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Abstract: Graphitic carbon nitride (g-C3N4) is a promising heterogeneous photocatalyst in the visible
range. It can be used, among others, for reductive conversion of the toxic hexavalent chromium
occurring in various wastewaters. Its photocatalytic efficiency, however, has to be improved, which
can be realized by modification with different dopants or co-catalysts forming heterojunctions.
In our work, ruthenium-modified g-C3N4 has been prepared by ultrasonic impregnation of the
pristine g-C3N4, which was synthesized from thiourea. The morphology, microstructure, and optical
properties of the photocatalysts were characterized by XRD, SEM, FT-IR, TEM, XPS, and DRS. Their
compositions were analyzed by EDS and XPS measurements, indicating 0.5% and 1.4% Ru, due to the
different penetrating depths. XPS study showed mainly +2 for the oxidation state of Ru. DRS analysis
indicated a slight change in both the CB (from −1.14 to −1.22 eV) and the VB (from 1.49 to 1.56 eV)
energies of Ru/g-C3N4, compared to those of g-C3N4. The photocatalytic Cr(VI) reduction efficacy
increased from 50.1 to 96.8%. Low pH (=2) was preferred for the photocatalytic Cr(VI) reduction due
to the favorable surface charge and E(Cr(VI)/Cr(III)) redox potential. Ru modification proved to be
promising for improving the photocatalytic performance of g-C3N4.

Keywords: graphitic carbon nitride; photocatalysis; ruthenium modification; reduction of Cr(VI);
visible-light irradiation; pH effect

1. Introduction

Heterogeneous photocatalysis became an intensively developing field of science in past
decades because it offers good possibilities for the removal of various types of pollutants [1].
In several cases, for this purpose, utilization of solar radiation can also be realized by
photoactive semiconductors. Unfortunately, a significant part of the stable and efficient
heterogeneous photocatalysts are white (such as TiO2, SnO2, ZnO), and thus they can only
be excited in the UV range [2], which represents only a low fraction of the solar light. Hence,
more and more interest has been attracted by colored semiconductors, a considerable part
of which is organic. The advantage of organic semiconductors (OSCs) is that their basic
structure is metal-free, which is important from the viewpoint of environmental protection,
and they are relatively easy to prepare in rather mild experimental conditions. One of
the most promising OSCs is graphitic carbon nitride (g-C3N4), which is a conjugated
polymer [3]. It is suitable for efficient utilization of the longer-wavelength photons due to
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its band gap corresponding to an energy of 2.7–2.8 eV, which falls in the visible light range.
However, this narrow visible light response (up to c.a. 450 nm) and fast recombination of
the photogenerated charge carriers are considerable drawbacks of this photocatalyst [4]. For
enhancing the efficiency of this photocatalyst, “heterojunction”-type structures offer good
possibilities. Numerous studies have applied various materials for such combinations,
e.g., other semiconductors [5,6], metals [7,8], and non-metals [9,10] as dopants. These
modified g-C3N4 semiconductors have been applied for both photocatalytic oxidation and
the reduction of various substrates, e.g., for water splitting [11,12], CO2 reduction [13], and
the degradation of organic pollutants [14].

One of the reducing photocatalytic procedures applied for the removal of pollutants
in various wastewaters focuses on the Cr(VI) conversion to Cr(III). Inorganic chromium
compounds are widely used in various industries such as electroplating, leather and
dye manufacturing, metal processing, etc. [15,16] Chromium occurs mostly in two forms:
hexavalent and trivalent chromium (Cr(VI) and Cr(III)). The former is much more sol-
uble (hence, mobile) and poisonous (carcinogenic) than the latter form. Therefore, the
removal of chromium is basically focused on Cr(VI) due to its severe health issues. Ac-
cordingly, g-C3N4 has also been investigated in this respect without modification, but
prepared from different precursors [17]. Several studies dealt with the photocatalytic re-
duction of Cr(VI) to Cr(III) based on the application of this semiconductor modified in
various ways. Acid-base regulation was utilized for its surface modification [18]. Deco-
ration with Ag nanoclusters was also applied for enhancing the reduction efficiency [19].
Combination with reduced graphene oxide and CoS2 also proved promising [20]. The
Cu3.21Bi4.79S9/g-C3N4 nanocomposite was also used under visible light irradiation for this
purpose, even in the presence of other heavy metal ions [21]. The degradation of organic
pollutants was combined with the Cr(VI) reduction in the Z-scheme system consisting of
a g-C3N4 /Bi2S3 heterojunction [22]. In the composite of g-C3N4/ZnIn2S4, the improved
charge separation was the possible reason for the increased efficiency [23]. The same
explanation, along with the larger specific surface area, was the interpretation of the higher
efficacy of the illite-g-C3N4 catalyst [24]. The combination of g-C3N4 with Cu2O also led
the increased reduction and, at the same time, the oxidation potentials utilized for reductive
conversion of Cr(VI) and oxidative degradation of tetracycline [25].

