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Abstract: Photocatalytic overall water splitting in solar–chemical energy conversion can effectively
mitigate environmental pollution and resource depletion. Stable ternary metal indium zinc sulfide
(ZnIn2S4) is considered one of the ideal materials for photocatalytic overall water splitting due to its
unique electronic and optical properties, as well as suitable conduction and valence band positions
for suitable photocatalytic overall water splitting, and it has attracted widespread researcher interest.
Herein, we first briefly describe the mechanism of photocatalytic overall water splitting, and then
introduce the properties of ZnIn2S4 including crystal structure, energy band structure, as well as the
main synthetic methods and morphology. Subsequently, we systematically summarize the research
progress of ZnIn2S4-based photocatalysts to achieve overall water splitting through modification
methods such as defect engineering, heterostructure construction, and co-catalyst loading. Finally,
we provide insights into the prospects and challenges for the overall water splitting of ZnIn2S4-based
photocatalysts.

Keywords: photocatalytic overall water splitting; ZnIn2S4; doping; vacancy; heterojunction;
co-catalyst

1. Introduction

The world is currently suffering from environmental pollution and resource deple-
tion, with energy issues looming large. According to relevant studies, the annual global
consumption of energy is equivalent to the solar energy reaching the Earth’s surface every
hour; therefore, solar energy as an abundant, non-polluting natural resource has replaced
the traditional fuel fossil as a research hotspot [1]. However, solar energy has limitations
such as intermittency and low density, so an effective storage method is needed to make
efficient use of solar energy [2]. Since 1972, when it was reported that TiO2 semiconductors
could produce hydrogen and oxygen when irradiated by ultraviolet light, photocatalysis,
which uses solar energy to convert it into storable chemical energy, has attracted extensive
research [3].

Hydrogen, as a clean, high-energy-density solar fuel, is the ideal energy carrier. Since
most photocatalytic hydrogen production studies require the use of sacrificial agents to
achieve this, photocatalytic overall water splitting is considered a low-cost, ideal method
for converting solar energy into hydrogen energy [4–6]. The photocatalytic overall water
splitting process is based on three fundamental photocatalytic processes: photocatalyst
absorption of photons to generate electron–hole pairs, photogenerated charge transfer and
separation, and surface redox reactions. A variety of semiconductor catalysts such as metal
oxides, metal sulfides, and nitrides are currently used in the field of photocatalytic overall
water splitting [7–12]. Among them, metal sulfides have the advantages of good charge
transfer ability, suitable energy band structure for overall water splitting, and excellent

Catalysts 2023, 13, 967. https://doi.org/10.3390/catal13060967 https://www.mdpi.com/journal/catalysts

https://doi.org/10.3390/catal13060967
https://doi.org/10.3390/catal13060967
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/catalysts
https://www.mdpi.com
https://orcid.org/0000-0002-4762-5599
https://doi.org/10.3390/catal13060967
https://www.mdpi.com/journal/catalysts
https://www.mdpi.com/article/10.3390/catal13060967?type=check_update&version=2


Catalysts 2023, 13, 967 2 of 26

light collection ability to become one of the potential catalysts in photocatalytic overall
water splitting [13].

Metal sulfides are mainly classified into binary metal sulfides such as CdS, MoS2, and
ZnS; ternary metal sulfides such as ZnIn2S4 and CuInS4; and polymetallic sulfides such as
AgZnInS [14]. Most of these binary sulfides have some disadvantages that are more difficult
to improve, such as ZnS-based photocatalysts having a poor photo-response, responding
only to ultraviolet (UV) light, and CdS-based catalysts having severe photo-corrosion and
poor stability, whereas ternary metal sulfides tend to be more stable [15–18]. Zinc indium
sulfide (ZnIn2S4), a ternary metal sulfide belonging to the AB2X4 family, has unique elec-
tronic and optical properties. Compared with conventional photocatalysts, ZnIn2S4 has a
narrower band gap, adjustable between about 2.06 and 2.85 eV, and has thermodynamically
suitable conduction and valence band positions for photocatalytic overall water splitting
as well as a strong visible-light response range [19,20]. In addition, ZnIn2S4 has many
advantages such as strong photostability, relatively environmentally friendly chemical
composition, ease of preparation, and wide distribution of raw materials [21]. Therefore,
ZnIn2S4 is a more desirable material for photocatalytic overall water splitting.

Although ZnIn2S4 has many advantages, in practical applications, ZnIn2S4-based
photocatalysts suffer from difficulties in achieving one-component photocatalytic overall
water splitting or low photocatalytic overall water splitting efficiency, mainly due to the
slow photo-generated charge separation and migration efficiency and weak solar energy
utilization [22–24]. Therefore, appropriate modification strategies such as elemental doping,
vacancy engineering, the construction of heterojunctions, and the loading of co-catalysts
are required to improve the performance of ZnIn2S4-based photocatalyst materials.

Researchers have actively explored how to improve the performance of ZnIn2S4-based
photocatalysts and have reported on a review of ZnIn2S4 photocatalysts from different
perspectives. For example, Liu et al. reviewed the research progress of ZnIn2S4-based pho-
tocatalysts constructed with heterojunctions for photocatalytic hydrogen production [25].
Yadav et al. reviewed various modification strategies to improve the performance of
ZnIn2S4-based photocatalysts and summarized their applications in water pollution treat-
ment, CO2 reduction, etc. [26]. However, previous reports are mainly based on applications
such as hydrogen production and pollutant treatment, and there is no systematic summary
of the research progress on ZnIn2S4-based photocatalysts for achieving photocatalytic
overall water splitting.

Hence, this paper systematically reviews the research progress of ZnIn2S4-based
photocatalysts in photocatalytic overall water splitting. First, we briefly describe the
mechanism of photocatalytic overall water splitting. Then, we outline the properties of
ZnIn2S4, including its crystal structure, energy band structure, main synthesis methods,
and morphology. The modification strategies of ZnIn2S4-based photocatalysts are reviewed,
mainly including surface engineering such as doping and vacancies, the construction of
heterojunctions, and the loading of co-catalysts (Scheme 1). Finally, we provide an outlook
on the prospects and challenges of ZnIn2S4-based photocatalysts for photocatalytic overall
water splitting. There are almost no reviews on ZnIn2S4-based photocatalytic overall water
splitting, and the study in this paper provides the latest research progress on ZnIn2S4-
based water splitting catalysts, which is important for the design and synthesis of efficient
ZnIn2S4-based photocatalytic overall water splitting catalysts.
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Scheme 1. Modification strategies for ZnIn2S4-based photocatalysts in photocatalytic overall water
splitting are briefly described.

2. Mechanisms of Photocatalytic Overall Water Splitting

Photocatalytic overall water splitting consists of two half-reactions, the hydrogen
evolution reaction (HER) and the oxygen evolution reaction (OER). Theoretically, in order
to achieve overall water splitting, the semiconductor band gap should be no less than
1.23 eV under standard conditions, the potential at the bottom of the conduction band
should be less than 0 eV (H2/H+ = 0 eV vs. NHE, pH = 0), and that at the top of the valence
band should be greater than 1.23 eV (H2O/O2 = 1.23 eV vs. NHE, pH = 0) [27]. The redox
potential of water is all located within the band gap of the photocatalyst and photocatalytic
overall water splitting is thermodynamically feasible. However, photocatalytic overall
water splitting is an uphill reaction requiring additional energy to promote water splitting,
which is a thermodynamically unfavorable process (G > 0); therefore, hydrogen and
oxygen are prone to the reverse reaction and H2O reformation, which severely inhibits the
photocatalytic water splitting activity [28].

Semiconductor-based photocatalysts for photocatalytic overall water splitting are
based on three basic processes of photocatalysis: under solar irradiation with an energy
greater than the band gap of the photocatalyst, photogenerated electrons are excited to leap
to the conduction band and photogenerated holes remain in the valence band; photogen-
erated charges migrate separately to the semiconductor reaction site; and un-recombined
photogenerated electrons and holes undergo redox reactions of water at the catalyst sur-
face [29]. From the kinetic point of view, the recombination of photogenerated carriers
is much faster than their redox reactions at the surface. The Coulomb force constraints
between photogenerated charges and high interfacial potential barriers during charge
transfer lead to rapid photogenerated carrier recombination and low utilization efficiency,
which severely limit photocatalytic activity [30].

