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Abstract: Developing efficient photocatalyst for the photoreduction of CO2 and degradation of
organic pollutants is an effective alternative to address increasingly serious energy problems and
environmental pollution. Herein, the isostructural Sillén–Aurivillius oxyhalides, Bi7Fe2Ti2O17X
(X = Cl, Br, and I; BFTOX), are fabricated for CO2 reduction and degradation of organic pollutants for
the first time. Density functional theory (DFT) calculations show that the valence band maximum
(VBM) of BFTOC and BFTOB is contributed by the dispersive 2p orbitals of O-atoms, providing
the narrow band gap (Eg) and possibly the stability against self-decomposition deactivation. The
photocatalytic activities of BFTOX are strongly affected by the halogens (Cl, Br, and I), namely, the
BFTOCl sample displays outstanding activity improvement (3.74 µmol·g−1·h−1) for photocatalytic
performance. This is mainly attributed to the high separation of charge carriers, small optical band
gap, and extended optical absorption. This work focuses on affording a reference to develop efficient
and stable photocatalysts from Sillén-Aurivillius layered oxyhalide materials.

Keywords: Sillén–Aurivillius; Bi7Fe2Ti2O17X; photocatalyst; degradation; CO2 reduction

1. Introduction

With the development of industrialization, environmental problems have become a
global issue of general concern in modern society, particularly for the greenhouse effect
caused by carbon dioxide (CO2) and the discharge of various organic pollutants, threatening
the survival and development of mankind [1,2]. Photocatalytic technology is an appealing
solution for the reduction of CO2 and the removal of organic pollutants due to its ability
to reduce them into high value-added chemicals or completely harmless molecules under
sunlight or UV irradiation [3–6]. Moreover, semiconductor photocatalysis has attracted
wide attention from researchers with the advantages of low cost, highly efficient, recyclable
and does not lead to secondary pollution [7,8]. However, most photocatalytic materials
have the problems of wide band gap, serious photogenerated carrier recombination and
poor stability under light irradiation [9–12]. Thus, it is necessary to develop new efficient
and stable visible light (VL) photocatalysts.

In recent years, bismuth (Bi)-based materials show the potential to be a novel series
for VL responsive photocatalysts [13–16]. Consequently, large amounts of Bi-based photo-
catalysts have been studied, such as Bismuth trioxide (Bi2O3) [17,18], BiOX (X = Cl, Br, and
I) [19–21], Bi4Ti3O12 [22,23], and Bi4MO8X (M = Nb, Ta; X = Cl, Br) [24,25], etc. Among them,
Sillén–Aurivillius layered oxyhalide materials, such as Bi4MO8X (M = Nb, Ta; X = Cl, Br),
which are composed of [MO6] and [(Bi2O2)2X] blocks, have attracted considerable interest
for photocatalysis with the virtues of the narrower band gap (Eg), ferroelectric polarization,
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layered crystal structure and stability against self-decomposition deactivation [26–28]. In
2016, Hironori Fujito et al. fabricated Bi4NbO8Cl successfully from Bi2O3, BiOCl, and
Nb2O5 powders and the photocatalytic performance for oxygen (O2) evolution was also
evaluated in methanol solution [25]. Simultaneously, their density functional theory (DFT)
calculations demonstrated that the valence band maximum (VBM) of Sillén–Aurivillius
layered oxyhalide materials is mainly from O-2p orbitals [29,30]. This material can avoid
the self-decomposition phenomenon of catalysts upon light irradiation because of the
high oxidation of stable by the photo-excited holes near VBM [28,31]. Then, Xiaoping Tao
et al. proved that Bi4TaO8Cl can be used for hydrogen (H2) evolution under VL irradia-
tion [32]. These results indicate that Sillén–Aurivillius layered oxyhalide materials Bi4MO8X
(M = Nb, Ta; X = Cl, Br) should be a potential novel visible light photocatalyst material.
In recent years, Sillén–Aurivillius materials were further extensively studied, such as the
construction of heterojunctions [33,34], surface plasmon nanoparticle modification [26,35],
element doping [27,36], etc., which proves that this materials have great development
potential for photocatalysis, for example Bi7Fe2Ti2O17X (X = Cl, Br, I) (BFTOX). In 2022,
Yan Gu et al. fabricated Bi7Fe2Ti2O17Cl successfully by using a one-step flux route and
solid-state reaction, and its degradation efficiency of tetracycline (TC) reaches 90% within
90 min, which confirms that BFTOX should be a potential novel visible light photocatalyst
material [37].