The previous results regarding the g-C3N4-based photocatalytic reduction of Cr(VI)
clearly indicated that several types of modifications can improve the efficiency of this
process. However, despite the wide range of studies, the effect of the modification with
ruthenium has not been investigated on the Cr(VI) conversion, although this metal proved
to be a useful dopant in the case of other photoactive semiconductors. Hence, the main
goal of our study was the preparation and characterization of ruthenium-modified g-C3N4
(designated as Ru/g-C3N4), and its application for the photocatalytic reduction of Cr(VI),
compared to the pristine g-C3N4. Optimization of the photocatalytic conditions (e.g.,
pH, concentrations) as well as stability measurements were also realized. Our results
clearly indicate that ruthenium modification resulted in an improved photocatalytic perfor-
mance regarding the Cr(VI) conversion, and its efficiency hardly changed through several
reusing cycles.

2. Results and Discussion
2.1. Structure and Properties Characterization
2.1.1. XRD Analysis

The XRD patterns of prepared Ru/g-C3N4 and g-C3N4 catalysts are shown in Figure 1.
The XRD patterns demonstrate that Ru/g-C3N4 maintains the crystal characteristic of
pristine porous g-C3N4. The weak peak appeared at 13.08◦ and the strong one situated
at 27.56◦ are ascribed to the (100) and (002) planes of g-C3N4 (JCPDS No. 87-1526), re-
spectively [26]. Characteristic peaks at 27.56◦ are assigned to the dense interlayer-stacking
(002) peak of aromatic segments of g-C3N4 materials. The (002) diffraction of the carbon in
Ru/C indicates that it has a quasi-graphitic structure. The reflection at 13.08◦ is indexed
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as (100) peak that arises from the in-plane ordering of tri-s-triazine attributed to units of
g-C3N4. This means that the loading of Ru did not change the basic structure of g-C3N4.
The absence of an apparent characteristic peak of Ru on Ru/g-C3N4 indicates that Ru has a
small particle size, low loading, and good dispersion on the g-C3N4 surface. The decreased
intensity of the characteristic peaks in the XRD patterns of Ru/g-C3N4 may be attributed
to a reduced layer thickness caused by Ru doping [27].
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Figure 1. XRD patterns of g-C3N4 and the Ru/g-C3N4 catalysts.

2.1.2. UV–Vis Spectroscopic Study

Absorption spectroscopy is used to determine the optical properties of the synthesized
samples, which is an important factor for photocatalysts. Figure 2 shows the DR/UV–Vis
diffuse reflectance spectra and the Kubelka–Munk plot [28] of the sample’s Ru/g-C3N4
and g-C3N4. The significant decrease in the reflection upon Ru doping (Figure 2a) can
be attributed to the enhanced light absorption, which is in accordance with the much
darker color.
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Figure 2. (a) DR/UV–Vis spectra, (b) energy bandgap determination by the Kubelka–Munk function
for the catalysts: g-C3N4 and Ru/g-C3N4.

Absorption in the visible light range (from 400 to 750 nm) is an important condition
for the photocatalytic activity of g-C3N4 under visible light. When doping Ru NPs onto
the material, an increased band gap (Eg) from 2.63 to 2.78 eV was determined (Table 1),
corresponding to the blue shift of the absorption edge from 471 nm (g-C3N4) to 446 nm
Ru/g-C3N4). However, both the g-C3N4 and Ru/g-C3N4 composites showed absorption
in the visible region, corresponding to the transition from the valence band (VB) to the
conduction band (CB).
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Table 1. The calculated conduction band (ECB) and valence band (EVB) energies.

