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Abstract: Green hydrogen energy has captivated researchers and is regarded as a feasible option for
future energy-related aspirations. The emerging awareness of renewable energy-driven hydrogen
generation and carbon dioxide reduction calls for the use of unconventional schematic tools in
the fabrication of nanocatalyst systems. Transition metal phosphides are state-of-art, cost-effective,
noble-metal-free materials that have been comprehensively examined for sustainable energy-driven
applications. Recent reports on these advanced functional materials have cemented their candidature
as high-performance catalytic systems for hydrogen production and for carbon dioxide conversion
into value-added chemical feedstock. Bimetallic NiCoP (238.2 mmol g−1 h−1) exhibits top-notch
catalytic competence toward photocatalytic HER that reveals the energy-driven application of a
pristine class of TMPs, whereas heterostructured Ni2P/CdS was found to be fit for photochemical
CO2 reduction, as well as for HER. On the other hand, pristine Ni2P was recently ascertained as
an efficient electrocatalytic system for HER and CO2RR applications. A wide array of physico-
chemical modulations, such as compositional and structural engineering, defect generation, and
facet control, have been used for improving the catalytic efficiency of transition metal phosphide
nanostructures. In this review, we succinctly discuss the proficiency of transition metal phosphides
in green hydrogen production and carbon dioxide conversion via photochemical and electrochemical
pathways. We detail the significance of their structural properties and brief the readers about the
synthetic advancements without deviating from our goal of summarizing the recent achievements in
energy-driven applications.
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1. Introduction

The devastating effects of global warming and climate change have motivated re-
searchers to focus their attention beyond fossil fuels and their various modified derivatives.
The unchecked release of carbon dioxide (CO2) has drastically perturbed the flora and
fauna of Earth’s ecosystems and has put several species on the verge of extinction, as well
as threatened the adaptation of many others [1]. Annually, 32.8 billion tonnes of CO2 are
released into the atmosphere from the consumption of fossil fuel derivatives such as coal
and petroleum [2]. According to the special report proposed by the International Energy
Agency (IEA), it is anticipated that the global energy demand will rise by about 25% in the
coming two decades because of population expansion, and the energy associated with CO2
release will increase by about 35.8 megatons per year in 2040 [3]. These catastrophic pre-
dictions and current environmental maladies necessitate a paradigm shift to a sustainable
energy solution. Various accords such as the Kyoto Protocol and the Paris Agreement have
been signed to combat CO2 release collectively at multiple levels [4]. The inherent heating
nature of CO2 has the potential to cause fluctuations in the seasonal patterns of El Nino
and La Nina, which govern the nature of winds worldwide [5]. If standard protocols are
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not implemented to control the unrestricted venting of CO2, the atmosphere of our planet
will be like that of Venus, and the planet will become a non-colonized gas chamber [6].
Consequently, the average global temperature and sea level will increase.

The development of any nation depends heavily on the manufacturing, automotive,
and agriculture sectors, but all of these industries require efficient fuels for consequential
output. Hence, the optimization of energy resources is economically fundamental for any
nation to achieve an equilibrium between the demand and supply chains. Hydrogen (H2),
as a renewable energy resource, has various benefits such as remarkable gravimetric density
and higher calorific value, which make it a viable alternative to fossil derivatives [7–10].
Currently, steam reforming of fossil fuels is the standard practice for the generation of
bulk H2. However, the nature of this type of H2 is not at all eco-friendly and augments
greenhouse gas emission. Therefore, green H2 energy via overall water splitting is sought
out as an environmentally benign way to extract H2 [11]. Currently, the research community
is committed to elevating the efficiency of the H2 evolution reaction (HER) and CO2
reduction reaction (CO2RR) to the extent that they become a tandem antidote to the climatic
concerns of the planet.

The development of HER and CO2RR is hindered by the non-achievement of cost-
effectiveness and efficiency in meeting large-scale operational endeavors. HER and the
conversion of CO2 into value-added chemicals such as hydrocarbon fuels via photochem-
ical, electrochemical, and photo-electrochemical pathways offer a great deal of cost effi-
ciency and production output because these green routes have been significantly scruti-
nized [12–16]. Nanocatalysis has proven to be an effective pathway to an environmentally
benevolent protocol for CO2 reduction and H2 generation [17]. Nanostructures exhibit
significantly higher exposed active sites, and because of quantum confinement effects, they
possess optoelectronic properties that are superior to their bulk counterparts [18]. There-
fore, exploiting nanocatalysts to carry out HER and CO2RR is instrumental to a scalable
production of H2 and carbon-based value-added chemicals. There are numerous fabri-
cation techniques that have been explored for designing the nanostructures of advanced
functional materials, such as the reverse micellar system [19–22], the polymeric precursor
route [23], the hydrothermal/solvothermal method [24], etc.

CO2 is an ideal starting material for the production of energetic chemical fuels that are
desired to meet energy requirements in the future [25]. Photochemical and electrochemical
CO2RR pathways are considered to be economical and environmentally benign routes
for the conversion of CO2 into valuable feedstocks such as CO, HCOOH, CH4, C2H4,
CH3COCH3, and CH3OH, without producing any undesirable by-products [26–28]. The
schematic representation of the photocatalytic conversion of CO2 into valuable feedstock is
demonstrated in Figure 1. In addition, there is a process of syngas (CO+H2) generation via
the photocatalytic/electrocatalytic reduction of CO2 in an aqueous solution that is a vital
intermediate for enhancing the yield of hydrocarbon fuels. The reverse water–gas shift
reaction (RWGS) is a sustainable pathway of CO2 conversion that has received recognition
for its widespread application of CO2 as the starting material [29]. However, all of these
HER and CO2RR routes demand Earth-abundant, advanced functional materials that
can throttle secondary reactions such as the back recombination of charge carriers, the
methanation reaction, or competing HER reactions in the case of CO2 sequestration.

