly with the Fenton reaction, which lays a solid theoretical foundation
for the development and research of MILs. Furthermore, it inspires people to improve the
experimental ideas of new materials [15].

2.2. The Classification of MILs

There are many types of MILs which have been widely applied in catalysis, such as
MIL-125, MIL-101, MIL-100, MIL-88, MIL-68, and MIL-53. In this study, we focused on
four types of MILs, including MIL-100, MIL-101, MIL-88, and MIL-53, combined with their
structural characteristics and unique characteristics. We also explained the similarities and
differences among different materials of the same type of MILs.

2.2.1. MIL-100

The MIL-100(Cr) comprises chromium-trimers and carboxylate moieties. The large
Langmuir surface area (3100 m2 g−1) and high thermal stability (270 ◦C) of MIL-100(Cr)
make it a promising catalytic material. Later, MIL-100(Fe) was synthesized under hy-
drothermal conditions [19]. It is a highly stable material with a three-dimensional porous
structure (Figure 2a), including two groups of mesoporous cages [20]. It has many Lewis
active sites and plays a key role in adsorption reactions. At the same time, it has a large
Langmuir surface area (2800 m2 g−1), endowing it with more active sites which can directly
interact with pollutants. MIL-100 has not only good structural stability and a large specific
surface area but also good applications in the field of optical catalysis.

2.2.2. MIL-101

The MIL-101(Cr) is composed of octahedral clusters of trimeric chromium(III) inter-
linked via 1,4-benzenedicarboxylates [21]. It has a very high Langmuir surface area of
5900 m2 g−1 and thermal stability up to 250 ◦C (Figure 2b) [22]. Its large Langmuir surface
area enables it to adsorb pollutants in water. Researchers have been keen to improve the
material to increase its specific surface area to show greater advantages in the adsorption
field. MIL-101(Fe) has a highly active iron center and low toxicity, with thermal stability up
to 300 ◦C [23]. Later, the amination of MIL-101 materials began to appear, which greatly im-
proved its catalytic performance. For example, NH2-MIL-101(Al/Fe) can degrade organic
pollutants more effectively than can MIL-101(Al/Fe).

2.2.3. MIL-53

The MIL-53(Al) is created by connecting octahedra AlO4(OH)2 immense trans corner-
sharing across their (BDC) 1,4-benzenedicarboxylate ligand. MIL-53(Al) has a high thermal
stability of up to 500 ◦C, which makes it a sought-after material in the MILs family [24].
MIL-53 (Al) exhibits a peculiar phenomenon known as “Breathing behavior” related to
the hydrogen bonding interaction between the carboxylate groups of the BCD linker and
the trapped water molecules, resulting in the contraction of its rhombic channels during
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hydration or dehydration. Compared with the strong adsorption capacity of MIL-53(Al),
MIL-53(Fe) has higher light absorption performance [25]. Nevertheless, its adsorption
capacity is weak due to its small specific surface area. Even so, the unique “Breathing
behavior” of MIL-53 (Figure 2c) has also brought more attention, which has also played a
unique role in the field of multi-degradation [26].

2.2.4. MIL-88

MIL-88(Fe), a flexible iron-based material, exhibits excellent chemical and water
stability. MIL-88A(Fe) (Figure 2d) comprises a divalent anion fumaric acid and a connected
Fe3+ octahedral trimer [27,28]. Despite the small surface area, the presence of unsaturated
iron site would bring the activation ability towards H2O2 and strong adsorption and
transport capacity. MIL-88B(Fe) has a three-dimensional net structure which is composed
of Fe3-µ3-oxo clusters connected by terephthalic acid [29]. It has good application potential
and adaptability of photocatalysis [30]. MIL-88 has attracted much attention because of the
excellent catalytic oxidation ability of nanomaterials derived from it due to the adjustable
structural properties.
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2.3. The Stability of MILs