In order to further advance the development of Bi-based oxyhalides semiconductor
materials, a series of novel Sillén–Aurivillius layered oxyhalide materials, Bi7Fe2Ti2O17X
(X = Cl, Br, I) (BFTOX), have been successfully synthesized via a molten-salt method by us-
ing the BiOX (X = Cl, Br, and I) precursor powders. Originally, we display the investigation
of material characteristics, such as the band structure, effective mass, lattice constant, and
Eg of BFTOX influenced by the halogen, Cl, Br, and I, from density functional theory (DFT)
calculation. Then, material properties of BFTOX powders are determined by characteriza-
tion techniques of X-ray diffraction (XRD), scanning electron microscope (SEM), energy
dispersive spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS). Furthermore,
the photocatalytic activities of different samples are compared by the reduction of CO2 and
the degradation of methyl orange (MO) and Rhodamine B (RhB), and BFTOX exhibits the
best photocatalytic performance. In addition, the possible photocatalysis mechanisms of
BFTOX have also been discussed in detail.

2. Results and Discussion
2.1. DFT Calculations

The structure of Sillén-Aurivillius materials is composed of fluorite ([Bi2O2]2+) [20],
like-perovskite ([An−1BnO3n+1]3−) [21], and halogen ([X]) with the general formula of
[Bi2O2]2+[X]−[Bi2O2]2+[An−1BnO3n+1]3− [22], where n represents the number of perovskite
layers (n = 1, 2, 3 . . . ). Meanwhile, with the number of perovskite layers increasing, the
difficulty of implementation will also increase, whether in calculation or experiment. After
drawing on many previous works, this work put a sight on comparing three quadruple-
perovskite layers semiconductor photocatalysts, Bi7Fe2Ti2O17X (X = Cl, Br, I). The layers are
constructed in the Cmcm space group (No. 63), aiming to provide the high efficiencies of
photocatalysts for the reduction of CO2 and degradation of organic pollutants. The crystal
structure of BFTOX in Figure 1a shows that the novel BFTOX is an n = 4 member of Sillén–
Aurivillius type perovskite oxyhalides with alternate stacking of Aurivillius perovskite
blocks ([Bi3Ti2Fe2O13]3−) and Sillén blocks ([(Bi2O2)2X]3+).

In order to further investigate the electronic properties of BFTOX, the energy band
structure plots are displayed in Figure 1b–d. We can find that all BFTOX samples belong to
the indirect-gap semiconductor. The calculated Eg values of BFTOC, BFTOB, and BFTOI are
2.30 eV, 2.44 eV, and 2.65 eV, respectively. As the halogen atomic number increases from Cl
to Br and I, the band gap gradually widens, which may be related to the electronegativity
of the halogen atoms. Furthermore, the electronegativity of materials also influences the
energy level of the halogen atoms that elements with low electronegativity have high
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energy level positions, and thus the halogen level (Cl 3p, Br 4p and I 5p) increases as the
atomic number increases relative to the O 2p orbitals. Quite unexpectedly, the VBM of
BFTOC and BFTOB is predominantly composed of O 2p orbitals, while that of BFTOI is
contributed by I 5p orbitals. For BFTOI, the VBM contribution is similar to that of simple
oxyhalides BiOCl and BiOBr. During photocatalytic process, it is inevitable to be oxidized
by the holes excited by the light, and the stability will be poor [20]. When it comes to BFTOC
and BFTOB, the VBM is mainly composed of the dispersive O 2p orbitals. Meanwhile,
the calculated effective masses of all samples in Table 1 confirm that the lower values of
BFTOC and BFTOB. Hence, we believe that the excited holes in the stable oxygen anion
near the VBM of both materials can effectively oxidize water without inactivation due to
self-decomposition phenomenon of catalysts upon light irradiation.
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Figure 1. (a) Crystal structure of BFTOX. Band structures of (b) BFTOC, (c) BFTOB and (d) BFTOI.

Table 1. Calculated effective masses (unit m0) of the electrons and holes of BFTOC, BFTOB and BFTOI
by different directions.