Various classes of materials have been explored as electrocatalysts and photocatalysts,
including metals [30], metal alloys [31], metal oxides [32,33], metal sulfides [34], met-
alorganic frameworks (MOFs), transition metal chalcogenides [35,36], and carbon-based
materials like graphene or carbon nanotubes [37,38]. However, metal oxides exhibit low
conductivity, and metal sulfides are limited by their photo-corrosiveness. Transition metal
phosphides (TMPs) have emerged as efficient catalysts with high electrical conductivity
and exceptional physicochemical properties. The catalytic efficiency of TMPs is highly
dominated by their intrinsic properties such as light absorptivity, the presence of active sites
for the adsorption of reactive species, transportation capability, tunable band potential, and
photosensitization. It is relatively difficult to obtain scalable energy-related performance via
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pristine TMPs, so in order to achieve higher performance, various strategies have been for-
mulated, such as synthetic modulations, cocatalyst incorporation, heterojunction formation,
and compositional and morphological modifications. The fabrication of TMPs fundamen-
tally hinges upon the metal-to-phosphorus ratio and the sources of phosphorus. Therefore,
researchers are trying to optimize the synthetic methodologies of TMPs that elute non-toxic
or less harmful by-products and that are environment friendly in nature. Although TMPs
exhibit higher catalytic response for HER and CO2RR applications, there are still several
bottlenecks that need to be rectified prior to their large-scale commercial application.

Catalysts 2023, 13, x FOR PEER REVIEW 3 of 24 
 

 

 
Figure 1. Schematic demonstration of photocatalytic reduction/conversion of CO2 into solar fuel. 
[Reprinted with permission from Ref. [1]. Copyright 2023, John Wiley and Sons]. 

Various classes of materials have been explored as electrocatalysts and photocata-
lysts, including metals [30], metal alloys [31], metal oxides [32,33], metal sulfides [34], 
metalorganic frameworks (MOFs), transition metal chalcogenides [35,36], and carbon-
based materials like graphene or carbon nanotubes [37,38]. However, metal oxides exhibit 
low conductivity, and metal sulfides are limited by their photo-corrosiveness. Transition 
metal phosphides (TMPs) have emerged as efficient catalysts with high electrical conduc-
tivity and exceptional physicochemical properties. The catalytic efficiency of TMPs is 
highly dominated by their intrinsic properties such as light absorptivity, the presence of 
active sites for the adsorption of reactive species, transportation capability, tunable band 
potential, and photosensitization. It is relatively difficult to obtain scalable energy-related 
performance via pristine TMPs, so in order to achieve higher performance, various strat-
egies have been formulated, such as synthetic modulations, cocatalyst incorporation, het-
erojunction formation, and compositional and morphological modifications. The fabrica-
tion of TMPs fundamentally hinges upon the metal-to-phosphorus ratio and the sources 
of phosphorus. Therefore, researchers are trying to optimize the synthetic methodologies 
of TMPs that elute non-toxic or less harmful by-products and that are environment 
friendly in nature. Although TMPs exhibit higher catalytic response for HER and CO2RR 
applications, there are still several bottlenecks that need to be rectified prior to their large-
scale commercial application. 

TMPs are an emerging class of advanced materials believed to be potent candidates 
that can replace precious noble metal-based catalysts [39]. The role of TMPs in nanocatal-
ysis is not only limited to direct utilization. Instead, they can also be employed as cocata-
lysts. In the last few decades, it has been observed that cocatalyst loading is one of the best 
ways to enhance photochemical and electrochemical efficiencies by improving their light-
harvesting, electrical conductivity, and physicochemical properties through interface en-
gineering, alongside providing multifunctional active sites for surface adsorption [40,41]. 
Both the activity and selectivity of HER and CO2RR can be enhanced by using cocatalysts. 
Among different types of cocatalysts, noble metals such as Pt, Pd, Au, Ag, and Ru have 
been comprehensively studied for the photocatalysis of HER and CO2RR [42–45]. 

Figure 1. Schematic demonstration of photocatalytic reduction/conversion of CO2 into solar fuel.
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TMPs are an emerging class of advanced materials believed to be potent candidates
that can replace precious noble metal-based catalysts [39]. The role of TMPs in nanocatal-
ysis is not only limited to direct utilization. Instead, they can also be employed as cocat-
alysts. In the last few decades, it has been observed that cocatalyst loading is one of the
best ways to enhance photochemical and electrochemical efficiencies by improving their
light-harvesting, electrical conductivity, and physicochemical properties through interface
engineering, alongside providing multifunctional active sites for surface adsorption [40,41].
Both the activity and selectivity of HER and CO2RR can be enhanced by using cocatalysts.
Among different types of cocatalysts, noble metals such as Pt, Pd, Au, Ag, and Ru have
been comprehensively studied for the photocatalysis of HER and CO2RR [42–45]. However,
due to their scarcity and the whopping cost involved, their large-scale applicability is
limited. An advanced, economical, and efficient method is the need of the hour. There-
fore, developing non-noble-metal-based cocatalysts which fulfil the requirement of being
cost-effective is requisite. Among various non-noble-metal-based cocatalysts, TMPs are
classified as promising candidates for photocatalysis and electrocatalysis. Antil et al. [44]
fabricated novel NiCoP@ZnCo-MOF photocatalysts and displayed an augmented rate of H2
(8583.4 µmol g−1 h−1). The group conducted comparative analysis between as-synthesized
TMP nanocatalysts relative to the noble-metal-based catalytic system of Pt@ZnCo-MOF
(8885.7 µmol g−1 h−1). The rate of H2 production of the TMP-based photocatalyst was
found to be nearly analogous to its noble metal counterpart. Thus, we can corroborate
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TMPs as a viable substitute for noble metals in assisted catalysis for advanced HER appli-
cations. An illustrated diagrammatical comparison is provided in Figure 2 for the better
selectivity of TMPs over noble metal catalysts.
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The schematic landscape of TMPs synthesis, properties, and energy-driven applica-
tions such as energy conversion and energy storage are illustrated in Figure 3. In 2005, for
the very first time, Liu et al. [46] predicted the catalytic excellence of Ni2P by considering
density functional theory and evaluating its photocatalytic activity towards HER. The
scope of the CoP cocatalyst has been analyzed to augment the photocatalytic efficiency of
two-dimensional g-C3N4. In the CoP/g-C3N4 heterostructured catalyst, photo-generated
electron transference occurs from g-C3N4 to the surface of CoP active sites in light [46,47].
The surface electrons react with the absorbed protons, resulting in the supplication of
photocatalytic HER activity. Recent reports have also proven the potential of other nickel-
based TMPs such as Ni2P, Ni12P5, and Ni3P for enhancing the light absorption capacity of
g-C3N4, due to which they are believed to possess high photocatalytic activity in HER [48].
TMPs have achieved superior photocatalytic HER and CO2RR activities, as revealed by the
literature review [49]. Hence, researchers need to focus on the developments in the field of
TMP-assisted nanocatalysis. This review summarizes the recent advances in TMPs towards
HER and CO2RR applications.
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2. TMPs Structure and Its Significance