Catalyst Eg (eV) EVB (eV) ECB (eV)

g-C3N4 2.63 1.49 −1.14
Ru/g-C3N4 2.78 1.56 −1.22

The EVB and ECB values were estimated by adopting the Mulliken electronegative
principle, using Equations (1) and (2):

ECB = EVB − Eg (1)

EVB = χ − Ee + 0.5Eg (2)

where χ represents Mulliken electronegative symbol of g-C3N4 (4.67 eV) and Ee is the
energy of free electrons on the hydrogen scale (Ee ≈ 4.50 eV).

In this calculation, for both g-C3N4 and Ru/g-C3N4, the same electronegativity (χ)
was taken because Ru doping (with 1.4% surface concentration) could just slightly modify
it. This estimation resulted in an ECB value for this semiconductor which is more negative
than that of g-C3N4. The obtained ECB values hardly differ, which results in an equilibrium
of the electrons between the two CBs. Nevertheless, it can promote some capturing of
the electrons from the CB of g-C3N4, which can be excited easier than Ru/g-C3N4. Thus,
the charge recombination in the previous one becomes more hindered. The slightly more
negative CB potential of the ruthenium-modified semiconductor favors the reduction
of Cr(VI).

2.1.3. SEM and EDS Analysis

The morphology of g-C3N4 consists of large sheet-like layers with folds and voids on
the surface (Figure 3a). After adding the ruthenium (presumably RuOx) nanoparticles, on
the samples of Ru/g-C3N4 composites appeared some nanoparticles agglomerated on the
surface of g-C3N4, leading to the formation of a heteromorphic structure; in addition, the
pore size was narrowed due to the covering of ruthenium on g-C3N4 (Figure 3b).
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In addition, the results of the EDS analysis (Figure 4) also confirmed the presence
of ruthenium on the surface of g-C3N4 material. The elemental composition of the com-
pound Ru/g-C3N4 synthesized from energy dispersive spectroscopy (EDS) shows that the
compound contains 21.56% C, 3.21% O, 74.73% N, and 0.5% Ru.
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2.1.4. FT-IR Analysis

Figure 5 is the FT-IR spectrum of samples g-C3N4 and Ru/g-C3N4. The characteristic
absorption fringes at 3100 cm−1 on the IR spectra of g-C3N4 and Ru-g-C3N4, respectively,
are assigned to the valence oscillations of N-H [29]. Absorption fringes at about 1637 cm−1

and 1242 cm−1 can be attributed to the fluctuations of the C-N, C=N valences of the aro-
matic heterocyclic [30]. The intense bands at 1637, 1572, 1409, and 1242 cm−1 were assigned
to typical stretching vibration modes of triazine-derived repeating units Finally, the strong
absorption fringes at 810 cm−1 in the g-C3N4 and Ru/g-C3N4 samples, respectively, char-
acterize the oscillation of the s-triazine ring absorption band. Furthermore, there is no
absorption pattern associated with sulfur bonds (such as –SH, –SN, –SC), demonstrating
that elemental sulfur is completely liberated during heat treatment [31]. A similar mode
vibration was also present in Ru/g-C3N4, clearly indicating all modes of vibration preserva-
tion after ruthenium incorporation and without disturbing the typical molecular structure
of g-C3N4.

2.1.5. XPS Analysis

XPS spectroscopy was employed to check the surface compositions as well as chemical
state of the elements present in g-C3N4 and Ru/g-C3N4.

Accordingly, C1s spectrum shows four characteristic peak components at 293.4, 288.2,
286.7, and 285.1 eV corresponding to plasmon excitation of the heptazine heterocycles, sp2-
bonded carbon (N–C=N), C–O, and C–C bonds [32,33], respectively, in both the prepared
g-C3N4 and Ru/g-C3N4 material (Figure 6a,b). It demonstrates that the structure of g-C3N4
remains after synthesis.

For the Ru/g-C3N4 catalyst, the C 1s/Ru 3d region has a complex structure indicating
a clear peak at 281.8 eV (Figure 6b), which can be assigned—in conjunction with the Ru
3p3/2 peak at 463.3 eV (Figure 6d)—to the Ru(II)–nitrogen bond [34–37].