BFTOC BFTOB BFTOI

Effective Mass Electron Hole Electron Hole Electron Hole

mxx (Γ − X) 0.023 0.181 0.013 0.131 0.053
myy (Γ − Y) 0.035 0.099 0.018 0.098 0.054
mzz (Γ − Z) 9.879 7.904 19.004 6.228 5.137
mxx (S − Y) 0.035
myy (S − X) 0.031
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2.2. Material Properties of BFTOX (X = Cl, Br, and I)

The crystalline phases of as-prepared BFTOX powders were determined by XRD
technology, and the corresponding results are displayed in Figure 2a–c. It can be observed
that the diffraction peaks at 30.58◦, 32.65◦, 46.73◦, and 56.97◦ can be indexed to the (116),
(020), (220), and (316) crystal planes of BFTOX samples, which are all consistent with the
calculated cards from DFT. These results confirm that BFTOX (X = Cl, Br, and I) materials
are well-crystallized after calcination at different high temperatures in this experiment.
Moreover, from the DFT results in Figure 1a, the structure of BFTOX (X = Cl, Br, and
I) is the orthorhombic structure along with the space group of P21cn. In this case, the
experimental lattice constants of BFTOX are calculated (BFTOC: a = 5.508 Å, b = 5.481 Å, and
c = 26.593 Å; BFTOB: a = 5.501 Å, b = 5.478 Å, and c = 26.592 Å; BFTOI: a = 5.492 Å,
b = 5.478 Å, and c = 26.644 Å). These results and the theoretically calculated lattice constants
in Figure 2a–c are extremely similar, further indicating the successful preparation of BFTOX.
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Figure 2. XRD patterns and their corresponding calculated cards of (a) BFTOC, (b) BFTOB, and
(c) BFTOI. SEM images of (d) BFTOC, (e) BFTOB, and (f) BFTO-I. (g) TEM and the corresponding
HRTEM of (h,i) BFTOC nanoplates in yellow squares. The corresponding SEM-EDS elemental
mappings of (j) Bi, (k) Fe, (l) Ti, (m) O, and (n) Br for BFTOB sample.

Afterwards, the microstructure of the as-prepared BFTOX samples is determined by
using SEM. As depicted in Figure 2d–f, all samples possess a nanoplate-like structure,
which may be caused by the weak Van der Waals’ force between the halogen layer [X] and
the fluorite layer [Bi2O2]. Meanwhile, the size of nanoplates of BFTOX samples gradually
decreased from the halogen variation in Sillén–Aurivillius material, particularly for BFTOI.
One possible reason for this phenomenon is the stability of the material structure. Because
the iodine element (I) is easy to sublimate during the high temperature calcination process,
it is easy to destroy the crystal structure, so the crystallinity is poor and it is easy to
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form nano-agglomerates. In addition, the SEM-EDS mappings of BFTOB nanoplates in
Figure 2g–k confirm the existence of Bi, Fe, Ti, O, and X and they are evenly distributed
on the whole nanoplates. A similar phenomenon is also observed in BFTOC and BFTOI
samples, seen the supporting information in Figure S1. These further demonstrate the
successful synthesis of the BFTOX materials.

The elements of Bi, Fe, Ti, O and Br are found in the survey XPS spectra of BFTOBr
(Figure 3a), which is in accordance with the results of SEM-EDS. The peaks at about 159.10
and 164.42 eV in Figure 3b, obtained from BFTOB, are ascribed to the Bi 4f 7/2 and Bi 4f 5/2
of Bi3+ [38]. In the Fe 2p region of BFTOB (Figure 3c), there were two peaks at 711.09 and
725.36 eV, referring to Fe 2p1/2 and Fe 2p3/2, respectively, manifesting the existence of Fe3+

ions [39]. There were two fitted Ti 2p peaks centered at 458.12 and 465.73 eV in Figure S2,
which were attributed to Ti 2p3/2 and Ti 2p1/2 to the oxidation state of Ti4+ [40,41]. The O
1s peaks at binding energies of 529.50, 530.17 and 531.99 eV, which arises from the Bi-O,
Fe-O and Ti-O, respectively (Figure S3). In addition, the binding energy peaks of Br 3d5/2
and Br 3d3/2 are located at 68.46 and 79.45 eV, respectively (Figure 2d) [42,43].
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Figure 3. (a) XPS survey spectra of BFTOB corresponding to Bi, Fe, Ti, O and Br. High resolution XPS
spectra of (b) Bi 4f, (c) Fe 2p, and (d) Br 3d of BFTOB, respectively.