Cyclic degradation experiments and material characterization can determine the
stability of MILs before and after use. The stability of MILs usually determines its utilization
value and practicability. Stability also becomes an important criterion to judge the quality
of catalyst. Ren et al. conducted comparative experiments on MIL-53(Fe), MIL-100(Fe),
and MIL-101(Fe) to test their stability and the relationship between stability and pH of
degradation system [31]. The results showed that the three types of materials showed
strong catalytic activity under strong acidic conditions but also resulted in poor material
stability, which lost much catalytic activity after 20 cycles of experiments (Figure 3a–c).
In addition, in the weak acidic and neutral conditions, although the catalytic activity of
the three materials was not outstanding at the beginning, their catalytic activity decreased
slowly with the progression of the cycle experiments. According to the characterization
of the materials before and after recycling, new characteristic peaks appeared in MILs
after several catalytic oxidation experiments, which the oxidation of the skeleton and the
generation of new functional groups in the system may cause (Figure 3d–i). The stability of
MILs before modification is not very good, especially if it is affected by pH in the system.
Nevertheless, Qian et al. found that MIL-53(Al) maintained good stability in neutral and
acidic solutions [32]. MIL-53(Al) showed good hydrolysis resistance and always retained
pores in the degradation system.
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3. Synthetic Techniques of MILs

MILs can be synthesized in various ways depending on time, temperature, and pH.
Among them, hydrothermal/solvothermal is the most often used method because of its
advantages, such as convenient operation. The synthesis methods of materials in most of
the literature cited in this paper are the hydrothermal/solvothermal method. Of course,
with the progress of research, more synthesis methods with different advantages have
been explored. This section introduces the three commonly used synthesis methods and
summarizes their advantages and disadvantages. In the selection process of the synthesis
method, simple operation, low energy consumption, and good maintenance of crystallinity
can be used as evaluation criteria. Undeniably, the practical application of the method is
also worth considering.

3.1. Hydrothermal Synthesis

Hydrothermal synthesis is a common method for preparing MILs, usually in an auto-
clave (Teflon-lined) under constant conditions. Hydrothermal synthesis is superior to other
synthesis technologies due to its characteristics of simple operation and high crystallization.
For example, MIL-53(Cr) is usually synthesized by hydrothermal process. Eight grams of
Cr(NO3)3•9H2O and a certain amount of terephthalic acid and acetic acid were mixed and
stirred 30 min with ultrasound [30]. Then, hydrofluoric acid was added, and the mixture
was transferred to the hydrothermal reactor with the specific temperature to reaction. MIL-
53(Cr) synthesized by hydrothermal synthesis has a high crystallinity. However, it takes a
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long time and must use toxic fluorinated reagent. Large amounts of solvents are used in the
synthesis process, and the specific surface area of MIL-53(Cr) prepared by hydrothermal
method is small. Therefore, the product needs to be purified by post-treatment steps of
high-temperature calcination. Therefore, the inherent defect of the hydrothermal synthesis
method is the participation of toxic mineralizer (hydrofluoric acid) in the system. A small
amount of hydrofluoric acid (HF) exists; investigating systems without HF has become a
new direction to conquer. Without HF, MIL-100(Fe) was synthesized hydrothermally at
room temperature [33]. First, after ultrasonic treatment for 15 min, HNO3 and the iron
precursor were dissolved in deionized water. Then, p-benzoquinone (promotes crystal
growth) and 1,3,5-benzene tricarboxylic acid (H3BTC) were added to the solution and
stirred at room temperature for 12 h. After the MIL-100(Fe) was obtained, DMF, ethanol,
NH4F, and hot deionized water were rinsed a few times and vacuum-dried at 423 K for 6 h.
Removing toxic mineralizers is a positive guide for the synthesis of MILs by hydrothermal
method. Nevertheless, there are still problems of insufficient crystallinity which need to be
solved. The information of hydrothermal synthesis of some MILs is summarized in Table 1.

Table 1. Summary of information of MILs compounded by hydrothermal synthesis.

Entry MILs Synthetic Material Synthetic
Condition

Synthetic
Time Ref.

1 MIL-53(Fe) FeCl3•6H2O and H2BDC dissolved in DMF 170 ◦C 24 h [34]
2 NH2-MIL-101(Fe) FeCl3•4H2O and NH2–H2BDC Room temperature 24 h [35]

3 MIL-101(Cr) Cr(NO3)3•9H2O,HF
and H2BDC 493 K 8 h [36]

4 MIL-88A(Fe) FeCl3•6H2O and C4H4O4 dissolved in
anhydrous ethanol Room temperature 24 h [37]

5 SO3H-MIL-
101(Cr)

1,3-propanesultone and imidazole dissolved in
ethanol solvent 50 ◦C 24 h [38]