In addition, the range of solar energy utilization affects the photocatalytic activity.
According to relevant research reports, the UV content of natural sunlight is less than
3%, the visible content is less than 40%, and the near-infrared occupies about 50% of the
sunlight, while photocatalytic materials capture light basically in the UV and visible region,
with a low efficiency of solar energy utilization [31,32]. The overall photocatalytic water
splitting activity is limited by the low light collection capacity of the catalyst, the rate of
photogenerated charge separation and migration, and the surface oxidation reaction [33].
Therefore, researchers have adopted corresponding modification strategies to prepare
photocatalysts with high activity and high solar energy utilization efficiency. The stable
ternary metal sulfide ZnIn2S4 is one of the ideal materials for photocatalytic overall water
splitting due to its advantages. As shown in Scheme 2, the ZnIn2S4-based photocatalysts
have thermodynamically suitable conduction and valence band positions for photocatalytic
water splitting. However, single-component photocatalytic water splitting is difficult to
achieve due to the overall low charge utilization and solar utilization as well as photo-
corrosion phenomena. Therefore, modification strategies such as the doping of heteroatoms,
formation of defects, construction of heterojunctions, and loading of co-catalysis were
adopted to enhance the ZnIn2S4-based photocatalytic performance.
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Scheme 2. Schematic diagram of ZnIn2S4-based photocatalyst photocatalytic overall water splitting.

3. Introduction of ZnIn2S4

3.1. Crystal and Energy Band Structures

The ternary metal sulfide ZnIn2S4 has three crystal phase structures: cubic, hexagonal,
and rhombic. As shown in Figure 1a, the cubic ZnIn2S4 has an ABC stack in which the Zn
atom is tetrahedrally coordinated to the S atom and the In atom is octahedrally coordinated
to the S atom [34]. As shown in Figure 1b, the hexagonal ZnIn2S4 has a layered structure
in which the atoms are repeatedly stacked in the order S-Zn-S-In-S-In-S. In the hexagonal
crystal phase, the Zn atoms and half of the In atoms form a tetrahedral coordination with
the S atoms, and the remaining In atoms form an octahedral coordination with the S
atoms [35]. As shown in Figure 1c, the crystal structure of rhombic ZnIn2S4 is similar to
that of hexagonal ZnIn2S4, consisting of a sandwich layer with one octahedron and two
tetrahedra. Rhombic ZnIn2S4 differs from hexagonal ZnIn2S4 in that the Zn atoms and half
of the In atoms are mixed in the tetrahedral sites [36]. Different crystalline phases have
different properties, the cubic phase has thermoelectric properties, the hexagonal phase has
photoconductivity, and the rhombic phase has good charge transfer ability. In addition, the
researchers found that the photocatalytic activity of ZnIn2S4 can be effectively enhanced
by changing the crystalline phase. For example, in 2011, Shen et al. synthesized ZnIn2S4
with different crystalline phase structures by high-temperature thermal sulfide treatment of
metal oxide precursors [37]. They performed thermal sulfidation reactions on Zn-In mixed
oxide precursors under an H2S atmosphere and synthesized cubic ZnIn2S4 and gradually
transformed it into rhombohedra when the thermal sulfidation temperature was increased
from 400 to 800 ◦C. The rhombohedral ZnIn2S4 has a good charge transfer ability and light
absorption, enhancing the photocatalytic hydrogen production activity under sacrificial
agents. In addition, ZnIn2S4 can be used to transform the crystalline phase by using
different metal precursors and changing the reaction temperature to prepare more active
crystalline phases and structures for photocatalytic applications. Density functional theory
(DFT) has been widely used in semiconductor materials to study the electronic structure
of materials. DFT provides theoretical insight into the electronic energy band structure of
cubic, hexagonal, and rhombic ZnIn2S4, and all three crystalline phases are direct band gap
semiconductors. Although the respective band gaps of the cubic, hexagonal, and rhombic
crystalline phases are known from theoretical calculations, the actual band gaps deviate
from the calculated results due to the limitations of the local density approximation (LDA)
functional [38].
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3.2. Synthetic Methods and Morphology of ZnIn2S4
3.2.1. Morphology of ZnIn2S4

The conformation and structure of ZnIn2S4, a stable ternary metal sulfide semicon-
ductor, significantly affect the photocatalytic activity. Among them, ZnIn2S4 with dif-
ferent morphological structures such as zero-dimensional (0D), one-dimensional (1D),
two-dimensional (2D), and three-dimensional (3D) plays an important role in the solar–
chemical energy conversion process.

Zero-dimensional ZnIn2S4 is mainly available in quantum dots (QD). Quantum dots,
as a hot research material in the energy environment, have the advantages of easy syn-
thesis, abundant surface sites, and controllable size, and due to the quantum confinement
effect, their light collection range can be adjusted to the near-infrared region, which sig-
nificantly improves the solar light utilization effect [39]. Peng et al. prepared size-tunable
ZnIn2S4 quantum dots using oleylamine as the ligand and uncoordinated octadecene as
the solvent [40]. Due to the different effects of reaction temperature in controlling the
nucleation and growth process of nanocrystals thermodynamically and kinetically, ZnIn2S4
nanocrystals with sizes ranging from 2.1 to 10.1 nm were synthesized by varying the re-
action temperature between 140 ◦C and 210 ◦C. Experiments have shown that ZnIn2S4
nanocrystals with small size and annealed to remove the capping agent are highly active
in the degradation of methylene orange. Currently, 1D ZnIn2S4 is mainly available as
nanowires, nanotubes, and nanoribbons, but most 1D ZnIn2S4 synthesis requires the use
of templates, so most of the synthesized morphologies are 2D and 3D ZnIn2S4 [41,42].
The majority of ZnIn2S4 syntheses are hexagonal due to the advantages of good stability,
simple preparation, and high activity of the hexagonal crystalline phase ZnIn2S4. It is easy
for the hexagonal ZnIn2S4 layered structure to form a 2D nanosheet morphology; espe-
cially, the ultra-thin 2D nanosheets have the advantages of short photogenerated carrier
migration distance, large specific surface area, and abundant surface-active sites, which
significantly improve the photocatalytic activity of ZnIn2S4-based materials [43]. In 2018,
Zhang et al. prepared ultrathin ZnIn2S4 nanosheets (Vs-M-ZnIn2S4) rich in S-vacancies
by exfoliating large blocks of ZnIn2S4 synthesized using lithium intercalation [44]. Then,
MoS2 quantum dots (MoS2QDs) were grown in the S-vacancy region of Vs-M-ZnIn2S4
induced by S-vacancies in one of the Zn cuts to synthesize atomic-level heterojunction
MoS2QDs@Vs-M-ZnIn2S4. Unlike ZnIn2S4, the S-vacancies in MoS2QDs@Vs-M-ZnIn2S4 act
as electron traps, enriching electrons in the Zn plane and transferring them to MoS2QDs via
Zn-S bonds, preventing the rapid recombination of photogenerated charges due to vertical
electron transport and improving the hydrogen production activity of the photocatalyst.

However, due to the high surface energy of the individual nanosheets, ZnIn2S4 tends to
aggregate to form 3D microspheres during growth, and both the specific configuration of its
synthesis and the increased specific surface area and active sites enhance the photocatalytic
activity of the catalyst. Shen et al. synthesized persimmon-layered ZnIn2S4 photocatalysts
by using an oleylamine (OA)-assisted solvent method, adding tetrahydrofuran (THF) solu-
tion to form a hexagonal structure and OA selectively adsorbed on the ZnIn2S4 hexagon
to form nanoplates, which then self-assembled to form persimmon [45]. The material has
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excellent photocatalytic hydrogen production activity, with the best catalyst achieving
220.45 mmol h−1 after 3% Pt loading. Some of the ZnIn2S4 photocatalysts synthesized in
current research, such as marigold and peony-flower-like, as well as rose and marigold-like,
are 3D microspheres [46,47]. Furthermore, hollow structured materials with their rich
surface-active sites, short charge migration paths, and good light collection capabilities
have attracted the interest of a wide range of researchers [48]. In 2014, Warule et al. syn-
thesized hollow marigold-like ZnIn2S4 materials for photocatalytic hydrogen production
by a surfactant-assisted hydrothermal method [49]. The hollow marigold-like nanoparti-
cles have a higher specific surface area and more active sites, exhibiting better hydrogen
production activity. As most photocatalytic reactions occur on the surface of the material,
the morphology and configuration of the material have an important influence on the
photocatalytic activity. The synthesis of materials with high specific surfaces, abundant
active sites, and unique configurations is very important for improving the performance of
ZnIn2S4. We provide a brief summary of the various morphologies of ZnIn2S4 in Table 1.

Table 1. Summary of different morphologies and synthesis methods for hexagonal phase ZnIn2S4

photocatalysts.