2.3. Photocatalytic CO2 Reduction Performance for BFTOX Materials

In order to evaluate the photocatalytic activities of BFTOX affected by the halogens,
Cl, Br, and I, we conducted CO2 reduction under the light irradiation. Under the simulated
sunlight illumination, all BFTOX (X = Cl, Br, and I) samples can reduce the CO2 to carbon
monoxide (CO) in a sealed gas-solid phase reaction vessel without any organic sacrificial
reagent. Figure 4a–c displays the relatively steady CO yields as a function of the irradiation
time generated by BFTOC, BFTOB, and BFTOI. The yield values are about 14 µmol, 12 µmol,
and 10 µmol for 210 min, respectively. To compare the performance clearly, the average
yields of CO in 3.5 h are calculated in Figure 4d. It can be observed that the production
rate of CO for BFTOC and BFTOB are 3.74 µmol g−1 h−1 and 3.6 µmol g−1 h−1, which
are approximately 1.4 times higher than that of BFTOI (2.66 µmol g−1 h−1). This result
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means that the trend of photocatalytic activities of BFTOX is BFTOC > BFTOB > BFTOI.
The decrease in the CO production rate for samples may be related to the absorption of
solar photons.
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Figure 4. CO production of (a) BFTOC, (b) BFTOB, and (c) BFTOI, respectively. (d) The average CO
production rates of BFTOX (X = Cl, Br, and I).

Subsequently, the UV–Vis diffuse absorbance spectrum (DRS) is used to evaluate the
light absorption of BFTOX samples. It can be seen that all samples exhibit a strong photo-
response in the range of 390–550 nm in Figure 5a, which indicates that the BFTOX (X= Cl,
Br, and I) materials are visible light catalysts. It is observed also that, the order of light
response intensities is BFTOC > BFTOB > BFTOI, which can be ascribed to the sub-band
gap absorption of powder materials. As we know, the significant sub-band gap absorption
of films is indicative of the presence of the secondary phases or the band tailing [44–47].
This observation suggests the BFTOC powder has the lowest defect concentrations and
photogenerated carrier recombination compared with the two other samples, which should
be the reason for the highest performance of CO2 reduction for BFTOC sample, as is
consistent with the SEM results.
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Figure 5. (a) UV-vis diffuse reflectance spectrum (DRS) of BFTOX (X = Cl, Br, and I) samples. (b) The
calculated Eg of BFTO-X from Tauc’s band-gap plots. (c) UPS valence band spectra of BFTOBr and
BFTOI; (d) The energy band structure of BFTOX (X = Cl, Br, and I).
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In addition, the BFTOC powder has the lowest defect concentrations compared with
the two other samples. This should be the reason for the highest performance of CO2
reduction for BFTOC sample, as is consistent with the SEM results. Furthermore, as the
atomic number of the halogen increases in BFTOX (X = Cl, Br, and I), the absorption edge
decreases, thus widening the Eg of samples. For a clearer comparison, the Eg values are
determined by applying the Kabelka-Munk function [48–50]:

(αhv)1/m= A
(
hv − Eg

)
(1)

where A, α, and hv are constant, absorption coefficient, and photon energy, respectively.
The constant m is connected with the type of materials: the direct-gap semiconductor or the
indirect-gap semiconductor [49]. From DFT calculation results, BFTOX is an indirect-gap
semiconductor. Therefore, the value of m is 2. By the linear intersection in Figure 5b, the
corresponding Eg values of BFTOX (X = Cl, Br, and I) are 2.64 eV, 2.68 eV, and 2.74 eV,
respectively. This result is consistent with the trend of DFT calculation, as depicted in
Figure 1.

In general, the positions of the valence band maximum (VBM) and conduction band
minimum (CBM) of photocatalysts determines the photocatalytic activities of CO2 reduction
under light irradiation. Here, ultraviolet photoelectron spectroscopy (UPS) is employed to
clarify the VBM and CBM positions of BFTOX samples, and the results of BFTOB and BFTOI
are shown in Figure 5c. The result of BFTOC can be found in our previous work [44]. It can
be calculated that the values of secondary cutoff energy (Ecut-off) of BFTOX are 16.30 eV,
16.30 eV, and 16.40 eV, respectively. And the position energy of corresponding Fermi levels
(EF) can be deduced from the equation [49]:

ϕ = hv − Ecut−off (2)

where hv is about 21.22 eV for the He I electron energy. Therefore, the EF values of BFTOC,
BFTOB, and BFTOI are 4.92 eV, 4.92 eV, and 4.82 eV, respectively. In addition, the on-set
energy (Eon-set) of samples can be applied to determining the gap between valence band
and EF. From Figure 5c, the Eon-set values of BFTOC, BFTOB, and BFTOI are 1.80 eV, 1.64 eV,
and 1.63 eV. Therefore, the valence band positions of these samples are 6.72 eV, 6.56 eV,
and 6.45 eV, respectively. As the Eg values are depicted in Figure 5b, the conduction band
positions are 4.06 eV, 3.88 eV, and 3.72 eV from the equation that ECB = EVB − Eg. According
to previous works, the relationship between the vacuum energy (Eabs) and the normal
electrode potential (EΘ) can be described as follows [51]:

Eabs= −EΘ − 4.44 (3)

Correspondingly, the valence band positions of BFTOC, BFTOB, and BFTOI (vs. NHE)
are 2.28 eV, 2.12 eV, and 2.01 eV, while the valence band positions of samples are −0.38 eV,
−0.56 eV, and −0.72 eV, respectively. Based on the above discussions, the energy band
diagrams of the CBM and VBM potentials for BFTOX samples are exhibited in Figure 5d.
We can find that as the halogen in BFTOX is substituted from Cl to I, both the conduction
and valence bands of samples are shifted upward. Meanwhiles, the Eg values are increased
from 2.64 eV to 2.74, this result means that the widening of the band gap is mainly due
to the shifting of the conduction band. Since the CBM of BFTOX (−0.38 eV, −0.56 eV,
and −0.72 eV) are more negative than that of the CO2/CO (−0.11 eV) redox potential, it
confirms that the valence bands of BFTOX (X = Cl, Br, and I) are capable of CO2 reduction,
as the results in Figure 4.

In general, the size of photocatalyst nanoplates can directly affect the photocatalytic
activity. When the nanoplate size is smaller, the number of nanoplates per unit mass is
larger, and the specific surface area is larger. According to SEM results in Figure 2, the
size of nanoplates of BFTOX samples gradually decreased from the halogen variation in
Sillén–Aurivillius material, particularly for BFTOI. These results indicate that the BFTOI
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sample has the largest specific surface area, and it should have the maximum photocatalytic
efficiency. However, this result is the opposite, which may be related to the generation
and recombination of photogenerated charge carriers. As we know, the photocatalytic
performance of BFTOX samples is affected by many factors, such as the separation and
transfer of photogenerated electrons and holes. Here, photoelectrochemical characteri-
zations, transient photocurrent densities (TPC) and electrochemical impedance spectra
(EIS), are employed to investigate the charge transfer capability of the catalysts. Figure 6a
shows the photocurrent response curves of BFTOX under light irradiation. It can be found
that the trend of the photocurrent density of BFTOC is BFTOC > BFTOB > BFTOI. This
result reveals the higher efficient separation of photo-generated electrons and holes for
the BFTOC sample. Meanwhiles, a similar conclusion is also observed in the results of
EIS in Figure 6b. The diameter of the arc radius of BFTOC on the EIS is much smaller that
these of BFTOB and BFTOI, indicating that BFTOC sample possesses a faster transfer of
the photo-generated electrons and holes. This excellent performance of separation and
transfer of photogenerated carriers for BFTOC can be related to the highest quality of
powder material along with the lowest defect concentrations, as exhibited in Figure 5a. In
addition, the calculated effective masses of the electrons and holes in Table 1 shows that the
values of BFTOB is smallest than other two samples, it suggests that the electron-hole pair
recombination of BFTOB should be lowest and the BFTOB sample possesses the highest
photocatalytic efficiency. However, the sample with the highest photocatalytic efficiency
is BFTOC in experiment. The reason for this result is that the BFTOC sample has higher
crystallization compared with the other two samples.
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(c) (d)Figure 6. (a) Transient photocurrent densities and (b) EIS Nyquist plots of BFTOX (X = Cl, Br, and I).