6 MIL-88(Fe, Ni) FeCl3 ·6H2O, Ni(NO3)2·6H2O and TPA
dissolved in DMF and NaOH 100 ◦C 48 h [39]

7 MIL-100(Cr, Fe)

MIL-100 (Cr): chromium (III), trimesic acid
and DI water

MIL-100(Fe): FeCl3·6H2O, trimesic acid and
DMF

493 K and 423 K 15 h and 20 h [40]

8 OH-MIL-53(Al) AlCl3•6H2O and BDC-OH in DMF 125 ◦C 8 h [41]
9 MIL-100(Fe) FeSO4•7H2O and H3BDC with NaOH Room temperature 24 h [42]

10 NH2 -MIL-53(Al) AlCl3•6H2O and NH2-BDC dissolved in DMF 130 ◦C 72 h [43]

3.2. Steam-Assisted Conversion

The steam-assisted method utilizes heat and mass transfer during the reaction to
synthesize materials. Because it does not contain toxic mineralizers and guarantee the
material’s crystallinity, importance has been attached to it for its utility to researchers. It
is a very suitable method for large-scale industrial synthesis. The experiment is usually
carried out at room temperature by placing raw materials in water or organic solvent,
allowing them to age naturally. Consequently, the organic components and inorganic
components can react with each other and assemble into metal–organic frame materials
with high crystallinity. For example, MIL-100(Cr) can be synthesized by steam-assisted
conversion. CrCl3•6H2O (2 mM) and H3BTC (1 mM) were mixed and easily ground at
room temperature; a sieve plate provided with vents was supported by a holder [44].
They were then placed in a 100 mL Teflon-lined autoclave while 10 mL deionized water
was carefully fed into the bottom of the container to ensure that steam combined with
the precursor at 423 K for 9 h. MIL-100(Cr) was finally produced and then centrifuged
3–4 times with H2O. The experimental device is shown in Figure 4. The result showed that
the MIL-100(Cr) synthesized had no superfluous ligands existing. Therefore, in order to
obtain a high amount of production, further research must be conducted on a broader and
deeper level to optimize the utilization of this technique.
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Figure 4. A schematic diagram of steam-assisted conversion of MIL-100(Cr) [44].

3.3. Microwave-Assisted Synthesis

Microwave synthesis (MW) is a new technology for synthesizing nanomaterials. It
can be used at the molecular level to increase yields on the basis of the stimulation of
rapidly heating materials, so it is emerging in MILs synthesis research. Dong et al. prepared
MIL-53(Fe) by a microwave-assisted approach [45]. A mixed solution of FeCl3•6H2O
(0.45 g), H2BDC (0.137 g) and DMF (10 mL) was transferred to a Teflon tube. Then, the
Teflon tube was placed in a microwave oven and heated to 150 ◦C for 15 min. The resulting
orange suspension was purified by centrifugation of dimethyl formamide (DMF) and
ethanol at 60 ◦C for 1 h. The material was then dried at 50 ◦C in a vacuum to obtain an
orange powder with 30% yield. It is worth emphasizing that MIL-53(Fe) synthesized in
this paper had better phase selectivity than that synthesized by the conventional electric
(CE)-heating-based solvothermal approach. This may depend on the smaller crystallinity
of the material and the pure octahedral structure resulting from the MW method. However,
due to its high energy consumption and expensive equipment, coupled with less research,
its practical application is limited.

4. Modification and Activation of MILs

MILs have become substitutes for traditional heterogeneous catalysts due to their
unique structural characteristics, suitable stability, and relatively simple synthesis. How-
ever, in the study of the degradation of organic pollutants, MILs have some deficiencies,
such as the absence of active sites and poor thermal stability, so it needs modification. We
summarize the common methods of MILs modification herein in recent years: (1) metal
sites, (2) ligands modification, and (3) activation. Table 2 lists the degrading information of
three methods modified MILs in the Fenton system.

Table 2. Summary of modified MILs and their degrading information in the Fenton system.

Entry MILs Characterization
Result

Target
Compound

Removal
Efficiency Photo-Fenton Conditions Ref.