TMPs are versatile catalysts that consist of transition metals bonded with phosphorus
(P) atoms. The structure of TMPs is of great significance and can vary depending on
the types of metals, the number of P atoms, and the bonding interactions between them.
TMPs possess different structures and morphology depending on the other metals and
their interactions with the P atoms [50]. In addition, factors like the reactant precursors of
transition metal and P, stoichiometry, and synthesis conditions also govern the structural
properties of TMPs [51]. In TMPs, the P atom enters the lattice structure of transition
metals to form interstitial compounds that act as efficient catalysts for energy conversion
processes [52]. The structural modifications on introducing the P atom in the lattice structure
of transition metal (M) is an elongation in the bond length of the M-P bond, which results
in decreased interactions of M-M bonds and the compression of d-bands [53]. This lattice
mismatch tunes the Fermi levels of M, favoring their electronic conductivity and mass
diffusion characteristics [54]. TMPs exhibit unique crystal structure where the M atoms
form the trigonal prismatic structure, in which the interstitial voids are occupied by P
atoms in the smallest structural unit. In contrast, the excess metal ions form nine-fold
tetrakaidecahedral structures [55], as represented in Figure 4a,b. The P atom can interact
with the transition metal lattice. These structural units can cooperate and have the ability to
form miscellaneous lattice types. Variations in the M/P ratio significantly affect the lattice
structure of TMPs. Thus, this ratio also controls the catalytic efficiency of TMP nanocatalysts.
In a TMP structure, P exhibits relatively higher electronegativity, attributed to the fact it
accepts protons readily. This structural feature of TMPs boosts their catalytic action towards
HER and CO2RR as facilitated H+/CO2 surface adsorption takes place quickly due to higher
electronegativity of P atoms [50]. Therefore, the P content in TMPs is central to determining
their catalytic activity. Based on that, they can be classified as transition-metal-rich TMPs
(M-rich TMPs) or P-atom-rich TMPs (P-rich TMPs), depending on the M/P ratio [56]. In
M-rich TMPs, the M/P ratio is comparatively higher, due to which M–M interactions
profoundly affect the physiochemical properties of TMPs. These compounds often exhibit
a lower P content than stoichiometric or P-rich TMPs [57]. The excess of M atoms results
in unique properties and structures of TMPs. M-rich TMPs are commonly synthesized
under high-temperature conditions, such as through the reaction of metal precursors with P
sources. However, P-rich TMPs hold a relatively higher ratio of P to transition metal. These
compounds have excess P and exhibit unique properties based on their high P content.
The crystal structure of P-rich TMPs is depicted in Figure 5a–f below [56]. M-rich TMPs
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exhibit metallic properties, whereas P-rich TMPs show semiconducting behavior. The
metallic behavior in M-rich TMPs is familiar with that of noble metals, showing excellent
conducting properties [42]. P-rich TMPs are often synthesized through reactions that
involve the addition of excess P or P-rich precursors. For instance, M-rich TMPs bestow
higher conductivity and stability than P-rich TMPs due to the larger M–M and M–P bonds
than non-conductive P–P bonds.
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3. Structural Significance

The structural ascendency of TMPs, due to the introduction of P-atoms in the lattices of
transition metal ions, dramatically affects the optoelectronic properties of these interstitial
materials, thus making them excellent HER and CO2RR catalysts [58–60]. Incorporated P
atoms moderately tune the interspace between the transition metal atoms that restricts their
molecular interaction. It leads to the shrinking of d bands and increasing the concentration
of energy levels in the vicinity of the Fermi center [61]. This excellent optoelectronic modu-
lation in TMPs escalates their catalytic efficiency of the order of noble-metal based catalytic
systems [62,63]. The structural engineering of TMPs is one of the finest strategic tools to
ameliorate their performance towards HER and CO2RR applications. Recent reports of
TMPs support the fact that developing heterojunctions, hollow and nanoarray structures,
significantly enhance their scope of applicability. Heterojunction formation allows for the
interfacial charge transfer during photochemical HER and CO2RR, which effectively sub-
dues the back recombination reactions and assures the utilization of active electron carriers
in primary reduction reactions. On the other hand, the formation of hollow structures
eases the adsorption pathways of reactant species by providing higher exposed active
sites available for surface reactions and sufficient mass diffusion routes [64–68]. Higher
surface areas and surface roughnesses in nanoarrays facilitate the contact compass between
catalytic system and adsorbed species. The structural properties of TMPs are pretty signifi-
cant in modulating their electronic properties, leading to remarkable catalytic responses in
energy-related applications. Other than structural engineering, tuning the physicochemical
properties of TMPs also hinges on their compositional and morphological properties.