2.4. Photocatalytic Activity Enhancement Mechanism for the Photodegradation of Organic Pollutants

The photocatalytic activities of BFTOX samples are also measured by using MO and
RhB (10 mg/L) as the simulated pollutant under light irradiation, the results are displayed
in Figure 7. To get a clear contrast, the degradation efficiencies of MO and RhB by BFTOX
at different concentrations are calculated by the following equation [36]:

η = (C0 − C) / C0 × 100% (4)

where C and C0 are the sampling concentration of the reaction solution at different times
and the initial concentration of MO and RhB solutions before light irradiation, respec-
tively. From Figure 7a, we can find that the trend of degradation efficiencies for MO is
BFTOC > BFTOB > BFTOI, and its result is similar for that of RhB solutions. Moreover,
according to the fitting of pseudo-first-order: ln(C0/C) = kt, the degradation constants (k)
are evaluated, as depicted in Figure 7b.
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Figure 7. (a) The photocatalytic MO and RhB degradation activities over BFTOX. (b) The correspond-
ing k values from kinetic linear fitting curves. (c) Degradation of the mixture of MO and RhB as a
function of irradiation time. Degradation rate of MO/RhB over (d) BFTOC, (e) BFTOB, and (f) BFTOI
with the addition of p-BQ, EDTA-2Na and TBA.

For MO, the BFTOC sample exhibits the highest apparent rate constant of about
0.011 min−1, which is around 1.18 and 1.30 times of bare BFTOB and BFTOI samples,
respectively. In addition, it can be observed that the degradation efficiencies of MO over
BFTOX are higher than that of RhB, which indicates that that photocatalytic degradation
of BFTOC powder is best, particularly for MO. Besides, BFTOC sample was also used to
degrade the MO and RhB mixed pollutants, and its result is shown in Figure 7c. Obviously,
the degradation efficiencies of MO at the wavelength of approximately 460 nm is higher
compared with that of RhB at 550 nm. This further confirms the above conclusions. More
importantly, the degradation efficiency of the mixture of MO and RhB is higher than that of
single MO, which might be ascribed to the electrostatic force promoted the degradation
of MO [52]. Moreover, the degradation efficiency of the mixture of MO and RhB is lower
than that of single RhB due to the active sites of BFTOX being encircled intermediates,
decelerating the production of electro-hole pairs and restraining the formation of radicals.
In addition, the degradation efficiencies of MO are also higher than that of RhB in the
mixture of MO and RhB. Namely, the degradation rates of MO over the BFTOX nanoplates
are always higher than those of RhB, it may be mainly attributed to the molecular structure
of oxychlorides, which needs further research in the future.

Afterwards, the active species trapping experiments of BFTOX (X = Cl, Br, and I)
were carried out under light irradiation to evaluated the exact photocatalytic degradation
mechanism. Radical scavenging materials, such as BQ, EDTA-2Na and TBA, are employed
as the scavengers of ·OH, h+, and ·O−2 , respectively. The results in Figure 7d exhibit that
the degradation efficiencies of MO and RhB over BFTOC are significantly inhibited under
BQ and EDTA-2Na, while TBA only slightly reduces the degradation. In addition, similar
capture trends are also found for BFTOB (Figure 7e) and BFTOI (Figure 7f). Therefore, h+

and ·O−2 should be the major active species for MO and RhB degradation by BFTOC.
In fact, the stability and durability of photocatalysts is very important in practical

applications. Figure 8a exhibits that the RhB degradation efficiency over BFTOC nanoplates
with the same photocatalyst for five cycles. It can be found that the excellent photocatalysis
performance of BFTOC is still significant after five cycles use, which confirms that the
good recycling ability of BFTOC nanoplates. In addition, the stability of sample was also
ascertained from XRD pattern in Figure 8b. The crystallinity of the as-prepared sample is
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similar to that of the used samples, it indicates that BFTOC nanoplates have the potential
for the practical applications.
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Figure 8. Time profiles of RhB degradation for five successive cycles with BFTOC in the photocatalytic
process (a) and its XRD patterns (b).