1 MIL-101(FeII
3, Mn)
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visible light  
[52] 

10 MoS2/ 
NH2 -MIL-88B(Fe) 

TC >96%(30 min) catalyst, 500 mg/L; PH = 7; 
Temp. 35 °C; visible light 

[53] 

11 CUS-MIL-100(Fe) SMT 100% (180 min) catalyst, 500 mg/L; pH = 4; 
H2O2, 6 mM; Temp. 25 °C 

[54] 

12 CUS-MIL-250 TC-HCL >95% (80 min) 
catalyst, 200 mg/L; pH = 4; 
H2O2, 2 mM; Temp. room 
temperature; visible light 

[55] 

TC >89% (130 min) catalyst, 350 mg/L; pH = 4; Temp.
room temperature; visible light [52]

10 MoS2/
NH2 -MIL-88B(Fe)
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4.1. Metal Sites
4.1.1. Bimetal Sites

In the process of MILs development, bimetallic MIL materials have become a com-
mon modification method. Bimetallic MIL materials can not only improve the catalytic
shortcomings caused by one metal but also produce synergistic effects to promote the
catalytic degradation rate. Fe-MILs usually exhibit low catalytic performance and stability
due to their low porosity and easy aggregation at high reaction temperature. Therefore,
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researchers often add another metal to improve the material and compensate for shortcom-
ings. Our research group prepared MIL-101(FeII

3, Mn) by adding Mn to MIL-101(Fe), which
can be used to activate H2O2 as another reaction center to degrade phenol (Figure 5a) [46].
Moreover, the electrons around Mn were transferred mainly to the Fe atomic region because
of the difference in electronegativity, so H2O2 was absorbed mainly in the electron-rich
region, which finally improved the utilization rate of H2O2 (81.2%). Ma et al. synthesized
a series of novel Fe-Mn mixed oxide hollow microspheres using a hard template method
and applied to catalytic oxidation of 1,2-dichlorobenzene (DCB) [57]. The results indi-
cated that catalytic performance of Fe-Mn mixed oxide hollow microspheres was much
higher than that of Fe-MIL MOF. Furthermore, the optimal FeMn20 hollow microspheres
(Mn/(Fe + Mn) ≈ 20%) exhibited the highest catalytic performance at a low tempera-
ture of 400 ◦C. More importantly, this catalyst exhibited good Cl-resistant ability, strong
water-resistant ability, and excellent catalytic stability. It was a very successful bimetallic
material with a large BET specific surface area and high surface-active oxygen concentration.
Tang et al. prepared an iron and copper bimetallic MOF material (FeXCu1−X(BDC)) by a
simple solvothermal method for degrading sulfamethoxazole (SMX) in a Fenton reaction
system (Figure 5b) [47]. Fe and Cu species were active sites for H2O2 activations and had a
synergistic effect on the generation of •OH radicals, which directly led to the degradation
of SMX. Therefore, the bimetallic modification resulted in better degradation performance
of the FeXCu1−X(BDC)/H2O2 system. Furthermore, Fe0.75Cu0.25(BDC) had satisfactory
reusability and could be reused many times. Wu et al. prepared iron–nickel bimetallic
organic frameworks (FeNiX-BDC, H2BDC: terephthalic acid), which could degrade organic
dyes, such as MB and MO (Figure 5c) [58]. The addition of Ni increased the specific surface
area of the material and further reduced the surface charge of the material. This Fe-Ni
bimetallic material exhibited excellent degradation performance for organic dyes and good
repeatability. Notably, this system was suitable for a wider pH working range (3–9). Šuligoj
et al. discussed a novel bimetal Cu-Mn porous silica-supported catalyst to decompose
methylene blue (Figure 5d) [59]. The addition of copper extremely reduced the leaching of
Mn from the porous silica carrier and improved the degradation efficiency as an additional
surface adsorption site.

4.1.2. Metal Nanoparticle Doping

Many nano-metals have strong activity, and the composite materials will have a
better catalytic degradation effect by combining them with organic frameworks. For
instance, nano zero-valent iron (nZVI) is a type of particle with high activity and easy
aggregation. It needs support from porous materials to improve its stability. Hou et al.
modified MIL-101(Cr) with nZVI through impregnating nZVI to MIL-101(Cr) for adsorption
and degradation of tetracycline (TC) (Figure 6a,b) [21]. MIL-101(Cr) provided a huge
surface area for nZVI coating, thus increasing the adsorption capacity of TC, to a certain
extent. Fortunately, nZVI/MIL-101(Cr) also had similar Fenton-like reactivity and less iron
leaching. In addition, the combination of framework and nano-metal could also effectively
increase the Lewis acid site of the material. The result showed that nZVI/MIL-101(Cr)
degraded 90% of the dye within 120 min. Ahmad et al. successfully synthesized MIL-
88B(Fe) with mixed-valence coordinatively unsaturated iron centers on ultrathin Ti3C2
nanosheet for removal of contaminants (Figure 6c,d) [50]. The formation of composite
material improved the efficiency of electron transmission and brought excellent degradation
performance in the visible light. The addition of bimetallic modification can also effectively
solve the problem of slow conversion between Fe(II) and Fe(III) of activated MILs in the
reaction system.
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4.2. Ligand