The N1s spectra can be deconvoluted into four individual peaks at about 398.7, 400.0,
401.2, and 404.9 eV (Figure 6e). The peak at about 398.7 eV corresponds to the nitrogen
atoms bound with three C atoms, N-(C)3, and the peak at 400.0 eV is attributed to C–
N–C in the heptazine rings. The peak at 401.2 eV is assigned to the C–N–H bond. The
peak at 404.9 eV is assigned to plasmon excitation of the aromatic system of heptazine
heterocycles [32,33].
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The peaks at 530.5 eV and 531.7 eV in the O1s spectra are related to C–O and C=O
groups, respectively (Figure 6f). The binding energy at 533.3 eV is assigned to the adsorbed
H2O [9].

The surface atomic concentrations of the Ru/g-C3N4 catalyst from the XPS analysis
(Table S1 in the Supplementary Materials) show 1.4% ruthenium, which is almost three
times higher than that determined by EDS. This deviation originates from the different
penetrations of Ru during the impregnation, as well as from the measuring depths of the
two techniques (3–10 nm for XPS, 3 µm for EDS). Due to the impregnation method, these
concentrations are significantly lower than the theoretical 5%, in the case of which all Ru
ions in the solution phase would have been deposited/incorporated.

2.1.6. TEM Analysis

The morphologies of representative material (g-C3N4 and Ru/g-C3N4) are determined
by the TEM analysis technique. The distribution of ruthenium is shown in Figure 7. It is
clearly visible that the morphology of the g-C3N4 support (Figure 7a,b) prepared by the
calcination method was of a lamellar structure. Figure 7c,d illustrate that the active catalyst
component Ru exists in the form of nanoparticles (NPs) on the support and the particle
size of Ru NPs.
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Figure 6. XPS spectra: high resolution XPS spectra in the C1s region of g-C3N4 (a) and of Ru/g-C3N4

(b); full scan of Ru/g- (c) and Ru3p scan of Ru/g-C3N4 (d); high resolution XPS spectra in the N1s
region (e) and O1s region (f) of Ru/g-C3N4.
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2.3. Photocatalytic Activity of Ru/g-C3N4

Photocatalytic reduction experiments of Cr(VI) over g-C3N4 and Ru/g-C3N4 were
performed under visible light irradiation (λ ≥ 400 nm) (Figure 9). The 5% Ru/g-C3N4
composite shows the highest photocatalytic activity, and 96.81% Cr(VI) is reduced after
120 min, which is two times higher than that of pure g-C3N4 (50.1%). Table S2 (in the Sup-
plementary Materials) displays a comparison on Cr(VI) removal by different photocatalytic
methods. According to these data, Cr(VI) removal performance by photocatalysis based on
Ru/g-C3N4 is comparable to those of other photocatalytic materials [18,20,21,25,38–42].
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Figure 9. UV–Vis spectra were measured during the treatment of Cr(VI) solution (pH 2) at certain
irradiation times using (a) g-C3N4 (b) Ru/g-C3N4 and kinetic curves (c,d).

This proves that Ru doping into g-C3N4 gives positive results regarding the efficiency
of the photocatalytic Cr(VI) reduction. This result may be attributed to the relation of
the CB energies of g-C3N4 and Ru/g-C3N4 as indicated in Section 2.1.2. The very similar
ECB values may lead to an equilibrium of the electrons between the two CBs. Hence,
Ru/g-C3N4 has a good chance to entrap electrons from the CB of g-C3N4. (Notably, the
latter one can be easier excited due to its lower band gap.) As a consequence of electron
capturing, the chance for charge recombination is diminished. Additionally, the (even if
slightly) more negative CB potential of Ru/g-C3N4 may promote a more efficient Cr(VI)
reduction. Figure 10 shows a simplified scheme of the charge-transfer mechanism taking
place in the system upon excitation of the g-C3N4 catalyst doped with Ru. On the basis of
the XPS analysis, most of the ruthenium in +2 oxidation states are connected to N atoms
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through covalent bonds (see in Section 2.1.5.). This mechanism is also supported by the
result of scavenging experiments (Section 2.3.4.).
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Figure 10. Schematic illustration of the of the charge-transfer mechanism of the photocatalytic Cr(VI)
reduction based on g-C3N4 c doped with ruthenium.