Based on the aforementioned discussions, the probable photocatalytic degradation
mechanism of organic pollutants over BFTOX materials is proposed in Figure 9. Under
the light illumination, the e− and h+ will be produced on the CBM and VBM of BFTOX.
The accumulated e− on the CBM of BFTOX readily can reduce oxygen to ·O−2 , which has
more negative potentials (−0.38 eV, −0.56 eV, and −0.72 eV vs. NHE) than the O2/O−2
redox potential (−0.33 eV vs. NHE). The reason why ·OH ions do not contribute to
the photocatalytic degradation process of organic pollutants is that in the acidic reaction
solution, the EVBs of BFTOX (BFTOC 2.28 eV; BFTOB 2.12 eV; BFTOI 2.01 eV) are more
negative than the redox potential of H2O/·OH (2.73 eV), and photogenerated holes cannot
induce H2O to ·OH, as shown in Figure 5d. Finally, the free radicals ·O−2 and e−, which
migrate to the surface of the powder and have good oxidation ability, directly degrade MO
and RhB molecules into oxidation products. The possible photocatalytic mechanism of
BFTOX powders can be described as follows:

Bi7Fe2Ti2O17X (X = Cl, Br, and I) + hv + (ultrasound) → e−+h+ (5)

O2+e− → ·O−2 (6)

·O−2 +h++RhB/MO→ Intermediates +CO2 + H2O (7)
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3. Materials and Methods
3.1. Materials

Bismuth trioxide (Bi2O3) was purchased from Shanghai Aladdin Biochemical Tech-
nology CO., Ltd. Ferric oxide (Fe2O3) was purchased from Shanghai Shanpu Chemical
Co., Ltd., Shanghai, China. Titanium dioxide (TiO2), polyethylene glycol (EG), potassium
chloride (KCl), potassium bromide (KBr), potassium iodide (KI), sodium chloride (NaCl),
sodium bromide (NaBr), and sodium iodide (KI) were brought from Sinopharm Chemi-
cal Reagent Co., Ltd., Shanghai, China. All chemical reagents were analytical grade and
directly used without any further treatment.

3.2. Preparation of Photocatalysts
3.2.1. Preparation of BiOX (X = Cl, Br, and I)

In this experiment, BiOX (X = Cl, Br, I) was prepared by a facile soft liquid deposition
method, as reported in our previous works [27,49–51]. 24 mmol of Bi(NO3)3·5H2O was
dissolved into 240 mL of ethylene glycol solution (EG) to obtain solution A at room
temperature. Then, 24 mmol of KX (X = Cl, Br, and I) was dissolved into 120 mL of
deionized water to obtain solutions B, which was dropped slowly into the previous solution
A. The mixed solution was magnetically stirred for 1 h at room temperature. Subsequently,
the products were obtained by washing them with deionized water several times and dried
at 60 ◦C for 12 h.

3.2.2. Preparation of Bi7Fe2Ti2O17X (X = Cl, Br, and I)

BFTOX powders were synthesized by a flux method using Bi2O3, BiOX, Fe2O3 and
TiO2 as the precursor materials. KCl/NaCl, KBr/NaBr, and KI/NaI with a ratio of 1:1 were
served as the molten salt. The molten salt was mixed with the solute of Bi2O3, BiOX, Fe2O3
and TiO2 at the stoichiometric molar ratio for BFTOX (3:1:1:2). The solute concentration
is about 6.25 mol% (BFTOX/(BFTOX + flux)). 10 mol% excess of BiOX over the stoichio-
metric ratio was added to prevent volatilization. Afterwards, three different mixtures were
transferred to alumina crucibles for the high-temperature calcination. The Bi7Fe2Ti2O17Cl
(BFTOC), Bi7Fe2Ti2O17Br (BFTOB), and Bi7Fe2Ti2O17I (BFTOI) were obtained at the cal-
cination temperature of 750 ◦C, 750 ◦C, and 700 ◦C for 6 h, respectively. After natural
cooling, the obtained products were collected by filtration and thoroughly washed with the
deionized water for several times. Finally, the products were dried at 60 ◦C for 12 h.

3.3. Characterization

X-ray diffraction (XRD) (X’ Pert3 Powder, PANalytical, Almelo, The Netherlands,
λ = 0.15406 nm) was used to analyze the crystal structure of BFTOX samples with Cu Kα

radiation. The sample morphologies were examined by field emission scanning electron
microscope (FE-SEM) (FEI, Hillsboro, OR, USA). X-ray photoelectron spectroscopy (XPS)
was carried out to investigate the chemical nature of the samples via a Thermo Scientific
Escalab 250 Xi spectrometer (Thermo Fisher Scientific, Carlsbad, CA, USA). The UV-vis
diffuse reflectance spectroscopy (UV-vis DRS) was attained by using a UV-2550 (Shimadzu,
Kyoto, Japan). The UV-vis absorption spectra of the samples were performed by UV-2450
(Shimadzu, Kyoto, Japan).