4. Advances in TMP Fabrication

For the comprehensive exploitation of TMPs, optimizing synthetic routes is essential to
achieve cost-effectiveness and environmental friendliness. Conventional methods used to
fabricate TMPs, such as temperature-programed reduction under H2 atmosphere or the ball
milling method, are restricted to the synthesis of bulk TMPs only. However, for constructing
nano-dimensional TMPs, fabrication routes can be classified on the basis of P sources used
and the different methods involved. Synthetic pathways have been classified based on
P sources such as organic phosphines (trioctylphosphine), hypophosphites (NH4H2PO2,
NaH2PO2), elemental phosphorus (white, red), and phosphorenes [13]. Phosphorenes
are the exfoliated monolayers of black P that have also been utilized as P precursors for
TMP engineering [69]. One different approach to designing TMPs is the pyrolysis of P and
carbon-based precursors alongside the source of the transition metal ion. Integrating carbon-
based materials during TMP synthesis impedes the agglomeration of TMP nanoparticles
and accelerates their conductivity. Therefore, different morphologies and particle sizes
can be achieved based on the use of varying P sources for TMP nanostructures. The
discrete synthesis method for designing TMPs can vary metal to metal or depending on the
desired morphology, the targeted energy-related application, and the chosen precursors of
P [70]. Researchers often optimize the reaction conditions and other parameters such as
reducing the agent and solvent system to obtain the desired physicochemical properties and
morphology of the prepared TMP nanocatalysts [71]. Synthesizing TMP nanostructures
typically involves diverse physical and chemical routes such as solid-state reactions [72],
the phosphorization of metal precursors [73–76], chemical vapor deposition (CVD) [77],
and hydrothermal pathways [78–82].

In the usual practice, the solid-state method proceeds via heating a mixture of transi-
tion metal precursors (metallic powder or metal oxides) alongside a P source at significantly
higher temperatures under an inertial atmosphere to subdue any undesired defects or oxide
impurities [72]. The reaction advances through a series of intermediate steps that lead to the
development of the desired TMP nanostructures. As its name suggests, the phosphorization
of metal precursors comprises the precursor of the desired metal and is minted with the
source of P, such as red or white phosphorus. The phosphorization reaction can occur either
in solution or in the gas phase, depending on the nature of transition metal precursor and
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P source. The obtained reaction mixture is then further processed to isolate the pristine
TMPs without any foreign impurities. The CVD technique is generally utilized to deposit
thin films or coatings of TMPs. In this pathway, relatively volatile metallic precursor is
integrated with the P-containing precursor, and the resulting mixture is introduced into
the reaction chamber, followed by that reactant mixture decomposed at high temperatures
leading to the deposition of the TMPs onto a substrate. The hydrothermal/solvothermal
route is an environmentally benign chemical route that offers great deal of output and
control over morphology for far-reaching applications of TMP nanostructures [80]. It in-
volves the reaction of metal precursors with the P source in generally aqueous media and
sometimes in other solvents under high-pressure and high-temperature conditions. The
organic solvent environment is developed in the reaction media to achieve the desired mor-
phology. The reaction is typically carried out in an autoclave, where the reaction mixture
is subjected to the particular reaction conditions. The main advantage of procuring this
route is the formation of well-defined TMP nanoparticles. Considering the aforementioned
synthetic routes of TMPs, we manifest that all these pathways have their respective advan-
tages and disadvantages. However, in our vision, the hydrothermal route has far-reaching
applications for the sake of energy-related operations of TMP-based hybrid materials.

5. TMP Photocatalysts for HER and CO2RR Applications

Over the past few years, the optoelectronic properties and chemical stability of TMPs
have made them promising catalytic systems for photochemical HER and CO2RR appli-
cations. TMPs such as FeP [83], CoP [84], NiCoP [85], MoP [86], and Cu3P [87] have been
investigated in the field of nanocatalysis and are known to display exceptional activity and
selectivity towards HER and CO2RR applications. There are various methods of enhancing
the photocatalytic performances of TMPs such as metallic/non-metallic doping [88], sur-
face modulation [89], and mixing with other nanomaterials to form heterojunctions [90].
For instance, the integration of noble metals like Au and Pt with TMPs ameliorates their
photocatalytic activity towards HER and CO2RR [49,91]. In the past few decades, much of
the attention has been placed on improving the efficiency of photocatalytic processes by
developing and probing miscellaneous catalytic systems. Therefore, to achieve this goal,
researchers are persistently trying to enhance the activity and selectivity of TMP-based
photocatalysts. However, this transformation is limited by the quick recombination rate
of photogenerated electron–hole pairs and the restricted photo-sensitization of light ab-
sorbers during photocatalytic operations. These two obstacles are the major bottlenecks
of photocatalytic HER and CO2RR operations that impede their quantum efficiency in
achieving H2 and carbonaceous value-added chemicals [49]. The tailored band energy of
TMP nanocatalysts allows an accelerated harvesting of light that ultimately leads to the flow
of uninterrupted photo-induced charge carriers, allowing longer runs of photocatalysis.
The prevention of the back recombination of photo-generated electron–hole pairs can be
successfully achieved by developing appropriate cocatalysts that would generate suitable
interfaces, such as Schottky junctions, S-schemes, Z-schemes, p-n heterojunctions, and type
II heterojunctions, leading to the fast movement of charge carriers from one component
to the other, thus reducing the probability of electron–hole pair recombination [92–94].
Although, some secondary side reactions result in the photocatalytic CO2RR. HER is one of
the competent reactions in the conversion of CO2 to CO. Therefore, the recent trends of TMP-
assisted photocatalytic applications have imbibed these limiting factors, as demonstrated
by the reports of TMPs discussed hereafter in this section.