2.3.1. Effect of Initial Solution pH

As pH strongly affects the photocatalytic reduction of Cr(VI), the effect of pH was
studied in the range 2–10 with Ru/g-C3N4. The optimal pH solution for effective Cr(VI)
removal by Ru/g-C3N4 the material was 2 (Figure 11 and Table 2).
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Table 2. The conversion of Cr(VI) to Cr(III) during the photocatalytic experiment.

Time (min) * Initial 0 * 30 60 90 120

chromium species concentration (ppm) **

Cr(VI) 20 9.0 5.6 4.5 1.9 1.0
Cr(III) - - 4.2 8.7 12.6 12.6

conversion (%) - - 43.2 65.8 87.2 92.5

* Time of zero was set as starting illumination (after 60 min equilibrium in dark). ** Cr(VI) concentration was
present in the solution. Cr(III) was calculated according to the ref. [43].
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In contrast, as the pH is increased, the Cr(VI) removal efficiency by Ru/g-C3N4 material
is decreased. This can partly be explained by the surface charge property of the material which
also depends on the pH. The pHPZC value of a material is the pH value at which the surface
charge is zero. When the pH is lower than the pHPZC value, the catalyst surface becomes
positively charged, resulting in better anion adsorption. Similarly, when the pH is higher than
the pHPZC value, the surface of the adsorbent carries a negative charge, which will better
adsorb the cations [33]. The pHPZC of Ru/g-C3N4 was determined to be 6.59 (Figure 12).
It is higher than the isoelectric point of the pristine g-C3N4 (pHZPC = 4–5 [44]), but the
Ru2+ species can promote the neutralization of the particle surface already at a lower proton
concentration. At low pH, Cr(VI) forms exist as HCrO4

− and Cr2O7
2−; when pH increases,

they convert to CrO4
2−. Furthermore, at low pH, the surface of the photocatalyst becomes

highly protonated, leading to better adsorption of HCrO4
− or Cr2O7

2−. At higher pH, the
surface of the photocatalyst becomes more negative, which tends to repel the negatively
charged ions and thus decreases the photocatalytic reduction rate of Cr(VI). The other, perhaps
even stronger, effect of pH on the reduction of Cr(VI) originates from the dramatic change of
the corresponding standard redox potentials: in acidic solution E◦ (Cr2O7

2−/Cr3+) = 1.38 V, in
basic solution E◦ (CrO4

2−/Cr(OH)3) = −0.11, or E◦ (CrO4
2−/Cr(OH)4

−) = −0.72. [45]. Hence,
at high concentrations of H+ ions, the oxidation potential of Cr(VI) dramatically increases
compared to the cases of weakly acidic or neutral systems. Accordingly, the most significant
increase in the efficiency of photocatalytic Cr(VI) reduction was observed at the pH change
from 4 to 2 (see Figure 11).
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2.3.2. Effect of Photocatalyst Concentration

The catalyst content is also one of the factors affecting the Cr(VI) treatment efficiency
in water. Experiments were performed by varying the photocatalytic material content with
a fixed Cr(VI) concentration (20 ppm) and an optimal pH was selected (pH 2). The amount
of material selected is 1 g/L, 2 g/L, and 3 g/L, respectively. The results are shown in
Figure 13.

When the material content was increased to 1 g/L, the treatment efficiency increased
significantly. However, when increasing to 3 g/L, the processing efficiency tends to decrease.
The influence of catalyst mass on the degradation process can be explained by the following
reasons: an increase in catalyst mass leads to an increase in the number of active sites
available on the catalyst surface, increasing the density of the catalyst particles in the
illuminated area; therefore, the photocatalytic ability of the material is better, leading to
a rapid increase in Cr(VI) treatment efficiency [33]. However, when the catalyst content
increases, it leads to an increase in the density of particles suspended on the surface of
the solution, hindering the penetration of light, and increasing the light scattering effect.
In addition, when increasing the amount of catalyst added, each catalyst molecule has
a reduced chance of contacting Cr6+ because of the rapid reaction [46]. As a result, the
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efficiency and reaction rate can be improved with increasing catalyst content, but the Cr6+

conversion capacity is reduced.
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2.3.3. Effect of Initial Cr(VI) Concentration