The introduction of ligands, such as -NH2, -SO3H, -CH3, and -F, can improve the
degradation efficiency of the parent materials without changing the topological structure.
The addition of ligands can regulate the surface properties of the materials and improve
adsorption capacity. Fluorinated MIL-101(Cr) proved to have too high thermal stability
and increased porosity, which greatly improved the adsorption capacity of benzene [60]. In
the last five years of research, amino-functionalized materials have been the most common
materials to enhance the degradation efficiency of organic pollutants by MILs. Introducing
-NH2 can increase the electron density and accelerate the electron transfer velocity in the
reaction. Thus, an •OH radical was continuously produced to degrade organic pollutants.
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Liu et al. used NH2-MIL-101(Fe) in the persulfate activated system to degrade
bisphenol F (BPF) (Figure 7a) [51]. The degradation efficiency was greater than parent
MIL-101 (Fe), and it had a wider pH adaptation range and better anti-anion interference
ability. Moreover, we synthesized NH2-MIL-101(Fe) at room temperature for the degrada-
tion of bisphenol A (BPA) (Figure 7b) [35]. By regulating the Fe-oxo node, -NH2 caused
Fe(II) to form the in situ distribution in the MIL. The result showed that the degradation
rate of BPA by NH2-MIL-101(Fe) was also much higher than that by MIL-101(Fe). It can
be seen that amino-functionalized MILs can truly bring better and remarkable results in
degrading organic pollutants.
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MIL-101(Fe)/PS systems [51]; (b) Schematic illustration of mechanism of BPA removal in Fe-BDC-
NH2/H2O2 system [35]; (c) Proposed photocatalytic mechanism of Bi2WO6/NH2-MIL-88B(Fe) com-
posite for the degradation of TC [52]; (d) Transient photocurrent response [52]; (e) EIS spectra of
NH2-MIL-88B(Fe) and Bi2WO6/NH2-MIL-88B(Fe) [52]; (f) Mechanism for ammonia removal [61];
(g) type II photocatalytic mechanism for NH2-MIL-88B(Fe)/MoS2 nanocomposite under Xenon
lamp irradiation [53]; and (h) S-scheme photocatalytic mechanism for NH2-MIL-88B(Fe)/MoS2

nanocomposite under Xenon lamp irradiation [53].

Amino-functionalized MILs have also been used to synthesize heterogeneous struc-
tures with inorganic materials in many studies. The formation of heterostructures has been
shown to facilitate electron transfer in catalysis, and more importantly, it enhances the light
capture capacity of photogenerated carriers. So, this type of material was widely used in
the field of photocatalysis. Kaur et al. successfully synthesized a novel Bi2WO6/NH2-MIL-
88B(Fe) heterostructure for the decomposition of tetracycline (TC) [52]. With the help of
visible light, the TC degradation efficiency of Bi2WO6/NH2-MIL-88B(Fe) was 89.4% higher
than that of the parent NH2-MIL-88B(Fe); the materials showed a longer carrier lifetime,
and there was higher charge separation in the system (Figure 7c–e). Shi et al. fabricated a
Z-scheme NH2-MIL-101(Fe)/BiVO4 heterostructure to degrade ammonia nitrogen in the
photocatalytic system as well (Figure 7f) [61]. Compared with other heterostructures, the
Z-scheme heterostructure brought the photogenerated carriers stronger redox ability and
enhanced the degradation efficiency of ammonia nitrogen. Feng et al. also took advantage
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of the fact that heterogeneous structures in the reaction system could not only enhance
the various properties of photogenerated carriers but also improve the non-surface area
of the material (Figure 7g,h) [53]. They prepared NH2 -MIL-88B(Fe)/MoS2 for degrading
tetracycline hydrochloride (TC) availability. They prepared NH2 -MIL-88B(Fe)/MoS2 to
evaluate the activity in degrading tetracycline hydrochloride (TC).