Type Morphology Photocatalyst Synthetic
Method Sulfur Source Solvent Light Source Application Ref

0D quantum dots ZnIn2S4 solvothermal sulfur powder octadecene 500 W Xe lamp degradation [40]

1D nanowires ZnIn2S4 wet-chemical thioacetamide
(TAA) H2O 500 W Xe lamp degradation [41]

1D nanotubes ZnIn2S4 wet-chemical TAA H2O 500 W Xe lamp degradation [41]

2D ultrathin nanosheet Vs-M-ZnIn2S4
lithium

intercalation TAA
N,N-

Dimethylformamide,
ethylene glycol

300 W Xe lamp hydrogen
generation [44]

3D persimmon-like
shape ZnIn2S4 solvothermal CS2

tetrahydrofuran
(THF) 300 W Xe lamp hydrogen

generation [45]

3D porous ZnIn2S4
submicrospheres ZnIn2S4

microwave-
solvothermal excess thiourea ethylene glycol 300 W

tungsten–halogen degradation [46]

3D peony-flower-like ZnIn2S4 solventhermal dioctyldithiocarbamic
acid sodium (OTC) CH3OH 300 W tungsten-halogen degradation [47]

3D rose-flower-like
microsphere ZnIn2S4 hydrothermal thiourea H2O, diethyl

amine (DEA) 300 W Xe lamp hydrogen
generation [49]

3D hollow marigold-like
flowers ZnIn2S4 hydrothermal thiourea

H2O, polyvinyl
pyrrolidone

(PVP)
300 W Xe lamp hydrogen

generation [49]

3D porous microspheres ZnIn2S4
microwave-sol

vothermal excessive TAA H2O 500 W
tungsten–halogen lamp degradation [50]

3D hollow Structure ZnIn2S4 hydrothermal glutathione (GSH) H2O 300 W Xe lamp hydrogen
generation [51]

3.2.2. Synthetic Methods of ZnIn2S4

Hydrothermal method. Unlike other synthesis methods that use templates and special
equipment, the hydrothermal synthesis of ZnIn2S4 is relatively gentle and simple. The
reaction temperature, the type of reaction precursor, the pH of the reaction system, the
use of surfactants, and the type of surfactant all influence the synthesis, morphology, and
crystallinity of the ZnIn2S4-based catalysts. In 2006, Guo et al. prepared ZnIn2S4 solid and
hollow microsphere structures hydrothermally under cetyltrimethylammonium bromide
(CTAB) and ethylene glycol (PEG) as surfactants, respectively [52]. Two different ZnIn2S4
crystalline phase materials were hydrothermally synthesized by the addition of different
metal precursors by Chen et al. in 2012 [53]. The cubic phase was synthesized when metal
nitrates were added as precursors, whereas a thermodynamically stable hexagonal phase
was prepared when metal chlorides containing electronegative low-chloride ions were
used as precursors. In addition, Warule et al. in 2014 synthesized hollow marigold-like
and rose-shaped ZnIn2S4 photocatalysts by a surfactant-assisted hydrothermal method
using polyvinylpyrrolidone (PVP) and diethylamine (DEA), respectively [49]. Studies have
shown that varying the concentration of PVP (100 ppm–300 ppm) results in the synthesis
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of different forms ranging from twisted to hollow marigold-like. In 2022, Yin et al. synthe-
sized ZnIn2S4 with different assembled microstructures for dehydrogenation treatment
by a one-step hydrothermal method and investigated the effect of different solvents on
the structure of ZnIn2S4 [54]. The experimental results showed that the solvents were
water, ethanol, and ethylene glycol in accordance with which smooth surface-petal-like,
relatively rough micro-disk-like and thin nanosheets were synthesized. In 2022, Zou et al.
hydrothermally prepared ZnIn2S4 materials with different crystalline phases by adjusting
the pH of the system using oxalic acid as a chelating agent [55]. The cubic phase of ZnIn2S4
was prepared without the addition of oxalic acid and hydrothermal preparation after oxalic
acid modification transformed the original cubic phase of ZnIn2S4 into a hexagonal phase.

Solvothermal method. Like hydrothermal methods, solvothermal synthesis is rela-
tively simple and is widely used in the synthesis of materials for the energy environment.
The nature of the solvent such as alkalinity, viscosity, and type of solvent play an important
role in the preparation of ZnIn2S4 materials in terms of their morphology. Guo et al. in 2006
found that reaction temperature has a significant effect on ZnIn2S4 morphology [52]. They
prepared the catalysts by varying the reaction temperature solvothermally using pyridine
as the solvent; when the reaction temperature was between 120 and 160 ◦C, ZnIn2S4 grew in
the (002) direction to form nanoribbons, and when the reaction temperature was 180 ◦C and
higher, the material formed nanotubular shapes. In addition to the reaction temperature,
the type of solvent has an equally important influence on the synthetic microstructure of
ZnIn2S4. In 2008, Shen et al. used water, methanol, and ethylene glycol as solvents, with
the first two synthesizing cherry-shaped microspheres and ethylene glycol as the solvent to
synthesize micro-clustered clusters [56]. The results show that the catalysts synthesized
with water as the solvent are more crystalline and stable and have the best hydrogen pro-
duction efficiency. Furthermore, Su et al. in 2016 used water, ethanol, methanol, as well as
ethylene glycol as solvent precursors for the synthesis of ZnIn2S4 by a solvothermal method
to investigate the effect of different types of solvents on the selective oxidation activity of
aromatic alcohols [57]. The experimental structures showed that the best photocatalytic
performance of ZnIn2S4 was prepared using ethanol as the solvent, and that the difference
in performance between the different solvents was mainly due to the degree of exposure of
the basic crystalline surface, resulting in different exposures of the special surface.

Other synthesis methods. In addition to hydrothermal and solvothermal methods,
microwave-assisted methods, thermal sulfur methods, chemical vapor deposition, and
spray pyrolysis are also applied to the synthesis of ZnIn2S4 in different forms and struc-
tures [58–60]. In 2012, Huang et al. synthesized ZnIn2S4 in micro-spherical form by a simple
spray pyrolysis method [61]. They first synthesized the solution by magnetic stirring, then
atomized the solution and fed it into a tubular reactor for reaction to produce spherical
particles. In addition, Pop et al. in 2022 prepared ZnIn2S4 photocatalysts by the microwave-
assisted oil bath production method to investigate the effect of ZnIn2S4 materials with
different zinc concentrations and reaction temperatures on methyl orange adsorption [62].
The experimental results show that disordered cubic ZnIn2S4 is synthesized at 160 ◦C and
hexagonal phase ZnIn2S4 structures are synthesized at 180 ◦C. Moreover, the morphol-
ogy changes from nanoparticles to nanoflower, hollow-microsphere structures as the zinc
concentration and reaction temperature increase. Although there are numerous methods
to synthesize ZnIn2S4, hydrothermal and solvothermal methods are widely used in the
synthesis of ZnIn2S4-based photocatalysts due to the advantages of the simple synthesis
process and low cost.

Since most catalytic reactions occur on the surface of catalysts, the structure and
morphology of materials have important effects on their properties. Therefore, we briefly
describe representative morphologies in ZnIn2S4 materials as well as hydrothermal and
solvothermal synthesis methods. It is hoped that this will provide some reference for the
preparation of ZnIn2S4 photocatalytic overall water splitting morphologies using simple
synthetic methods.
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4. Photocatalytic Overall Water Splitting Modification Based on ZnIn2S4 Catalyst
4.1. Defect Engineering

Defect engineering not only modulates the electronic structure, provides abundant
active sites, and improves the efficiency of charge separation and migration of materi-
als, but also changes the morphology and interfacial reactions of materials and plays an
important role in the catalytic reactions of materials [63]. Therefore, defect engineering
is often used in photocatalytic systems to modulate material properties, among which
metal sulfides have received a lot of attention because of their tunable electronic structure.
Doping and vacancies, which are point defects in defect engineering, have been applied
to modulate material properties in sulfide catalysts such as ZnIn2S4. Su et al. synthesized
Al3+-doped strontium calcium titanate photocatalysts (Al-STO) for photocatalytic overall
water splitting by polymerization complexation [64]. The doping of low-valence metal
cations effectively promotes the migration rate of photogenerated carriers, and the appro-
priate oxygen vacancies on the surface facilitate the adsorption of water molecules and
hydroxyl groups to promote the reduction reaction. The reduction in intrinsic Ti3+ defects
effectively promotes the separation and migration efficiency of photogenerated carriers
in concert with the oxygen vacancies on the surface to improve the photocatalytic activ-
ity of strontium-titanate-based photocatalysts. The best material—2% Al-STO—achieved
hydrogen yields of 1.256 mmol h−1 and oxygen yields of 0.692 mmol h−1 under a loaded
co-catalyst, with an apparent quantum efficiency (AQE) of up to 55.46% at 365 nm for the
composite. It follows that the introduction of defects in semiconductor photocatalysts is a
promising method of modification.