The photocatalytic efficiency of the Ru/g-C3N4 catalyst in the reduction of Cr(VI) was
investigated at various concentrations (15–100 ppm) of Cr(VI) at an initial solution pH of
2.0, and 0.1 g/L of catalyst with a reaction time of 120 min (Figure 14). The photocatalytic
efficiency of the reaction decreased when the initial concentration of Cr(VI) was increased,
and drastically reduced with 100 ppm of Cr(VI) (to ca. 10%). This behavior is related to a
large amount of Cr(VI) that is adsorbed on the surface of the photocatalyst and prevents
the light absorption during the reaction. Hence, under these conditions, the specific and
available surface area of the photocatalyst decreased, which resulted in lower photocatalytic
efficiency. In this case, even the reaction rate (ppm/min) decreased significantly. However,
at concentrations 30 and 50 ppm, the reaction rate increased compared to the case of 15 ppm
because the faster capturing of CB electrons by Cr(VI) overcompensated the decreased light
absorption. From a comparison based on the product of the initial concentration of Cr(VI)
and the ln(C/C0) value at 120 min, the highest reaction rate was observed at 50 ppm.

Catalysts 2023, 13, x  14 of 20 
 

 

0 30 60 90 120
0.0

0.2

0.4

0.6

0.8

1.0

 

 

C
/C

0

Time (min)

Cr(VI) conc. (ppm)

 15

 20

 30

 50

 100

 

0 30 60 90 120

0.0

0.5

1.0

1.5

2.0

 

 

   Cr(VI) conc.           R
2

  15 ppm        0.984

  20 ppm        0.991

  30 ppm        0.975

  50 ppm        0.969

100 ppm        0.845

ln
(C

0
/C

)

Time (min)
 

(a) (b) 

Figure 14. (a) Effect of initial Cr(VI) concentration on the photocatalytic efficiency of Ru/g-C3N4 and 

(b) first-order kinetic curves. 

2.3.4. Scavenging Effect of Coumarin 

The mechanism of the photocatalytic Cr(VI) reduction involving a g-C3N4-based cat-

alyst has earlier been investigated by application of various scavengers such as formic acid 

(for •OH radicals), p-benzoquinone (for superoxide radicals), silver nitrate (for electrons), 

and isopropanol (for holes) [20]. On the basis of the results of these free radical trapping 

experiments, it was suggested that the generation of electrons and (in the presence of dis-

solved oxygen) O2
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Figure 14. (a) Effect of initial Cr(VI) concentration on the photocatalytic efficiency of Ru/g-C3N4 and
(b) first-order kinetic curves.

2.3.4. Scavenging Effect of Coumarin

The mechanism of the photocatalytic Cr(VI) reduction involving a g-C3N4-based cata-
lyst has earlier been investigated by application of various scavengers such as formic acid
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(for •OH radicals), p-benzoquinone (for superoxide radicals), silver nitrate (for electrons),
and isopropanol (for holes) [20]. On the basis of the results of these free radical trapping
experiments, it was suggested that the generation of electrons and (in the presence of
dissolved oxygen) O2

•− plays a determining role in the primary steps of the photocatalytic
reduction of Cr(VI) based on g-C3N4. Since, according to our previous studies, coumarin
can efficiently react not only with •OH radicals [47] but with electrons, too [48,49], it was ap-
plied as a multifunctional scavenger competing for the primary agents photogenerated by
excitation of Ru/g-C3N4. In the presence of coumarin with a concentration of 2.5 × 10−5 M,
the Cr(VI) treatment efficiency of Ru/g-C3N4 decreased markedly (Figure 15). The perfor-
mance reduced from 96.81% to 75.43%. These results indicate that from the two opposite
processes (i.e., reaction with •OH radicals or even valence-bond holes, which would pro-
mote the reduction of Cr(VI), and capturing conduction-band electrons, which would
decrease the efficiency of Cr(III) formation), the latter proved to be predominant. This
observation is in accordance with the corresponding reaction rate constants of coumarin
6.4–6.9 × 109 mol−1 dm3 s−1 with •OH radical and 1.1–1.7 × 1010 mol−1 dm3 s−1 with
electron [50,51]). In addition, the shape of the curve regarding the Cr(VI) decay in the pres-
ence of coumarin (Figure 13a) indicates that competition for the conduction band electrons
significantly hinders the Cr(VI) reduction, especially in the first hour of irradiation.
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Figure 15. The presence (a) and absence (b) of coumarin (COU) during photocatalytic reduction of
aqueous Cr(VI) (pH 2) by Ru/g-C3N4.