Li et al. [78] fabricated a Ni2P/ZnIn2S4 heterostructure to examine its scope towards
photocatalytic water splitting. Optimized Ni2P/ZnIn2S4 heterojunctions exhibited a re-
markable H2 evolution rate of ~2.1 mmol g−1 h−1, which can be attributed to the better
synergism between the photocatalytic components, the enhanced charge separability, the
larger surface area, and the outstanding electron transport ability. Shen et al. [95] syn-
thesized EosinY-Cu3P-CNT (carbon nanotubes). The group reported an exceptional H2
evolution rate of 17.22 mmol g−1 h−1, which is owed to the efficient separation of charge
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carriers in Eosin Y and enhanced electron transfer ability that symbiotically boosted the
rate of H2 generation in the TMP-based photocatalyst. Meng et al. [40] fabricated Ru-CoP-
1:8/GCN (g-C3N4) photocatalysts via the wet chemical reduction method for efficient H2
production. The reported study showed an exceptional rate of 1172.5 µmol g−1 h−1. This
report outlines the cost-effectiveness of Ru-CoP heterostructured catalytic system as com-
pared to noble metal catalysts for photocatalytic applications. Gong et al. [86] developed
Ni-MoP@NPPF (porous nitrogen-doped carbon nanofibers) via electrospinning followed
by phosphorization as well as carbonization and showed the rate of CO production to be
953.53 µmol g−1 h−1. It exhibited an impressive selectivity for CO of 98.95% due to the
formation of Ni-N bonds. The mechanism proposed that the transfer of electrons occurs
across the interface between the two catalysts, enhancing the rate of CO2 reduction, as
represented in Figure 6a. The photocatalyst revealed exceptional activity and selectivity
for CO2 reduction with Ni, as without Ni co-catalyst, the yield was found to be relatively
inferior, as depicted in Figure 6b. The product selectivity of Ni-MoP@NCPF is realized by
higher CO generation, as the optimized Ni-MoP@NCPF catalytic system exhibited greatly
enhanced photocatalytic CO2 reduction performance towards CO generation compared to
CH4 and H2 product formation, as depicted in Figure 6c. Ni-MoP@NCPF provided channels
for CO2 diffusion and electron transport. This type of TMP-based catalytic system is the
epitome of collaborative morphological, compositional, and hetero-interfacial engineering,
as the distribution of Ni throughout the MoP@NCPF improved the transformation of CO2 to
CO. The main factors that regulate the degree of photocatalytic HER and CO2RR processes
are the separation, transfer, and recombination of electron–hole pairs. The photocatalytic
activity of CO2 conversion is ameliorated by the higher separation rate of photo-induced
charge carriers or lower recombination rate ascribed to more electrons available for primary
reduction reactions at the conduction band of TMP-based photocatalysts.
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Sun et al. [79] fabricated Cu3P-Ni2P/g-C3N4 nanocatalysts via a solvothermal path-
way to determine their photochemical HER efficiency. The H2 production rate was found
to be considerably efficient due to the formation of p-n heterojunctions, assisting in the
facile charge transfer and exposure of a greater number of active sites. Figure 7a,b contain
mechanistic sketches of Cu3P-Ni2P/g-C3N4-assisted photocatalytic H2 generation and
the transfer of electrons via heterojunctions after the advent of an internal electric field
before and after visible light irradiation, respectively. Song et al. [96] fabricated WP-NC
(nitrogen-doped carbon)/g-C3N4 heterojunctions for efficient H2 generation via photocat-
alytic and electrocatalytic pathways. The optimized WP-NC/g-C3N4 catalyst exhibited an
H2 evolution rate as high as 1.2 mmol g−1 h−1, owing to the deposition of NC layers over
WP, which ameliorated the charge separation and transfer efficiency during photocatalytic
water splitting.
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Su et al. [80] engineered Ni2P/CdS photocatalysts via the hydrothermal pathway and
studied their efficiency for HER and CO2RR applications. The resultant band gap of the
Ni2P/CdS photocatalyst was found to be 2.16 eV with multiple production rate of H2, CO,
and CH4 generation with porous and non-porous nanocomposites, as depicted in Figure 8.
In this report, heterojunction formation played an essential role in the enhanced photo-
catalytic efficiency of Ni2P/CdS, ascribed to the facilitated charge transfer. Guo et al. [83]
synthesized an FeP/CN photocatalyst via the thermal decomposition method and reported
the maximum rate of CO production to be 5.19 µmol g−1 h−1. The synthesized catalysts
exhibited the tremendous conversion efficiency of CO2 to CO because of the greater active
sites and facile charge transfer during the photocatalytic CO2RR. Wang et al. [97] designed
and synthesized novel Fe-doped CoP for CO2 reduction to CO. The results reported a max-
imum selectivity of 90.3% (CO), and the rate of evolution was estimated to be 21 µmol h−1.
Fe doping assisted in subduing the activation energy barrier for intermediate formation
and promoted CO evolution. Lv et al. [98] synthesized ultrathin NiCoP nanosheets to
achieve an effective rate of HER (238.2 mmol g−1 h−1). The reported bimetallic catalysts
exhibited bifunctional properties such as electrocatalysis and photocatalysis efficiently.
Duo et al. [99] designed FeP/CdS heterostructured photocatalysts via the solvothermal
route, and the as-prepared nanocatalyst produced H2 at the rate of 37.92 mmol g−1 h−1.
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This excellent HER was attributed to the charge separation and better electron transporta-
tion demonstrated by the heterojunction formation between the FeP and CdS. Li et al. [72]
fabricated Ni2P/NiO/CN (graphitic carbon nitride) via solid–gas reaction for the conver-
sion of CO2 to CO and CH4. The enhanced activity resulted from the formation of a p-n
heterojunction between NiO and CN, while Ni2P governed the activation and adsorption
of CO2 reactant species. The catalytic proficiency of TMPs towards photochemical HER
and CO2RR applications are tabulated in Table 1.
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Table 1. Transition metal-phosphide-based photocatalysts for HER and CO2RR applications.