4.1.1. Doping Strategy

Doping strategies are modification methods that introduce impurity atoms, such
as metals and non-metals, into the structure of photocatalytic materials to form defects
to alter the material properties, mainly through both doping and ion exchange [65,66].
Material doping with heteroatoms has the advantages of narrowing the band gap of
the composite, enhancing light absorption, changing the morphological structure of the
material, and increasing the separation and migration rates of photogenerated carriers, and
is therefore considered to be an effective method for effectively increasing the activity of
sulfide photocatalysts [67]. Alkaline earth metals such as Ca and Ba, rare-earth metals such
as La and Y, transition metals such as Ag, Co, and Ni, as well as non-metals such as N and
O have been employed in ZnIn2S4, and good photocatalytic activity has been achieved [68].

Metal Doping

Pan et al. in 2021 reported Ag-ZnIn2S4 composite photocatalytic materials with dual
defects in Ag doping and nanopores prepared by cation exchange between 2D ZnIn2S4
monolayers and Ag, achieving ZnIn2S4 photocatalytic overall water splitting without co-
catalysts and sacrificial agents under visible light irradiation [69]. The experimental results
show that Ag doping can effectively narrow the band gap, improve the light collection
capacity of the catalyst, and promote photogenerated charge separation. The hydrogen
yield of the composites was 56.6 µmol g−1 h−1 and the oxygen yield was 29.1 µmol g−1 h−1.
The Ag-ZnIn2S4 composite has good photocatalytic activity, as shown in Figure 2a; the
Ag element doping redistributes the charge; the positively charged enriched Ag adsorbs
water molecules and promotes the oxygen production reaction; and the sulfur atoms
suspended on the nanopores promote the hydrogen production reaction. In addition,
the ultrathin 2D ZnIn2S4 monolayer narrows the migration distance and increases the
photogenerated charge separation and migration rate. They also prepared Cu-ZnIn2S4
with a similar structure to Ag-ZnIn2S4 by the same method. The experimental results show
that Cu doping has a stronger charge migration rate and higher hydrogen production
activity, but as shown in Figure 2b, Cu doping does not enable photocatalytic all-water
decomposition, which confirms that Ag doping is important for the Ag-ZnIn2S4 materials
to achieve photocatalytic all-water decomposition.
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In addition, in 2022, Sun et al. used a magnetic stirring one-step solvothermal method
to synthesize in situ interstitial zinc-doped ultrathin ZnIn2S4 nanosheets (dZni-ZnIn2S4)
and to study the photocatalytic performance of the materials for photocatalytic overall water
splitting without any auxiliary agent under visible-light irradiation [70]. The Zn doping
not only produces a static potential difference, but also forms a short range of disordered
structures with abundant active sites. As shown in Figure 2e, the Zn doping leads to
broadening and weakening of the ZnIn2S4 (006) peak and disruption of interlayer stacking,
and widens the material nanosheet spacing, forming a short-range disordered structure.
The differential charge density map (Figure 2c,d) reveals that, unlike the original ZnIn2S4
with uniform charge density distribution, dZni-ZnIn2S4 leads to charge redistribution
with positive charge enrichment at the Zn site, lowering the water oxidation potential
barrier and increasing the electron density at the sulfur site, which facilitates H+ adsorption
reduction and improves the photocatalytic overall water splitting activity. In addition, the
ultrathin nanosheets formed by the dZni-ZnIn2S4 material shorten the migration distance
and effectively promote photogenerated carrier separation, achieving a hydrogen yield of
42.8 µmol g−1 h−1 and an oxygen yield of 19.1 µmol g−1 h−1.

Subsequently, Sun et al. in 2022 also used a magnetic stirring one-step solvothermal
method to synthesize Al-ZnIn2S4 composites and investigate their hydrogen and oxygen
production properties under visible-light irradiation [71]. Al-ZnIn2S4 has a rich mesoporous
structure that maximizes the exposure of active sites and enhances photocatalytic activity.
The Al doping also produces an expanded layer spacing that induces a domain electrostatic
potential difference, effectively promoting photogenerated carrier separation. Al doping
redistributes the charge, enriching the Al sites with positive charge, increasing the electron
density around the S sites, promoting redox reactions in the material, reducing photo-
corrosion, and improving stability. Due to these characteristics, the material achieves
efficient photocatalytic overall water splitting without any auxiliary agent, with a hydrogen
yield of 77.2 µmol g−1 h−1 and an oxygen yield of 35.3 µmol g−1 h−1.

Non-Metal Doping

Jing et al. prepared ZnIn2S4-350 ◦C-4 h with oxygen doping and S-vacancies by
hydrothermal synthesis of hexagonal ZnIn2S4 by calcination at 350 ◦C under an air atmo-
sphere for 4 h [72]. The calcined ZnIn2S4 improves light absorption, and the surface-rich
S-vacancies extend the photogenerated charge lifetime to inhibit recombination but do not
increase the carrier density. The increase in electron paramagnetic resonance (EPR) signal
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after calcination indicates that calcination introduces S-vacancies, which increases and then
decreases with increasing calcination time, and that the surface oxygen doping gradually
fills in. After air calcination, the Fourier-transform infrared (FTIR) spectrum shows SO4

2−

bidentate characteristic peaks, further demonstrating the synergistic effect of the material
between the oxygen doping and the S-vacancies. The synergistic effect of S-vacancies
and oxygen doping on the material surface enhances photogenerated carrier lifetimes
and concentrations and improves the photocatalytic overall water splitting activity. The
materials are loaded with Pt/Cr co-catalyst and show remarkable photocatalytic activity
with a hydrogen yield of 270.2 µmol g−1 h−1 and an oxygen yield of 130.0 µmol g−1 h−1,
which are 13 times higher than those of the pristine ZnIn2S4.

In summary, compared with the undoped ZnIn2S4-based material, the material dop-
ing element can effectively reduce the band gap of the composite material, improve the
material’s light collection capacity, change the morphological structure of the material,
modulate the electronic structure of the material, and increase the photogenerated carrier
separation and migration rate. Although the role of doping elements in photocatalysis
remains in doubt due to their possible negative effects as photogenerated charge recombi-
nation centers, doping strategies do play an important role in modifying ZnIn2S4-based
photocatalytic materials.

4.1.2. Vacancy Introduction

Vacancies are material lattice defects caused by the lack of cations or anions, which
is mainly divided into cationic and anionic types [73]. He et al. prepared single-atom
sulfur vacancy CdS nanorods (Sv-CdS NRs) with a spin-polarized electric field by the
hydrothermal method combined with anaerobic heating to achieve photocatalytic overall
water splitting without any co-catalyst [74]. Single-atom sulfur vacancies are introduced
to induce spin-polarization properties in the CdS system, providing a strong facilitat-
ing electric field that enhances photogenerated carrier separation and migration rates.
Sv-CdS NRs significantly improves the photocatalytic activity of the material, and the
best material, Sv-CdS-2 NRs, was able to achieve a hydrogen evolution performance of
363.8 µmol g−1 h−1 and an oxygen evolution performance of 181.9 µmol g−1 h−1. In
2022, a rhombic ZnIn2S4-800 material rich in S-vacancies was reported by Jing et al. [75].
They designed and prepared a rhombic crystal phase and sulfur-vacancy-rich ZnIn2S4-800
material by calcining hexagonal ZnIn2S4 at high temperature under a nitrogen atmosphere,
unlike the previous harsh preparation conditions, which changed the crystal phase of
ZnIn2S4. As shown in Figure 3a, X-ray diffraction (XRD) patterns of ZnIn2S4 before and
after calcination show that high-temperature calcination under a nitrogen atmosphere
has modified the crystal phase and structural morphology of ZnIn2S4. Characteriza-
tion by electron paramagnetic resonance (Figure 3b), UV-diffuse reflectance spectroscopy
(Figure 3c), and the energy band structure (Figure 3d) confirms that the introduction of
sulfur vacancies into ZnIn2S4 by calcination has narrowed the band gap and improved the
light gathering capacity of the material. Appropriate S-vacancies as electron capture sites to
increase the photogenerated carrier density inhibit recombination and promote hydrogen
production reactions, and the calcined material has a smaller average mass of electrons
and holes, accelerating the rate of photogenerated charge migration. The material loaded
with Pt/Cr co-catalyst achieves hydrogen yields of 68.0 µmol g−1 h−1 and oxygen yields of
31.0 µmol g−1 h−1 in pure water under visible-light irradiation.
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In summary, the introduction of appropriate vacancies in ZnIn2S4-based photocatalytic
materials can narrow the band gap and improve visible-light absorption, increase the charge
density of photogenerated carriers and the rate of migration of photogenerated charge
separation, and regulate the electronic structure of the material, providing an abundance of
surface-active sites and effectively modulating the crystal and energy band structure of the
material, thus effectively improving the photocatalytic activity of the material.