2.3.5. Reusability of the Photocatalyst

The reusability of the Ru/g-C3N4 sample was evaluated regarding its stability over
three consecutive cycles (Figure 16). As Figure 16 indicates, the photocatalyst showed
almost the same photodegradation activity towards 20 mg L−1 K2Cr2O7 solution in all
three experiments. A slight decrease in the removal efficiency may be due to a loss of
catalyst during the collection after each run. Slight differences in the shape of the plot in the
case second and third runs compared to the first one may probably arise from a temporary
decrease of the active sites on the surface of the Ru/g-C3N4 catalyst during its collection
after each run. As a consequence, the adsorption–desorption property of the reused catalyst
may slightly deviate from that of the fresh one. In the second period of the irradiations,
however, a regeneration of the active sites took place; therefore, no significant decrease
could be observed in the photocatalytic yield after three recycling experiments, indicating
the stability of the catalyst.
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3. Materials and Methods
3.1. Materials

Thiourea (CH4N2S, 99%) and ruthenium (III) chloride (RuCl3.xH2O, 99%) were pur-
chased from Merck, Darmstadt, Germany. Sodium borohydride (NaBH4, 98%), ethanol
(C2H5OH, 99.7%), and potassium dichromate (K2Cr2O7, 99%) were obtained from GHTech,
Guangzhou, China.

3.2. Catalyst Preparation
3.2.1. Preparation of g-C3N4 Catalyst

The g-C3N4 catalyst was synthesized by a simple calcination method: 3 g of thiourea
in a porcelain crucible with a cover. For the calcination process, the sample was heated 25
to 550 ◦C at 2 ◦C min−1 for 4 h. At the end of the heating process, the crucible was cooled
down to room temperature, and the solid sample of g-C3N4 was ground to powder and
collected [52]. Samples are stored in vials and labeled with sample g-C3N4. The sample syn-
thesis process and the schematic for plausible intermediates at different temperature ranges
have been shown in Figure 17. Notably, the g-C3N4 can be synthesized by hydrothermal
condensation from melamine or other triazine precursors, too. However, it was reported
that the g-C3N4 synthesized from thiourea, a sulfur-containing precursor, could take ad-
vantage of a sulfur-mediated process, which improved the degree of polycondensation and
polymerization of g-C3N4, thus enhancing the energy conversion efficiency [53].

3.2.2. Preparation of Ru/g-C3N4 Catalyst

The Ru/g-C3N4 catalyst was synthesized by a simple method of ultrasonic impreg-
nation. Initially, 0.95g g-C3N4 was evenly dispersed in 34 mL H2O in a beaker, then
30 mL RuCl3 aqueous solution with a concentration of 0.01 g mL−1 was added to the
beaker. Subsequently, after ultrasound treatment for 60 min, 5 mL deionized water
containing 300 mg NaBH4 was added to the solution and kept the solution in ultrasound
for another 120 min [52]. The solution was then filtered and washed several times with
distilled water and alcohol to remove impurities. The material was dried at 110 ◦C for
16 h, finally obtaining a black material with the symbol 5% Ru/g-C3N4.
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3.3. Sample Characterization

The prepared samples were characterized by X-ray diffraction (XRD, Malvern PANa-
lytical, Aeris, Almelo, The Netherlands), Fourier transform infrared spectroscopy (FT-IR,
Shimadzu, IRAffinity-1S, Kyoto, Japan), scanning electron microscopy (SEM, NanoSEM
450 FEI, Eindhoven, The Netherlands) equipped with a TEAM Apollo XL energy dispersive
spectroscopy (Britain EDAX Co., Ltd., Cambridge, UK), diffuse reflectance UV–Visible
spectroscopy (DR/UV–Vis, Carry 5000 UV–Vis-NIR, Santa Clara, CA, USA), and UV–Vis
spectrophotometry (Agilent 8453, Santa Clara, CA, USA).