In the study on ligand modification of MILs, few other ligands appeared, and only a
few ligands showed excellent degradation properties when combined with parent materials.
Gao et al. synthesized MIL-88B(Fe)-X (X=NH2, CH3, H, Br, and NO2) and used the addition
of ligands to reduce the electron density in the reaction for solving the problem of slow
Fe(III) reduction in the Fenton system (Figure 8a) [62]. The results showed that MIL-
88B(Fe)-NO2, with the substituent of highest electrophilicity among these catalysts, had an
excellent performance in the degradation of phenol. In addition, -SO3H can also make a
contribution to the production of Brønsted acid sites and Lewis acid sites for enhancing the
degradation efficiency. SO3H-MIL-101(Cr) was prepared for the conversion of oleic acid
(94.3%) with the synergistic effect between Brønsted acid and Lewis acid. Mortazavi et al.
used MIL-101(Cr) to construct MIL-pip-SO3H and MIL-DABCO-SO3H (Figure 8b,c) [63].
As a Brønsted solid acid catalyst, MIL-pip-SO3H and MIL-DABCO-SO3H were good at
degrading styrene oxide and better than any Lewis acid catalysts that have been reported.
In general, there are few studies on modifying MILs in the Fenton system by ligands other
than -NH2, which we can work on in the future.
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4.3. Activation

In recent years, increasingly more studies have shown that controlled decomposi-
tion of MILs (e.g., pyrolysis) can effectively improve its catalytic activity. It gives MILs a
new mission to transform into more stable materials that conventional processes cannot
synthesize. The treated MILs retained the traditional advantages of high stability and
high metal load and obtained more reaction sites due to the unsaturated ligands brought
by pyrolysis. Tang et al. synthesized MIL-100(Fe) with Fe(II)/Fe(III) mixed-valence co-
ordinatively unsaturated iron center (CUS-MIL-100(Fe)) for enhancing degradation of
sulfamethazine (Figure 9a,b) [54]. The incorporation of Fe(II) and Fe(III) CUSs resulted
in large specific surface area, as well as the formation of mesopores, which helped the
CUS-MIL-100(Fe) to exhibit a higher removal efficiency of SMT than MIL-100(Fe). Guo
et al. prepared MIL-100(Fe) mixed CUSs with different Fe2+ /Fe3+ ratios by heat treatment
for degrading tetracycline hydrochloride (TC-HCL) (Figure 9c,d) [55]. The formation of
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CUSs expanded the pore volume so that the material could better absorb visible light and
produce more active oxidizing substances to improve the degradation performance. In
addition, a good synergistic effect between CUCs and H2O2 in the reaction system had
been observed, ascribed to enhanced adsorption and activation of H2O2 on the CUCs Lewis
acid sites. Moreover, Liang et al. prepared CUMSs/MIL-101(Fe, Cu) for the degradation of
ciprofloxacin (CIP) (Figure 9e) [56]. CUMSs/MIL-101(Fe, Cu) inherited the synergistic effect
of Fe-Cu bimetallic MILs combined with the construction of mixed valence of Fe(II)/Fe(III)
and Cu(I)/Cu(II) as coordinatively unsaturated metal sites (CUMSs), and good catalytic
oxidation performance was demonstrated.
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5. The Applications of MILs in Fenton Reaction System

In 1894, the French chemist Fenton found that Fe2+ and H2O2 can effectively oxidize
tartric acid in an acidic environment [64]. Later, in 1964, Eisenhouser used Fenton reagent
(Fe2+ and H2O2) to treat phenol and alkyl benzene wastewater, setting a precedent for the
application of Fenton reagent in the treatment of environmental pollution. The emergence
and development of iron-based MOFs have also expanded the application of Fenton re-
action system to degrade organic pollutants [65]. MILs have become the ideal catalytic
materials for the Fenton reaction system to degrade organic pollutants because of their
unique structural characteristics, such as appropriate stability, large specific surface area,
and adjustable pore structure [66]. MILs have been frequently utilized in catalysis as artifi-
cial enzymes due to their high density of transition metal sites, large specific surface area,
and high stability. We found that MIL-101(FeII) nanozyme exhibited peroxidase-like activ-
ity, and it could be used to catalyze H2O2 for oxidation of N,N-Diethyl-p-phenylenediamine
sulfate salt (DPD) (Figure 10) [67]. We used Fe2+ to control the formation of (FeII)-oxo nodes
so that the material showed better catalytic activity. At the same time, we proposed a MIL-
101(FeII) colorimetric biosensor and used it to detect H2O2 and glucose. This work opens
up an opportunity for MIL-101(FeII) as a promising biosensor in bioanalysis, food safety,
and environmental monitoring. With the deepening of research on the organic contaminant
removal by the Fenton reaction system, MILs have also been applied in electro-Fenton and
photo-Fenton reaction systems.
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5.1. Application of MILs in Electro-Fenton Reaction System