4.2. Construction of Heterogeneous Junctions

The construction of heterojunctions from two or more semiconductors is a better
modification strategy due to the strong Coulombic forces on the photogenerated charges of
a single semiconductor, which are prone to recombination and result in poor photocatalytic
activity. The construction of heterojunctions not only improves the photoresponse range
of the material, provides a larger specific surface area, exposes more active sites, and
modulates the catalyst to form unique structures, but also increases the photogenerated
carrier separation and migration rates [76,77]. Depending on the energy band structure
of the semiconductor and the photogenerated carrier transfer path, heterojunctions can
be classified into six categories: type I heterojunction, type II heterojunction, Schottky
junction, p–n heterojunction, Z-scheme heterojunction, and S-scheme heterojunction. The
construction of a heterojunction by coupling ZnIn2S4 with another semiconductor is one
of the effective modification methods to overcome the disadvantages of ZnIn2S4-based
photocatalysts such as slow photogenerated charge separation and migration, and easy
recombination [78,79]. Therefore, it is important to design and prepare heterojunctions
with an appropriate energy band structure and well-matched geometry. In recent years,
the photocatalytic performance of heterojunction materials constructed from metal oxides,
carbon nitride, and ZnIn2S4 has been improved to varying degrees and applied in the field
of environmental energy [80–84]. Currently, the most widely used in photocatalytic overall
water splitting are Z-scheme heterojunctions and Schottky heterojunctions.
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4.2.1. Z-Scheme Heterojunction

Most semiconductor materials are unable to achieve one-step photo-excited overall
water splitting, due to drawbacks such as the lack of a suitable energy band structure and
severe photogenerated carrier complexation. In recent years, the use of two-step photoexci-
tation, coupling two or more semiconductors to construct a Z-scheme heterojunction, has
been widely used to improve the photocatalytic activity of ZnIn2S4-based photocatalysts
with good results [85,86]. There are two main types of Z-scheme heterojunctions: (1) Indi-
rect Z-scheme heterojunctions in which the two semiconductors are not in contact and the
charge is transferred through a charge transfer medium such as Au and graphene; (2) a
direct Z-scheme heterojunction in which two semiconductors come into contact, generating
an electric field at the inner boundary due to differences in the work function and Fermi en-
ergy levels, accelerating the separation of photogenerated carriers [87,88]. The construction
of Z-scheme heterojunctions facilitates the spatial separation of photogenerated charges,
inhibits recombination, and maintains the high redox capacity of the material, effectively
improving photocatalytic activity.

Indirect Z-Scheme Heterojunction

In 2017, Zhong et al. reported an indirect Z-scheme heterojunction material, ZnIn2S4/RGO/
BMO, in which ZnIn2S4 acts as a hydrogen-depleting photocatalyst, Bi2MoO6 (BMO) acts as
an oxygen-depleting photocatalyst, and reduced graphene oxide (RGO) acts as an electron
mediator (Figure 4a) [89]. They prepared BMO and ZnIn2S4 by solvent thermal and hy-
drothermal methods, respectively, and then loaded Pt and CoOx co-catalysts onto ZnIn2S4
and BMO, respectively, to achieve photocatalytic overall water splitting without sacrificial
agents. The construction of Z-scheme heterojunctions and the appropriate number of
electron-mediated RGO can effectively increase the photogenerated charge separation and
migration rates of the catalysts and improve the photocatalytic activity of the composites.
Experiments show that the optimum material is Pt/ZnIn2S4-RGO (3%)-CoOx/BMO, which
achieves a hydrogen yield of 31.4 µmol g−1 h−1 and an oxygen yield of 15.8 µmol g−1 h−1

under visible-light irradiation in pure water.
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Figure 4. (a) Z-scheme photocatalytic water splitting systems consisting of H2-evolving photo-
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prepared by a chemical-deposition process and ZnIn2S4-Au-TiO2 is synthesized by the solvothermal
process. (c) UV-Vis diffuse reflectance spectra of TiO2, Au-TiO2, ZnIn2S4-Au-TiO2, and ZnIn2S4 [90].
(d) Proposed mechanism for photocatalytic overall water splitting over PtS-ZnIn2S4/WO3-MnO2

nanocomposites under visible light [91].
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In 2018, Yang et al. reported a sea-urchin-shaped ZnIn2S4-based catalyst (ZnIn2S4-
Au-TiO2), achieving a hydrogen yield of 186.3 µmol g−1 h−1 and an oxygen yield of
66.3 µmol g−1 h−1 without co-catalysts and sacrificial agents [90]. They first synthesized
TiO2 microspheres, then synthesized Au-TiO2 by chemically depositing Au nanoparticles
on the TiO2 surface, and finally prepared the indirect Z-scheme heterojunction material
ZnIn2S4-Au-TiO2 by direct deposition of ZnIn2S4 on the Au-TiO2 surface via a solvothermal
method (Figure 4b). The Z-scheme heterojunction can effectively promote the electron–hole
pair separation efficiency, and the ultra-thin ZnIn2S4 nanosheets increase the specific surface
area of the material and provide more active sites. As shown in Figure 4c, the ultraviolet–
visible (UV-Vis) diffuse reflectance spectra show an increase in the visible absorption
capacity of the material due to the surface plasmon resonance of the gold nanoparticles
(Au NPs). The composite material promotes the separation of photogenerated carriers
and increases the light collection capacity of the material, thus effectively improving the
photocatalytic activity of the material.

In 2021, Geng et al. reported a Pt-ZnIn2S4/RGO/Co3O4-BiVO4 (110) photocatalyst [92].
They first prepared BiVO4 by the solvothermal method, RGO/Co3O4-BiVO4 (110) by
photo-deposition and reduction, and Pt-ZnIn2S4 by the hydrothermal method and photo-
deposition. Finally, they used a self-assembly method to prepare Pt-ZnIn2S4/RGO/Co3O4-
BiVO4 (110) Z-scheme photocatalysts for photocatalytic overall water splitting without
sacrificial agents. The decagonal BiVO4 can accumulate holes and electrons on the (110)
and (040) sides and top surfaces, respectively, allowing effective spatial separation of photo-
generated carriers, so the decagonal BiVO4 with the (110) surface can be used as an oxygen
production photocatalyst. ZnIn2S4 was used as a hydrogen production photocatalyst and
RGO as an electron mediator to construct Z-scheme heterojunctions with BiVO4 (110). The
Z-scheme heterojunction effectively increases the rate of photogenerated charge separation
and migration, and the appropriate amount of RGO electron mediators and Pt/Co3O4
co-catalyst loading promotes electron transfer. The material achieves a hydrogen yield of
24.5 µmol g−1 h−1 and an oxygen yield of 11.9 µmol g−1 h−1 under visible-light irradiation
in pure water.

Direct Z-Scheme Heterojunction

In 2019, Ding et al. synthesized PtS-ZnIn2S4/WO3-MnO2 direct Z-scheme hetero-
junctions, achieving a hydrogen yield of 38.8 µmol g−1 h−1 and an oxygen yield of
15.7 µmol g−1 h−1 [91]. They used a hydrothermal method to synthesize orthorhombic
WO3•H2O nanoplates, which were dehydrated by solvent heat treatment to transform the
orthorhombic phase WO3 to the hexagonal phase. The self-assembly of hexagonal ZnIn2S4
nanosheets on the surface of hexagonal WO3 nanorods to prepare ZnIn2S4/WO3, Pt, and
MnO2 were selectively deposited on ZnIn2S4 and WO3 to prepare materials for photocat-
alytic overall water splitting under pure water without sacrificial agents. Self-assembled
ZnIn2S4 on the surface of WO3 nanorods forms an ohmic contact at the interface and a
Z-scheme heterojunction between two semiconductor-matched energy band structures
(Figure 4d). The construction of Z-scheme heterojunctions effectively promotes the effective
spatial separation of photogenerated charges and maintains the high redox capacity of the
original semiconductor, resulting in materials with excellent photocatalytic activity.

