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1. Synthesis of polymethylmethacrylate (PMMA) spheres 

An aqueous suspension of monodispersed PMMA microspheres (Ø = 450 ± 5 nm) was 

synthesized according to the Schroden standard technique [1]. The size of the PMMA spheres 

produced using this method is highly dependent on the composition of the synthesis mixture 

and the reaction temperature. Briefly, MilliQ water (400 mL) and methyl methacrylate (MMA, 

100 mL) were charged into a 4-necked round-bottomed flask (500 mL in volume), equipped 

with a mechanical stirrer(glass shaft with Teflon stirrer blade), water-cooled reflux condenser, 

nitrogen bubbler, and a glass quick-fit stopper. The mixture was then heated to 70 °C, 

whereupon 2,20-azobis (2-methylpropionamidine) dihydrochloride (0.375 g) was added as an 

azo-initiator and the polymerization of the MMA started. The reaction mixture was 

maintained at 70 °C for 2 h under vigorous mechanical stirring and then cooled to room 

temperature over 3–4 h under a nitrogen purge. The resulting colloidal suspensions of PMMA 

spheres was finally filtered through a glass wool plug to remove large agglomerates and 

stored in PET bottles for later use. 
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2. Supplementary Figures and Table 
 

 

Figure S1. (a, b) TEM and (c) HRTEM images of Pt-Cu/WO3 thin film. 
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Figure S2. The adsorption isotherms of MB in the presence of as-prepared samples under 

dark conditions. 
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Table S1. Comparison between this research and some commonly used WO3-based 

photocatalysts for the removal of organic pollutants. 

Photocatalyst Pollutants/Reaction conditions Degradation 
efficiency 

Rate 
constant 
(min−1) 

Ref. 

WO3 
Methylene blue (MB), C0 = 5 mg L−1,100 mL, 
120 min. Light source: 300 W Xe lamp, 420 

nm cut-off filter. 
60 % 0.007  This 

work 

Pt-Cu/WO3 MB, C0 = 5 mg L−1, 100 mL, 120 min. Light 
source: 300 W Xe lamp, 420 nm cut-off filter. 98.9 % 0.040  This 

work 

Pt-Co/WO3 MB, C0 = 5 mg L−1, 100 mL, 120 min. Light 
source: 300 W Xe lamp, 420 nm cut-off filter. 88 % 0.018  This 

work 

Pt-Ni/WO3 MB, C0 = 5 mg L−1, 100 mL, 120 min. Light 
source: 300 W Xe lamp, 420 nm cut-off filter. 90 % 0.019  This 

work 

FeWO4/WO3 MB, C0 = 10 mg L−1, 2 h. Light source: 300 
W Xe lamp, 420 nm cut-off filter. 90 % 0.0165 [2] 

WO3-rGO MB, C0 = 10 mg L−1, 15 mL, 180 min. Light 
source: 300 W Xe lamp, 420 nm cut-off filter. 78 % 0.008 [3] 

WO3-CuS MB, C0 = 5 mg L−1, 250 mL, 60 min. Light 
source: 300 W Xe lamp, UV cut-off filter. ~ 90 % 0.0288 [4] 

WO3/SiO2 
MB, C0 = 5 mg L−1, 120 min, pH 7.5. Light 

source: 65 W Xe lamp, λ > 420 nm, 125 
W/m2. 

91 % 0.013 [5] 

WO3/g-C3N4 MB, C0 = 5 mg L−1, 10 mL, 210 min. Light 
source: 65 W Xe lamp, 125 W/m2. 97.82 % 0.0419 [6] 

Ag-WO3 MB, C0 = 10 mg L−1, 50 mL, 50 min. Light 
source: 300 W Xe lamp. 88 % – [7] 

In2O3/WO3 MB, C0 = 5 mg L−1, 50 mL, 90 min. Light 
source: 500 W Xe lamp, 420 nm cut-off filter. 92.4 % 0.029 [8] 

TiO2-WO3 MB, C0 = 10 mg L−1, 50 mL, 60 min. Light 
source: 500 W tungsten halogen lamp. 69.8 % 0.0195 [9] 
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