Catalysts Synthesis Method Application Band
Gap (eV) Rate of HER/CO2RR Ref.

Ru-CoP-1:8/GCN Chemical reduction HER 2.25 1172.5 µmol g−1 h−1 [40]

Ni2P/NiO/CN In situ gas–solid reaction CO2RR 2.6 CO (1.506 µmolg−1 h−1)
CH4 (0.29 µmolg−1 h−1)

[72]

Ni2P/ZnIn2S4 Hydrothermal HER ~2 2066 µmol g−1 h−1 [78]

Cu3P-Ni2P/g-C3N4 Solvothermal HER 2.7 6529.8 µmol g−1 h−1 [79]

Ni2P/CdS Hydrothermal HER
and CO2RR 2.16

H2 (111.3 mmol g−1 h−1)
CO (178.0 µmol g−1 h−1)
CH4 (61.2 µmol g−1 h−1)

[80]
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Table 1. Cont.

Catalysts Synthesis Method Application Band
Gap (eV) Rate of HER/CO2RR Ref.

CoP/rGO Hydrothermal CO2RR - CO (47,330 µmol g−1 h−1) [81]

CoP/CNT Hydrothermal CO2RR - CO (39,510 µmol g−1 h−1) [81]

FeP/CN Thermal decomposition CO2RR 2.40 CO (5.19 µmol g−1 h−1) [83]

NiCoP/g-C3N4 Thermal polymerization HER 2.69 5162 µmol g−1 h−1 [85]

Ni-MoP@NPPF Electrospinning CO2RR 1.42 CO (953.53 µmol g−1 h−1) [86]

WP-NC/g-C3N4 Facile sonication CO2RR 2.8 CO (376 µmol g−1h−1) [93]

WP-NC/g-C3N4 Thermal polymerization HER ~2.8 1217.6 µmol g−1 h−1 [96]

Fe doped CoP Self-assembly CO2RR - CO (21.0 µmol h−1) [97]

NiCoP nanosheets Wet chemical and
phosphorization HER - 238.2 mmol g−1 h−1 [98]

FeP/CdS Solvothermal HER 2.32 37.92 mmol g−1 h−1 [99]

6. TMP Electrocatalysts for HER via Water Splitting

Over the last few years, a colossal number of attempts have been dedicated to the
advancement of TMP-based electrocatalysts for propelling the applications of HER, and
considerably accomplishments have been achieved by ameliorating the final results through
heteroatom doping and nanostructure engineering [100–102]. Li et al. [74] synthesized
Co2P/Ni2P nanohybrids for HER via water splitting. The as-developed nanohybrids
required a very low overpotential (51 mV) to achieve 10 mA cm−2 alongside noteworthy
operational durabilities. This catalytic performance exceeded most of the reported non-
noble TMP-based electrocatalysts. The exceptional results could be attributed to the large
surface area, an abundance of active sites, and robust interfacial contact between Ni2P
and Co2P. In another reported study, Cho et al. [75] examined the HER activity of Co-,
Ni-, and Mn-doped FeP nanoparticles. The electrochemical results showed that Co-FeP
nanoparticles required a 126 mV overpotential to attain 10 mA cm−2 and exhibited higher
cathodic current density than Ni- and Mn-doped FeP because of their fast charge transfer
rate and high, electrochemically active surface area. In another study, Co-, Fe-, Mn-,
Na-, Cr-, Li-, V-, Nb-, Ti-, Pb-, and Sn-doped Ni2P electrocatalysts were investigated by
Xiong et al. [76] for their HER catalytic activity. The electrochemical results demonstrated
that Fe- and Co-doped Ni2P exhibited superior performances similar to Pt-like activity
with a very low overpotential of 31 mV at 10 mA cm−2. These results are ascribed to the
charge redistribution on the catalyst’s surface, produced by the doping effect. Li et al. [103]
fabricated MoP/MoNiP@C heterostructures to examine their electrochemical HER activity,
and as a result, the as-prepared electrocatalyst showed remarkable performance, with
a 134 mV overpotential and a 66 mV dec−1 Tafel slope. These excellent results can be
ascribed to the synergistic effect between MoNiP and MoP nanoparticles that augmented
the active sites of the catalyst. The LSV (linear sweep voltammetric) curves and Tafel
plots of as-prepared electrocatalysts towards HER are illustrated in Figure 9a,b, whereas
cyclic voltammetric (CV) curves and a double-layer capacitance plot of MoP/MoNiP@C
are demonstrated in Figure 9c,d. As shown in Figure 9e, the MoP/MoNiP@C impedance
is relatively smaller than other electrocatalysts, which corroborates the higher catalytic
performance and outstanding conductivity of MoP/MoNiP@C. To examine the robustness
of MoP/MoNiP@C for longer runs, stability cycles of the LSV curves were recorded for
2000 cycles, and minor changes in the cathodic curve were observed, as shown in Figure 9f.
The onset of Figure 9f depicts the time-dependent current density curve of the optimized
electrocatalyst. The fabrication flowchart of MoP/MoNiP@C is illustrated in Figure 10.
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Figure 9. (a) LSVs of PC, NiP@C, MoP@C, MoNiP@C, MoP/MoNiP, MoP/MoNiP@C, and Pt/C
in 0.5 M H2SO4 solution and (b) Tafel plots of PC, NiP@C, MoP@C, MoNiP@C, MoP/MoNiP,
MoP/MoNiP@C, and Pt/C. (c) CV plots of MoP/MoNiP@C at a scan rates ranging from 25 to
250 mV s−1 and (d) linear fitting of ∆j vs. scan rates of MoP/MoNiP@C. (e) EIS spectra of PC, NiP@C,
MoP@CMoNiP@C, MoP/MoNiP, and MoP/MoNiP@C. (f) LSVs of MoP/MoNiP@C in 0.5 M H2SO4