In 2020, Zhao et al. prepared BiVO4@ZnIn2S4/Ti3C2 MXene quantum dots (BV@ZIS/TC
QDs) with layered core–shell structures by in situ growth combined with a two-step
solvothermal strategy [93]. They first synthesized BiVO4 microspheres by the hydrothermal
method, on which ZnIn2S4 nanosheets were grown in situ to form a hierarchical core–shell
structure (Figure 5a). A solid contact surface and matching energy band structure was
ensured between two semiconductors to construct the Z-scheme heterojunction, and then
it was loaded with Ti3C2 MXene QDs (TC QDs) as a co-catalyst to synthesize composite
material for photocatalytic overall water splitting. Material electron transfer pathways
are characterized, BiVO4@ZnIn2S4 (BV@ZIS) constructs space-charge-separated all-solid
z-structures, and co-catalyst TC QDs form Schottky barriers between the interfaces, ef-
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fectively promoting photogenerated carrier separation and migration rates (Figure 5b).
The unique layered core–shell structure of the material increases light utilization, shortens
the charge diffusion distance, increases more active sites, and effectively improves the
photocatalytic activity. The material achieves a hydrogen yield of 102.67 µmol g−1 h−1 and
an oxygen yield of 50.83 µmol g−1 h−1 under visible-light irradiation.
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In 2021, Wang et al. reported a Z-scheme heterojunction ZIS-WO/C-wood (Sv-ZnIn2S4-
Ov-WO3/C-wood) catalyst photothermal integrated system for photocatalytic overall water
splitting [94]. They first synthesized sulfur-deficient Pt/Sv-ZnIn2S4 (Pt/ZIS) by hydrother-
mal and reduction methods, followed by oxygen-deficient WO3 (WO) by solvothermal and
calcination methods, and CoOx/WO by loading CoOx. Finally, Pt/ZIS and CoOx/WO
were dispersed in water to form a solution and spin-coated onto C-wood, and vacuum-
assisted heat treatment was applied to construct a photocatalyst photothermal integration
system for photocatalytic overall water splitting. ZIS and WO construct Z-scheme het-
erojunctions, forming a built-in electric field that effectively improves the efficiency of
photogenerated charge separation and migration. The conductive material C-wood can
act as an electron transfer medium, facilitating electron transfer, and can also use the
photothermal effect to convert liquid water to water vapor, transforming the three-phase
into a solid/gas two-phase and lowering the carrier recombination and photocatalytic
reaction barrier. The photothermal-assisted Z-scheme heterojunction materials effectively
increase the photocatalytic activity, achieving a hydrogen yield of 169.2 µmol g−1 h−1 and
an oxygen yield of 82.5 µmol g−1 h−1.

Zuo et al. synthesized TiO2-ZnIn2S4 nanoflowers (TNZIS) by integrating ultrathin
TiO2 nanosheets into ZnIn2S4 growth solutions in 2021 to construct direct Z-scheme het-
erojunctions for photocatalytic overall water splitting under co-catalyst-free conditions
(Figure 6a) [95]. TiO2 nanosheets (TiO2 NSs) construct direct Z-scheme heterojunctions with
ZnIn2S4 to enhance the rate of photogenerated charge separation and inhibit recombination.
TiO2 has a larger work function and smaller Fermi energy level than ZnIn2S4 (Figure 6c),
causing electrons from ZnIn2S4 to tend to flow into TiO2 to balance the Fermi energy
level and bend the energy band, forming a (−)TiO2/(+)ZnIn2S4 built-in electric field at
the heterojunction interface (Figure 6b,d) and promoting direct Z-scheme heterojunction
formation. The introduction of TiO2 NSs can effectively inhibit the aggregation of ZnIn2S4
materials and increase the specific surface area and active sites of the materials, thus ef-
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fectively improving the photocatalytic activity. The best material, TNZIS-50, produces
214.9 µmol g−1 h−1 of hydrogen and 81.7 µmol g−1 h−1 of oxygen.
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Figure 6. (a) Schematic illustration for the synthetic process of TNZIS, (b) Schematic illustration for
the reaction mechanism of photocatalytic water splitting over direct Z-scheme TNZIS heterojunction,
(c) Calculated average potential profile along the Z axis of TiO2 and ZnIn2S4. (d) Difference in
charge density isosurface at the interface between TiO2 and ZnIn2S4. Ti: blue, O: red, Zn: silver, In:
purple, and S: yellow sticks. Blue and yellow areas indicate the loss and accumulation of electrons,
respectively. * Total net charge is derived by the sum of Bader atomic charges on the TiO2 layer. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article) [95].

In 2022, Zhang et al. designed and prepared a direct Z-scheme heterojunction
BiFeO3/ZnIn2S4 with ferroelectric polarization and internal electric field synergy by a
two-step solvothermal method to achieve photocatalytic overall water splitting without a
co-catalyst [96]. They prepared BiFeO3 by the solvothermal method and then grew ultrathin
ZnIn2S4 nanosheets on BiFeO3 polyhedral particles to prepare BiFeO3/ZnIn2S4. Chalco-
genide ABO3-type ferroelectric semiconductors BiFeO3 and ZnIn2S4 construct Z-scheme
heterojunctions. Due to the different Fermi energy levels of BiFeO3 and ZnIn2S4 forming
a built-in electric field, the ferroelectric polarization and internal electric field effectively
promote photogenerated carrier migration and separation efficiency. The increased specific
surface area and rich pore distribution of the material provide more catalytic active sites,
thus effectively increasing the photocatalyst activity and achieving a hydrogen yield of
87.3 µmol g−1 h−1 and an oxygen yield of 42.3 µmol g−1 h−1.

Yang et al. reported a direct Z-scheme heterojunction BiOBr/ZnIn2S4 (BOB/ZIS) with
atomic contact surfaces [97]. They constructed direct Z-scheme heterojunctions with atomic
contact surfaces by in situ growth of ZnIn2S4 nanosheets on the surface of BiOBr nanosheets
using a solvothermal method to achieve photocatalytic overall water splitting without
sacrificial agents and co-catalysts (Figure 7a). As shown in Figure 7b, the disappearance of
the Bi-O peak in X-ray photoelectron spectroscopy (XPS) O 1s and the appearance of Bi-S
stretching vibrations in the composite at 1116 cm−1 in the FTIR spectrum of BiOBr prove
(Figure 7c) that the introduction of TAA into the material during the growth of ZnIn2S4
breaks the Bi-O bond and forms a Bi-S bond at the heterojunction interface, creating an
interface with atomic-level seamlessness. Direct Z-scheme heterojunctions with atomic
interfacial connections are effective in increasing the photogenerated charge transfer rate,
achieving hydrogen yields of 628 µmol g−1 h−1 and oxygen yields of 304 µmol g−1 h−1

under visible-light irradiation in pure water.
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(b) X-ray photoelectron spectroscopy (XPS) spectra O 1s; (c) FTIR spectra of composite samples [97].
(d) Schematic illustration of HPZ synthesis, (e) Z axis potential profile of HC-PDI and ZnIn2S4.
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In 2022, Zuo et al. synthesized an organic–inorganic hybrid material HC-PDI@ZnIn2S4
OIHs (HPZ) for photocatalytic overall water splitting without co-catalysts and sacri-
ficial agents, achieving hydrogen yields of 275.4 µmol g−1 h−1 and oxygen yields of
138.4 µmol g−1 h−1 under visible-light irradiation [98]. They first synthesized the high-
crystalline perylene-dicarboximide supramolecule (HC-PDI) with a highly ordered crystal
structure and efficient water oxidation activity by nucleophilic addition and self-assembly,
and then synthesized organic–inorganic hybrids by lateral epitaxial growth of ZnIn2S4
nanosheets on highly crystalline HC-PDI nanorods (Figure 7d). As ZnIn2S4 and HC-PDI
have different work functions and Fermi energy levels (Figure 7e), electrons in ZnIn2S4
will spontaneously transfer to HC-PDI, creating an electron-consuming layer at the inter-
nal interface to generate energy band bending and built-in electric fields, building direct
Z-scheme heterojunctions. As shown in Figure 7f, the differential charge density between
HC-PDI and ZnIn2S4 can reveal the charge transfer path. The strong covalent coupling
between ZnIn2S4 and HC-PDI provides a fast channel for the charge, and the Z-scheme
heterojunction effectively promotes the photogenerated charge separation rate. The proper
lateral epitaxial growth of ZnIn2S4 gives the composite a layered dendritic structure, which
facilitates the improvement of the specific surface area, pore size, pore volume, and visible
light collection capacity of the material.

In 2023, Zou et al. constructed Z-scheme heterojunctions with ZnIn2S4 based on
the excellent oxidation activity of InVO4 metal oxides [99]. They first synthesized InVO4
nanosheets by the hydrothermal method under acidic conditions, and then formed layered
InVO4@ZnIn2S4 (InVZ) heterojunctions by the in situ growth of ZnIn2S4 on them by the
magnetic stirring reflux oil bath method. The InVO4 work function is greater than that
of ZnIn2S4, causing electrons in ZnIn2S4 to spontaneously enter InVO4, resulting in the
bending of the interfacial energy band within the heterojunction and the formation of
(−)InVO4@(+)ZnIn2S4. The built-in electric field promotes the construction of Z-scheme
heterojunctions. The material semiconductor types and the corresponding conduction
and valence band positions were demonstrated by characterization of the Mott–Schottky
and Tauc energy band gaps of InVO4 and ZnIn2S4. The construction of InVO4@ZnIn2S4
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Z-scheme heterojunctions is further confirmed by their interleaved energy band structures.
The Z-heterojunction of InVZ effectively promotes the separation and migration of pho-
togenerated carriers and maintains the high redox activity of the catalyst. The composite
material has a larger surface area and pore volume, providing more active sites, thus effec-
tively improving the overall photocatalytic overall water splitting activity of the material.
The optimum material InVZ-90 achieves a hydrogen yield of 153.3 µmol g−1 h−1 and an
oxygen yield of 76.9 µmol g−1 h−1 under visible light without any co-catalyst.