The electro-Fenton reaction system generates Fe2+ or H2O2 continuously through
electrochemical action, which can generate •OH to degrade organic pollutants. Because
the electro-Fenton anode can efficiently produce free and highly active •OH, the cathode
uses electrons to react with redox to produce H2O2, which combined with iron-based MOF,
forms a complete electro-Fenton system. In the electro-Fenton system, the redox cycle of
Fe2+/Fe3+ is as shown in Equations (1) and (2). Moreover, water molecules are oxidized
to •OH at the anode, while O2 is reduced to H2O2 at the cathode (Equations (3) and (4)).
Electron transfer also promotes the reduction of Fe3+ to Fe2+ (Equation (5)). The reaction
system has the merits of strong oxidation capacity, low power consumption, and good
environmental compatibility [68].

H2O→ •OH + H+ + e− (3)

O2 + H+ + 2e− → H2O2 (4)

Fe3+ + e− → Fe2+ (5)

However, due to the leaching and decrease of active sites, the regeneration of un-
saturated sites slows down with the progress of the electro-Fenton reaction. Therefore,
it is usually considered to use a high-pore catalyst for improvement. Priyadarshini et al.
successfully synthesized MIL-53(Fe)@Fe3O4@C for degradation of salicylic acid in water in
an electro-Fenton system [69]. Ye et al. synthesized MIL-88B(Fe)/Fe3S4 hybrids via a facile
sulfurization to treatment trimethoprim (TMP) in the heterogeneous electro-Fenton (HEF)
system (Figure 11a) [70]. The hybrid molecular orbitals of S-Fe improved the absence of
coordinated unsaturated sites in the electro-Fenton system of conventional MIL-88B(Fe),
which brought a larger expansion room to release the overlapping orbital parts between
iron sites and H2O2. Consequently, it promoted the reaction’s electron transfer from H2O2
to Fe(III). The result showed that the reaction system removed TMP quickly at mild pH. It
also confirmed that MIL-88B(Fe) sulfidation could enhance the catalyst activity. In addi-
tion, the absence of catalyst active sites and weak electron transport in the electro-Fenton
system could be solved by metal–carbon hybrids and the introduction of the other metal.
Du et al. prepared MIL-53(Fe)@MoO3 to degrade sulfamethazine (SMT) and studied the
corresponding pyrolysis catalysts involving FeMo-based bimetallic and porous carbon (PC)
(FeMo@PC) (Figure 11b) [71]. The addition of PC enhanced the electron transfer in the
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system and accelerated the synergistic effects among Fe, Mo, and carbon, which caused the
FeMo@PC-2 (MoO3 with 30.0 mg) to exhibit excellent performance for SMT removal.
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5.2. Application of MILs in Photo-Fenton Reaction System

The photo-Fenton reaction system uses ultraviolet wavelength radiation to enhance
the oxidation ability of the Fenton reagent, thus accelerating the degradation of organic
pollutants [72,73]. The advantages of photocatalysis and Fenton-like technology grant
MILs a wide range of applications in the field of photo-Fenton. The photo-Fenton system
is considered one of the most promising processing technologies because it is easy to
operate without high temperature and pressure [74]. Zhang et al. designed a novel catalyst
a-Fe2O3/MIL-53(Fe), which had the advantages of thermodynamic stability of a-Fe2O3,
appropriate bandgap width, and the synergism of atom/MOFs catalyst (Figure 12a) [75]. At
the same time, forming a heterojunction structure reduces the band gap, strengthens visible
light’s absorption ability, and improves photocarrier transmission. a-Fe2O3/MIL-53(Fe)
hydrochloride showed excellent degradation performance of Tetracycline hydrochloride
(TC-HCl) in the photo-Fenton system. Li et al. used CA to modify MIL-88A(Fe) for
degrading methylene blue (MB) and carbamazepine (CBZ) (Figure 12b) [76]. The modi-
fication of CA could accelerate the separation and transfer of photo-charge and optimize
the Fe(II)/Fe(III) cycle, thus improving the catalytic performance. The photocatalytic rate
of the improved material is up to 6.5 and 2.5 times higher than that of the raw material.
Moreover, the catalyst shows excellent stability and repeatability. We have compared many
photo-Fenton systems by MILs in Table 3 with their target compound, removal efficiency
and conditions as well as the SBET area of MILs.
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Table 3. Summary of MILs in photo-Fenton reaction.