before and after 1000 cycles, and the inset indicates the time-dependent current density curve at
an overpotential of 140 mV for 24 h. [Reprinted with permission from Ref. [103]. Copyright 2021,
American Chemical Society].
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Yang et al. [104] designed Ni2P/MoO2/NF nanorods-type heterostructured electrocat-
alyst for HER water splitting. As-prepared electrocatalysts exhibited very low overpotential
(34 mV), which was attributed to the combined effect between MoO2 and Ni2P that was
enhanced due to the robust electronic coupling effect. In a reported work investigating the
HER activity, Kang et al. [105] synthesized NiFeP@C electrocatalyst that showed notable
results, including the low overpotential of 160 mV towards HER. The enhanced results
accredited to the synergistic effect between P, Fe, Ni, and C, which accelerated the pace of
charge transfer and escalated the electrocatalytic performance. Chen et al. [106] fabricated
Ru-MnFeP/NF electrocatalysts to examine HER performance. The results showed a low
overpotential of 35 mV alongside high stability for 50 h. Liu et al. [107] engineered Mn-
and Ni-deposited FeP (Ni-Mn-FeP) electrocatalyst and investigated its HER activity. The
as-prepared electrocatalyst demonstrated enhanced results with 103 mV ultralow over-
potential. The combination technique of co-doped high-valence and low-valence metals
motivated the advancement of high-activity and functional catalysts. In a reported study,
Er-doped NiCoP/NF nanowires were fabricated by Zhang et al. [108] to assess their HER
activity. The electrocatalytic efficiency of the as-prepared electrocatalyst was ascribed to its
lowered overpotential value of 46 mV to reach 10 mA cm−2 cathodic current density. The
advanced performance of Er-doped NiCoP/NF was ascribed to the amalgamation of Er to
NiCoP that considerably adjusted d-band centers alongside electronic structure of Co and
Ni atoms by altering to lower energies with regards to Fermi level and also enhanced the
HER/OER intermediate Gibbs free energies.

7. TMP Electrocatalysts for CO2RR Application

TMPs have emerged as multi-facet materials with fascinating electronic and structural
features, which have led to impeccable catalytic activity for critical energy transforma-
tion such as CO2 reduction [109,110]. There are several recent reports of electrochemical
CO2RR applications of TMP-based nanocatalysts. Downes et al. [111] synthesized Cu3P
nanoparticles to investigate their electrochemical CO2RR performance. The results showed
the formation of formate with as high as 8% Faradaic efficiency (FE). The enhanced activ-
ity and stability were accredited to using a solution-based molecular precursor method
for Cu3P fabrication that offered multi-dimensional opportunities for altering the mor-
phology, surface chemistry, and composition to attain notable CO2 conversion efficiency.



Catalysts 2023, 13, 1046 15 of 24

In another work, Ji et al. [82] incorporated FeP on a Ti mesh (FeP/TM) that functioned
as an effective electrocatalyst for CO2 reduction to transform into alcohols with 94.3%
FECH3OH+C2H5OH and 80.2% FECH3OH. The improved results were attributed to the combin-
ing effect between two adjacent Fe atoms, as revealed by density functional theory (DFT)
calculations. Sun et al. [112] designed MoP/In-PC for electrocatalytic CO2 reduction. The
current density and FE of the as-designed electrocatalyst reached 43.8 mA cm−2 and 96.5%,
respectively. These noteworthy results were accredited to the advantageous feature of
nanosized MoP, the adsorption ability of the robust CO2 and CO2-intermediate, the high
interfacial charge transfer, and the combining effect between In-doped carbon supports
and MoP. Kim et al. [113] synthesized Ni2P/Ho2O3 core–shell nanoparticles (CSNPs) to
examine their scope in electrochemical CO2RR applications. As-synthesized electrocata-
lysts generated acetone with 25.4% FE that was attributed to the synergistic effect between
Ni2P and Ho2O3. Figure 11 depicts the synthesis steps for designing Ni2P/Ho2O3 catalytic
systems. The four main value-added products in the form of H2, HCOOH, CH3OH, and
(CH3)2CO resulted from the reduction of CO2, as revealed in the Figure 12a, Ni2P/Ho2O3
core–shell nanoparticles (CSNPs) have been found to be very beneficial for the electrocat-
alytic behavior towards (CH3)2CO. While Ho2O3 nanodisks (NDs) produced H2, HCOOH,
and CH3OH, only H2 was generated by Ni2P in electrocatalytic CO2 reduction towards C2
or C3 pathways, as shown in Figure 12b–d.
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Laursen et al. [114] fabricated Cu3P NS/Cu for electrocatalytic CO2RR. The results
showed the formation of formate with a 65 mV lower overpotential value and 0.9% FE. A
Fe2P electrocatalyst was synthesized by Calvinho et al. [115] to examine the CO2 conversion
efficiency. The outcomes showed a 53% FE with ethylene glycol (C2) product formation
after CO2 reduction, which inferred successful C-C coupling during the surface adsorption
reaction mechanism. Banerjee et al. [116] fabricated Ni2P electrocatalyst for the reduction
of CO2, and the result demonstrated the formation of formaldehyde along with the surface
hydrogen affinity and dynamic reconstruction of the surface through adsorption of H
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that promoted the C–C coupling and selective reduction of CO2 on Ni2P. The catalytic
proficiency of TMPs towards electrochemical HER and CO2RR applications are tabulated
in Tables 2 and 3, respectively.