4.2.2. Schottky Junctions

The Schottky junction is an interface between a metal and a semiconductor. As the
metal and semiconductor have different escape work and Fermi energy levels, the Fermi
energy level shifts when the metal and semiconductor come into contact until the Fermi
energy level equilibrates [100,101]. When the semiconductor is an n-type semiconductor
and the metal escape work is greater than the semiconductor Fermi energy level, a Schottky
barrier will form at the interface, limiting the flow of electrons from the semiconductor
to the metal, inhibiting photogenerated carrier compounding, and effectively improving
photocatalytic activity.

In 2021, Cai et al. synthesized a yolk–shell ZnIn2S4-based photocatalyst NiCo2S4/ZnIn2S4/
Co3O4 for photocatalytic overall water splitting without sacrificial agents [102]. They first
prepared nickel–cobalt-based metal–organic framework (MOF) materials as precursors
by the solvothermal method, synthesized yolk–shell NiCo2S4 (NCS) with semi-metallic
properties by sulfidation reaction and heat treatment, then grew ZnIn2S4 nanosheets in situ
on the surface of NCS by low-temperature solvothermal method, and finally decorated
Co3O4 nanoparticles to prepare photocatalysts (Figure 8a). The characteristic peak of
NiCo-glyceric acid disappeared and shifted to NiCo2S4 when vulcanized at different
vulcanization temperatures for 8 h. The precursors were vulcanized at 150, 180, and
210 ◦C for 8 h to form ball-in-ball hollow spheres, yolk–shell hollow spheres, and a single
hollow sphere, respectively, with the yolk–shell structure providing more active sites and
improving the photocatalytic activity of the material. As shown in Figure 8b,c, based on
the energy band diagrams of ZnIn2S4 and NCS as well as the energy band diagrams after
contact, it is shown that the semi-metallic NCS forms a Schottky-specific heterojunction with
ZnIn2S4 to facilitate charge transfer. The photocatalyst has a unique yolk–shell structure
that locates reduction and oxidation sites on the inner and outer surfaces of ZnIn2S4,
respectively, allowing for directional charge separation, inhibition of inverse reactions, and
providing more active sites.
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In 2022, Liu et al. designed and prepared a sandwich structure material Nb4C3Tx
MXene@ZnIn2S4-OH by in situ growth and peroxide plasma post-treatment [103]. They
first prepared uniformly dispersed accordion-like multilayer Nb4C3Tx MXenes by selective
chemical etching, then ultrathin ZnIn2S4 was epitaxially grown on their surface to syn-
thesize the sandwich structure Nb4C3Tx MXene@ ZnIn2S4 at the double heterojunction
interface (Figure 9a), followed by a peroxy plasma technique to generate many hydroxyl
functional groups to obtain photocatalysts for photocatalytic monolithic water splitting in
the absence of sacrificial agents. The work function of ZnIn2S4 and Nb4C3Tx MXene shows
that the transfer of electrons from ZnIn2S4 to Nb4C3Tx MXene at the interface causes the
ZnIn2S4 energy band to rise, holes remain in ZnIn2S4, and the Nb4C3Tx MXene@ZnIn2S4
photocatalyst forms a Schottky junction (Figure 9b,c). The photocatalyst promotes pho-
togenerated carrier transfer and has a larger surface area and pore size and pore volume
for rapid adsorption of water molecules. In addition, the OH functional group on the
surface of ZnIn2S4 collects photogenerated holes, and the unique eggshell-type structure of
the composite material allows the generated H2 and O2 to be distributed internally and
externally, achieving spatial separation of photogenerated carriers and suppressing the
inverse reaction. The photocatalyst achieves a hydrogen yield of 53.8 µmol g−1 h−1 and an
oxygen yield of 26.7 µmol g−1 h−1 under visible-light irradiation.
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4.3. Loaded Co-Catalyst

Photocatalytic overall water splitting is mainly based on three basic processes of pho-
tocatalysis. The low overall photogenerated charge separation and migration efficiency and
the severe compounding of photogenerated charges limit the catalytic photocatalytic activ-
ity due to the Coulombic force constraint and the high potential barrier of the transfer pro-
cess, as well as the unfavorable thermodynamic process of water generation of H2 and O2.
In this regard, the loading of co-catalysis on semiconductors is a preferable strategy. When
a semiconductor is loaded with a co-catalyst, photogenerated electrons and photogenerated
holes migrate to the co-catalyst for reduction–oxidation reactions, effectively facilitating
photogenerated charge separation and migration. In addition, loaded co-catalysts have the
advantage of reducing the activation energy, inhibiting photo-corrosion, and providing an
abundance of surface reaction sites [104,105]. Unlike modification strategies such as doping
and the construction of heterojunctions, catalysts loaded with co-catalysts can usually be
synthesized using photo-deposition.
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Suitable co-catalysts are available for both the hydrogen and oxygen production halves
of the photocatalytic overall water splitting. The main hydrogen-dissolving co-catalysts are
noble metals such as Pt and Au, transition metal monomers such as Co and Ni, transition
metal sulfides such as NiP and MoS2, and phosphides. The main oxygen-dissolving co-
catalysts are noble metal oxides such as RuO2 and IrO2, and transition metal oxides such
as CoOx [106]. In photocatalytic overall water splitting systems, we usually load hydrogen-
and oxygen-precipitating co-catalysts onto the catalyst separately to reduce the catalyst
surface potential barrier, improve the efficiency of photogenerated charge separation and
migration, and better achieve photocatalytic overall water splitting. For example, CdS
loaded with Pt and Ru complexes as hydrogen and oxygen production co-catalysts, Mg-
doped BaTaO2N loaded with Cr2O3/(Na)Rh and IrO2 as hydrogen and oxygen production
co-catalysts, and Ge3N4 loaded with spatially separated mixed cathode and anode co-
catalysts, and CoOx-Mo2N all enable photocatalytic monolithic water splitting [107,108].

The photocatalytic activity can be influenced by adjusting the amount of co-catalyst
loading, the type of co-catalyst, the shape of the co-catalyst, etc. In 2023, Jing et al. prepared
spatially separated double-coordinated co-catalyst ZnIn2S4 composites [109]. They first
prepared the hexagonal crystalline phase ZnIn2S4 by the hydrothermal method, and then
prepared ZnIn2S4-Pt-Cr and ZnIn2S4-Rh-Cr by photo-deposition with Pt-Cr and Rh-Cr
co-catalysts loaded on the surface of ZnIn2S4. The elements Pt and Rh are used as water
reduction sites and Cr as water oxidation sites to promote hydrogen and oxygen pro-
duction reactions, respectively, for overall water splitting. The energy-dispersive X-ray
spectroscopy (EDS)-scanned elemental signals of Rh, Cr, and Pt elements at different po-
sitions to probe the loading position of the co-catalysts showed that: Pt and Cr elements
had consistent signal changes and were hybrids; Rh and Cr elements had different signal
changes and achieved spatial separation. In addition, X-ray photoelectron spectroscopy
(XPS) demonstrated the formation of Rh-S bonds in the ZnIn2S4-Rh-Cr material, facilitating
the spatial separation of the co-catalyst. The materials loaded with double-assisted catalysts
can effectively improve the separation and migration efficiency of photogenerated carriers,
inhibit photo-corrosion of the materials, and improve the photocatalytic performance of the
materials. The photocatalytic overall water splitting performance of the loaded spatially
separated dual-assisted catalyst ZnIn2S4-Rh-Cr composite was twice that of the ZnIn2S4-Pt-
Cr material, achieving hydrogen yields of 5.9 µmol h−1 and oxygen yields of 2.9 µmol h−1

at AM 1.5 G. As shown in Table 2, in recent years, researchers have achieved overall water
splitting of ZnIn2S4-based photocatalysts through modification strategies such as doping,
vacancies, construction of heterojunctions, and loading of co-catalysts.

Table 2. Summary of reports on photocatalytic overall water splitting of ZnIn2S4-based catalysts.

Photocatalyst Cocatalyst Reaction Systems Light Source H2 (µmol g−1 h−1) O2 (µmol g−1 h−1) AQE Ref.