3.4. Photocatalytic Experiments

Photocatalytic experiments of the samples were discussed with a 300 W Xenon lamp
(CEL-HXF300 Beijing China Education Au-light Co., Ltd., Beijing, China) as the light source.
100 mg of photocatalysts were separately added into 100 mL of 10 mg/L MO and RhB,
and then stirred in the dark for 30 min to reach adsorption-desorption equilibrium. 4 mL
solution was withdrawn every 30 min. The above suspension was centrifuged and the
residual concentration of dye was detected by UV-vis spectrophotometer. During the
degradation process of MO and RhB over BFTOX, ·OH, h+, and ·O−2 were captured by a
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certain proportion of tert-butyl alcohol (TBA, 1 mM), EDTA (1 mM), and benzoquinone
(BQ, 0.25 mM), respectively.

The experiments on the reduction of CO2 were performed in a gas closed-circulation
system. Photocatalyst powders of 0.01 g were dispersed in the absolute ethyl alcohol. Then,
the photocatalysts solution was coated on a glass slide and placed in a reaction chamber
(1 L). Deionized water entered the reaction chamber in the form of steam, and 1000 ppm
CO2 was introduced. After the whole system was stabilized, a 300 W Xe-arc lamp was
applied to simulate sunlight.

3.5. Electrochemical Measurement

Photocurrent density versus time curves and electrochemical impedance spectra (EIS)
were performed by a CHI660D electrochemical analyzer (Chenhua Instruments Co., Ltd.,
Shanghai, China) with a standard three-electrode system, including a working electrode, a
reference electrode (saturated Ag/AgCl), and a counter electrode (Pt wire). The working
electrode was obtained: 5 mg of as-prepared photocatalysts were dispersed into 40 µL
of naphthol to make the slurry, and the slurry was deposited on the fluorine-tin oxide
(FTO)glass. Afterwards, the substrate was dried at 80 ◦C for 4 h and calcined in a muffle
furnace at 120 ◦C for 1 h.

3.6. Theoretical Calculations

In this work, the calculation of DFT with the projector-augmented wave (PAW) was
carried out by VASP code [53]. The generalized gradient approximation (GGA) for the
electron exchange and correlation corrections used Perdew-Burke-Ernzerhof (PBE) [54]
to optimize the geometric structure and the next procedures were performed within the
Heyd-Scuseria-Ernzerhof screened hybrid functional (HSE) [55], including band structures.
In order to obtain accurate results, the cut-off energy was set to 520 eV and the irreducible
Brillouin zone grid was used to 5 × 5 × 1 mesh. The energy convergence criterion was
1× 10−4 eV as well as−1× 10−2 eV for atomic force convergence. In addition, the magnetic
moment of the Fe atom was set to 4 µB. Due to the unpredictability of the synthesized
samples in the experiment, Fe and Ti alternate arrangement is used to simulate the disorder
situation in this DFT calculated process.

4. Conclusions

In summary, a series of novel Sillén–Aurivillius oxygen halides, Bi7Fe2Ti2O17X
(X = Cl, Br, and I), were successfully synthesized by molten salt method for the effi-
cient CO2 reduction and degradation of organic pollutants. The highly dispersive O 2p
band of BFTOC and BFTOB samples contributing to the VBM not only renders the VBM
essentially negative, but also explains its stability against self-decomposition deactivation
from theory and experiment. For BFTOI, self-oxidation deactivation of I 5p orbitals leads to
inferior CO2 reduction in BFTOI. BFTOC and BFTOB samples possess outstanding activ-
ity for CO2 reduction to CO, and the production rates of CO are 3.74 µmol g−1 h−1 and
3.6 µmol g−1 h−1, respectively. More importantly, the BFTOX with unique nanosheet
morphology displays a superb photocatalytic performance on MO and RhB mixture degra-
dation. The removal efficiencies of the MO and RhB for BFTOC and BFTOB are 90% and
85% higher than BFTOI, which is a result of the improved separation of photogenerated
charge carriers and optical absorption. To be more specific, the radical trapping tests and
possible mechanism of BFTOX for the photocatalytic degradation of MO and RhB indicated
that the h+ and ·O2

- were the major active species to boost photocatalytic reactions. As
an attractive photocatalyst, BFTOX has promising potential for CO2 reduction and the
degradation of organic pollutants.
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