The elemental composition and chemical state analysis of sample surfaces have been
carried out by XPS, on a Thermo Scientific ESCALAB Xi+ instrument (assembled in Brno,
Czech Republic). A monochromatized Al K-alpha source (1486.6 eV), with a 650 µm spot
size was used. The pressure of the analysis chamber was lower than 10−9 mbar before
conducting the experiment. On each sample, a wide range of spectra were collected (at
analyzer pass energy of 80 eV) for surveying the elemental composition. For quantitative
and chemical state analysis, high-resolution spectra (at 40 eV pass energy) were recorded
for the following photoelectron lines: C 1s, Ru 3d, N 1s, O 1s, Ru 3p, Ca 2p, and Na 1s
regions. The charging of the sample surface was compensated for by using the automatic
built-in charge compensation system. The energy of sp2-bonded C in N=C(–N)2, set at
288.2 eV was used as the internal reference for fine energy scale adjustment.

Samples for transmission electron microscopy (TEM) were prepared by depositing a
drop of diluted aqueous suspension of the original samples on copper TEM grids covered
by continuous carbon amorphous support film. TEM analyses were performed using
a Talos F200X G2 instrument (Thermo Fisher Scientific, Waltham, MA, USA), operated
at 200 kV accelerating voltage, equipped with a field emission gun and a four-detector
Super-X energy-dispersive X-ray spectrometer (Termo Fisher Scientific), and capable of
working in both conventional TEM and scanning transmission (STEM) modes. In our
study, TEM bright-field images, HRTEM images, and STEM high-angle annular dark-field
(HAADF) images were collected to visualize the crystal size, and the morphology of the
particles, and HRTEM images as well as electron diffraction patterns were used to study the
structural properties. STEM-EDS elemental maps were collected to measure and visualize
the chemical compositions.
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3.4. Photocatalytic Reduction Experiments

The photocatalytic activity of the as-prepared samples, g-C3N4 and Ru/g-C3N4, was
evaluated, which was assessed through the reductive efficiency of aqueous Cr(VI) to Cr(III)
under the illumination with a 500W Hg-lamp through a cut-off filter transmitting λ ≥ 400 nm.
The reaction was carried out at room temperature, in a glass double-shell reactor containing
50 mL of Cr(VI) solution (20.0 mg/L) and 0.1 g of photocatalyst. Prior to the light irradiation,
the mixture was dispersed by sonication for 3 min and kept for stirring at 250 rpm for 60 min
in the dark to attain the adsorption–desorption equilibrium. At regular intervals, 2 mL of the
suspension was aspirated during irradiation and filtered with a syringe filter (0.45 µm nylon
membrane) for immediate photocatalyst separation. The diphenylcarbazide was used as a
reagent to analyze Cr(VI) concentration by UV–Vis spectrophotometry, observed at 540 nm by
a spectrophotometer (Agilent 8453, Santa Clara, CA, USA) [54].

4. Conclusions

Ruthenium doping of g-C3N4 prepared from thiourea proved to be a successful
method for a significant enhancement of the efficiency of photocatalytic reduction of Cr(VI)
based on this catalyst. According to the XPS analysis, most of the ruthenium incorporated
by impregnation was mostly in oxidation state +2 and bound to the N atoms on or close to
the surface of the catalyst particles. This modification can diminish the recombination of the
charge carriers formed upon excitation of the photoactive semiconductor and, thus, increase
the efficacy of the Cr(VI) reduction with CB electrons. pH 2 was found to be optimal for the
photocatalytic reaction because of the advantageous surface charge and E(Cr(VI)/Cr(III))
redox potential. The performance of the Ru/g-C3N4 catalyst was stable after several cycles
of reuse, and its efficiency was comparable with those of other photocatalysts developed
for Cr(VI) reduction. Hence, Ru-doped g-C3N4 may be a promising photocatalyst for this
purpose, and maybe for other reductive processes, too.
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