Entry MILs SBET Area
m2/g

Target
Compound

Removal
Efficiency Photo-Fenton Conditions Ref.

1 MIL-88A(Fe)-CA - MB and CBZ >97% catalyst, 125 mg/L; pH = 3; H2O2,
25 mM; Temp. 40 ◦C [76]

2 MIL-53(Fe) - SMX >96%
(120 min)

catalyst, 2 mmol/L; pH = 4; H2O2,
2 mM; Temp. room temperature [77]

3 N-BiFeO3/
NH2-MIL-53(Fe) - TCH >99% (60 min)

catalyst, 200 mg/L; pH = 7; H2O2,
0.2 mL/L; Temp. room

temperature
[78]

4 Zn/Co-ZiFs@
MIL-101(Fe) 376 RhB >95% (3 h) catalyst, 200 mg/L; pH = 5; H2O2

90 mM; Temp. 5 ◦C [79]

5 Cu2O/
MIL(Fe/Cu) 1553 TCL >80% (80 min) catalyst, 50 mg/L; pH = 7; H2O2,

49 mM; Temp. 25 ◦C [80]

6 Bi3.64Mo0.63O6.55/
MIL-88A(Fe) 80.196 TCH >84% (30 min)

catalyst, 500 mg/L; pH = 7; H2O2
2.5 mL/L; Temp. room

temperature
[81]

7 MIL-88A(Fe) 13.17 OFL 100% (50 min) catalyst, 250 mg/L; pH = 7; H2O2
1 mL/L; Temp. room temperature [82]

8 CuS/MIL-Fe 914.19 APAP 100% (30 min)
catalyst, 200 mg/L; pH = 5;
H2O2 15 mM; Temp. room

temperature
[83]

9 MIL-53(Fe)/BiOI - TC >86% (14 min) catalyst, 200 mg/L; pH = 7; H2O2
10 mM; Temp. room temperature [84]

10 Fe3S4 - SMX 100% (10 min)
catalyst, 300 mg/L; pH = 5; H2O2

0.2 mL/L; Temp. room
temperature

[85]

11 NH2 -MIL-88B(Fe) - ACTM 100% (40 min) catalyst, 140 mg/L; pH neutral;
H2O2 0.21 mL/L; Temp. 25 ◦C [86]

6. Summary and Outlook

Due to their large specific surface area, high red crystallinity, and controllable ordered
pore structure, MILs have become a hot spot in the research field of MOF materials [22].
In this review, we systematically introduced the development of MILs in Fenton reaction
to degrade organic pollutants, the classification of MILs which have been applied in
Fenton catalytic systems, the common synthesis methods of MILs and their advantages
and disadvantages, the modification and activation of MILs, and the application of MILs in
Fenton, electro-Fenton, and photo-Fenton reaction.

At present, researchers are trying to improve MILs in more ways to optimize their poor
thermal and mechanical stability and to enhance their degradation efficiency while main-
taining their original structural properties. Researchers are investigating combining MIL
materials with other materials to obtain composite materials with excellent performance.
However, there are also some problems in the study of MILs:

(1) Few studies have conducted long-term stable tests on the developed materials and
the reaction system, so we do not know whether many MIL materials have long-term
stability and circularity.

(2) Many MILs face the problem of inactivation after repeated use and need to be regen-
erated. However, more suitable regeneration methods need to be further studied.

(3) Due to the suitable chemical and mechanical stability of some MILs, as well as the
limitations of many synthesis methods, some MILs are difficult to be used in real life
and mass production.

On the basis of the above problems, we should continue to explore and strive to find
suitable catalytic applications for MILs. Of course, it can be predicted that MILs will have
attractive application prospects in the development of new functional materials, such as
gas storage, heterogeneous catalysis, drug storage and release, optical, electrical, magnetic,
and so on.
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