Ag-ZnIn2S4 / 12 mg (100 mL H2O) 300 W Xe lamp
(λ > 420 nm) 56.6 29.1

0.70% (405 nm)
0.57% (420 nm)
0.20% (450 nm)

[69]

dZni-ZnIn2S4 / 50 mg (120 mL H2O) 300 W Xe lamp
(λ > 420 nm) 42.8 19.1 1.51% (420 nm) [70]

Al-ZnIn2S4 / 50 mg (100 mL H2O) 300 W Xe lamp
(λ ≥ 420 nm) 77.2 35.3 1.61% (420 nm) [71]

Sv-ZnIn2S4-O
(ZnIn2S4-350 ◦C-4 h) Pt/Cr 50 mg (100 mL H2O) 300 W Xe lamp

(λ ≥ 420 nm) 270.2 130.0 0.21% (420 nm) [72]

Sv-ZnIn2S4
(ZnIn2S4-800) Pt/Cr 50 mg (100 mL H2O) 300 W Xe lamp

(λ ≥ 420 nm) 68.0 31.0
0.041% (420 nm)
0.016% (450 nm)
0.004% (500 nm)

[75]

ZnIn2S4/RGO/BMO Pt/CoOx 100 mg (100 mL H2O) 200 W Xe lamp
(λ > 420 nm) 31.4 15.8 / [89]

ZnIn2S4-Au-TiO2 / 50 mg (100 mL H2O) 300 W Xe lamp 186.3 66.3 / [90]
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Table 2. Cont.

Photocatalyst Cocatalyst Reaction Systems Light Source H2 (µmol g−1 h−1) O2 (µmol g−1 h−1) AQE Ref.

Pt-
ZnIn2S4/RGO/Co3O4-

BiVO4(110)
Pt/Co3O4 50 mg (100 mL H2O) 300 W Xe lamp

(λ > 420 nm) 24.5 11.9 / [92]

PtS-ZnIn2S4/WO3-
MnO2

Pt/MnO2 50 mg (100 mL H2O) 300 W Xe lamp
(λ > 420 nm) 38.8 15.7 / [91]

BiVO4@ZnIn2S4/Ti3C2
MXene QDs

Ti3C2
MXene QDs 60 mg (H2O) 300 W Xe lamp

(λ > 400 nm) 102.67 50.83

2.40% (410 nm)
2.90% (460 nm)
1.40% (510 nm)
0.20% (560 nm)

[93]

ZIS-WO/C-wood
(Sv-ZnIn2S4-Ov-
WO3/C-wood)

Pt/CoOx floated at the
water–air interface

300 W Xe lamp
(AM 1.5G) 169.2 82.5 / [94]

TiO2-ZnIn2S4 / 20 mg (50 mL H2O) 300 W Xe lamp 214.9 81.7 / [95]

BiFeO3/ZnIn2S4 / 12 mg (100 mL H2O) 300 W Xe lamp
(λ > 420 nm) 87.3 42.3 1.12% (420 nm) [96]

BiOBr/ZnIn2S4 Pt 100 mg (100 mL H2O) 300 W Xe lamp
(λ > 420 nm) 628 304 / [97]

HC-PDI@ZnIn2S4
OIHs / 5 mg (50 mL H2O) 300 W Xe lamp

(λ ≥ 400 nm) 275.4 138.4 16.14% (400 nm) [98]

InVO4@ZnIn2S4 / 5 mg (50 mL H2O) 300 W Xe lamp 153.3 76.9

24.28% (365 nm)
19.31% (380 nm)
15.29% (400 nm)
9.75% (420 nm)
6.93% (460 nm)

[99]

NiCo2S4/ZnIn2S4/Co3O4 NiCo2S4/Co3O4
10 mg (15 mL H2O) / 103.3 26.7 / [102]

Nb4C3Tx
MXene@ZnIn2S4-OH

Nb4C3Tx
MXene/OH 20 mg (100 mL H2O) 300 W Xe lamp

(λ > 420 nm) 53.8 26.7 / [103]

ZnIn2S4-Rh-Cr Rh-Cr 50 mg (100 mL H2O) 300 W Xe lamp
(AM 1.5G) 118 58

0.084% (420 nm)
0.028% (450 nm)
0.017% (500 nm)

[109]

5. Conclusions and Outlook

In a two-carbon context, the use of clean, renewable solar energy is an ideal solution
to current energy and environmental problems. Photocatalytic overall water splitting,
which produces clean, high-energy-density hydrogen without sacrificial agents, is the ideal,
low-cost method for solar–chemical energy conversion in a variety of solar applications.
Compared with oxides and nitrides, ZnIn2S4 as a ternary metal sulfide has the advantages
of tunable band gap, satisfying the energy band of photocatalytic overall water splitting,
strong photostability, and easy preparation, which makes it a more ideal material for pho-
tocatalytic overall water splitting. In this study, we systematically review recent advances
in ZnIn2S4-based photocatalysts for photocatalytic overall water splitting in solar–chemical
energy conversion. This study mainly introduces the basic principles of its photocatalytic
overall water splitting, the properties of the ZnIn2S4 photocatalyst, including its crystal
configuration and energy band structure, the main synthesis methods, and morphology.
It also reviews the research progress of photocatalytic overall water splitting of ZnIn2S4-
based photocatalytic materials, including modification strategies such as elemental doping,
vacancy defects, the construction of heterojunctions, and the loading of co-catalysts.

Although good progress has been made in the current study of ZnIn2S4-based photo-
catalysts for water splitting, there are still some limitations of ZnIn2S4-based photocatalysts
for water splitting that limit their wide application. The overall photogenerated charge
separation and utilization efficiency are low due to the Coulombic force constraint between
the photogenerated electrons and holes and the interfacial potential barriers between charge
transfers, which are much higher than the photogenerated electrons and holes that they
separate and migrate to the redox sites to participate in the reaction. Furthermore, although
ZnIn2S4 has a good light collection capacity, it is mainly responsive to visible light and does
not utilize the near-infrared light, which is nearly 50% of solar energy, and the inevitable
existence of ZnIn2S4-based photocatalysts as metal sulfides with their photo-corrosive
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fluxes affects their photocatalytic overall water splitting activity. Therefore, more efforts are
still needed to make ZnIn2S4-based photocatalysts better for use in photocatalytic overall
water splitting systems:

(1) Building active crystal surfaces. Very few studies have systematically addressed
the relationship between the active crystal plane of ZnIn2S4 photocatalysts and the over-
all water splitting activity of photocatalysis. Usually, photocatalytic reactions occur on
the surface of the material, so the specific surface area of the material and the exposed
crystalline surface all affect the catalyst activity. Particularly due to the anisotropy of
crystals, different crystal faces have different structures and atomic arrangements and
usually exhibit different properties. It is important to clarify the relationship between
different crystal types and their different crystal faces and photocatalytic activity, and to
explore which crystal exposures alter the conduction/valence band position of the material
and enhance electron reduction/hole oxidation, and which crystal exposures accumulate
photogenerated charges/holes. Improving the photogenerated charge separation and
migration efficiency and reducing photo-corrosion can be achieved by modulating the
crystalline surface of ZnIn2S4-based photocatalysts. Therefore, if the relationship between
the different crystalline facets of ZnIn2S4 and photocatalytic activity can be clarified, we
can better design photocatalytic materials with higher activity and significantly improve
their photocatalytic overall water splitting performance.

(2) Photothermal assistance for broad spectrum utilization. Most current applications
for photocatalytic monolithic water splitting ZnIn2S4-based materials respond to visible
light and largely fail to utilize near-infrared light, which accounts for approximately 50%
of sunlight; therefore, expanding the efficiency of light utilization is essential to achieve
high-efficiency photocatalytic overall water splitting. Due to the inherent nature of ZnIn2S4
materials, most current ZnIn2S4-based photocatalytic overall water splitting systems em-
ploy very limited modification strategies such as doping, vacancies, and the construction of
heterojunctions to extend the photo-response range. The combination of photothermal assis-
tance with ZnIn2S4-based photocatalysts is a very promising strategy for enhancing overall
water splitting due to the advantages of photothermal catalysis in terms of wider spectral
utilization, enhanced free carrier concentration, and promotion of photogenerated carrier
separation. Further efforts are still needed to explore the design of photothermal-assisted
ZnIn2S4-based photocatalysts to achieve broad-spectrum photocatalytic total hydrolysis
and the development of low-sink cost materials to replace expensive precious metals.

(3) Morphological adjustments. By adjusting the morphology of ZnIn2S4-based pho-
tocatalytic materials, we can increase the specific surface area, pore size, and volume,
and increase the active site to improve the light collection capacity, such as hollow struc-
tures for broadband absorption and ultra-thin nanosheets to shorten the photogenerated
charge migration efficiency. The current sandwich structure and yolk–shell structure in
ZnIn2S4-based photocatalytic overall water splitting applications have spatially separated
water redox sites, allowing for directional separation of photogenerated charges, improved
photocatalytic activity, as well as a layered core–shell structure to enhance incident light
scattering and reflection effects and improve light utilization efficiency. Although the
current modified morphologies are all very good at improving the overall photocatalytic
overall water splitting activity, there is still room for improvement. Further research is
needed to determine whether some of the complex morphological synthesis steps and
materials used can be simplified and cost-effective, whether the prepared materials are
stable, and whether morphological adjustments can be made to the ZnIn2S4 native catalyst
to achieve single-component photocatalytic overall water splitting.
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