Table 2. Transition-metal-phosphide-based electrocatalysts for HER application.

Electrocatalyst Synthesis Method Application Overpotential
(mV)

Tafel Slope
(mV dec−1) Ref.

Co2P/Ni2P Thermal
phosphorization HER 51 - [74]

Co-FeP Phosphorization HER 126 63.6 [75]

Co-Ni2P Synthetic method HER 31 47 [76]

MoP/MoNiP@C Calcination and
phosphorization HER 134 66 [103]

Ni2P/MoO2/NF Phosphorization HER 34 45.8 [104]

NiFeP@C Calcination HER 160 75.8 [105]

Ru-MnFeP/NF Phosphorization HER 35 69 [106]

Ni-Mn-FeP Phosphorization HER 103 - [107]

Er-NiCoP/NF Phosphorization HER 46 - [108]

Table 3. Transition-metal-phosphide-based electrocatalysts for CO2RR application.

Electrocatalysts Synthesis
Method

Power Density/
Current Density Faradaic Efficiency Ref.

Cu3P/C Hydrothermal 2.6 mW cm−2 47% (CO) [28]

AgP2 Self-assembly −8.7 mA cm−2 82.0% (CO) [63]

FeP/TM Hydrothermal - 94.3%
(CH3OH + C2H5OH) [82]

Cu3P Thermal
decomposition - 8% (Formate) [111]

MoP@In-PC Solid state 43.8 mA cm−2 96.5% (HCOOH) [112]

Ni2P/Ho2O3 Phosphorization 0.95 mA cm−2 25.4% (Acetone) [113]

Cu3P NS/Cu Self-assembly - 1.1% ± 0.6%
(Formic acid) [114]

TiO2/MnP Annealing - 67% ± 5% (CO)
12.4% ± 1.4% (H2) [117]

The aforementioned path-breaking reports are proof for the ongoing research on
TMPs as cocatalyst or electrocatalyst in HER via water splitting and CO2RR applications.
However, there are still many mysteries unsolved regarding the synthesis of TMPs that
comprise tail gas post-treatment and unstable reactants, which create obstacles for the
bright future of TMPs as electrocatalysts. Therefore, coping with these bottlenecks of
TMP nanostructures can simplify their success in energy-driven catalytic applications at
scalable points.

8. Future Perspectives

The outlook of nanocatalysis-assisted HER and CO2RR is propitious thanks to wide
array of physicochemical modulations that can be carried out in different nanomaterials.
Alleviating the cost of green HER and CO2RR applications is fundamental for applying
these sustainable pathways to a scalable utility in day-to-day life. Therefore, designing
cheap catalytic systems as an economical substitute for noble metal catalysts is the need
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of the hour in order to cope up with the latter’s whopping costs, which currently hinders
the widespread exploitation of green HER and CO2RR applications [117–120]. In the
last few years, researchers have realized the potential of TMPs as tremendously efficient
catalytic systems able to address the energy related applications at scalable points [121–124].
Extensive energy-focused research operations have been performed by employing TMP
nanostructured catalytic systems [125]. TMPs are emerging advanced functional materials
that have recently exhibited great potential in catalyzing HER and CO2RR to generate
value-added chemicals and fuels [126–128]. On account of their versatile physicochemical
properties, TMPs are beneficial in a broad range of applications, varying from catalysis to
energy storage devices. TMPs come forth as remarkable catalytic systems which offer a
high range of performances and great robustness. Their inexpensiveness and recent ground-
breaking advances promise to fill the void between research and commercial applicability.

Experimental and computational investigations of TMP nanostructures highlight
their marvelous catalytic efficiency, stability, and selectivity towards HER and CO2RR
applications [129]. However, the extent of their catalysis hinges upon exposed active sites,
which govern the surface adsorption reactions. Therefore, it is fundamentally important to
enhance the interaction between TMPs’ surface sites and the reactant molecules to escalate
the turnover frequency of generating H2 and another chemical feedstock [130]. One major
bottleneck of TMP-assisted nanocatalysis is the scarcity of reports which systematically
explore and elucidate the reaction mechanism behind their inherent catalytic proficiency at
an atomic scale. To examine the in-situ behavior of TMPs, sophisticated characterization
techniques such as X-ray absorption and operando and in situ Raman spectroscopies can
be upgraded in accordance with the reaction conditions for probing the intermediate steps
involved during HER and CO2RR applications. In addition, theoretical models should be
developed to determine the thermodynamic landscape and kinetics of surface reactions on
the active TMPs centers.

9. Conclusions

Herein, we have discussed the exigency of renewable energy-driven H2 production
and CO2 sequestration in order to meet the current energy demand through clean energy re-
sources. TMP nanocatalysts have been reviewed as heterogeneous catalytic systems for HER
and CO2RR applications. The structural advantages of TMPs have been discussed precisely,
as structural engineering is one of the most sought-after pathways for enhancing their activ-
ity and stability. To understand the structural significance of TMPs, the role of P and M/P
ratio was reviewed. We have summarized the most utilized synthetic methodologies for de-
signing TMP nanostructures. Photocatalytic HER and CO2RR applications were surveyed
collectively under the enlightenment of recent achievements of TMPs. Bimetallic NiCoP
exhibits an enormous rate of H2 production (238.2 mmol g−1 h−1), and heterostructured
CoP/rGO was found to have a higher rate of reducing CO2 to CO (47.33 mmol g−1 h−1).
Correspondingly, recent advances in electrocatalytic HER and CO2RR applications were
also reviewed, which corroborate the diverse applicability of TMP nanocatalysts in energy-
driven applications. Pristine Ni2P has emerged as a resourceful electrocatalyst for HER.
Nevertheless, there are only a handful reports for electrocatalytic CO2 reduction, which
is at the cutting edge of technology and needs to be developed further in future environ-
mental aspirations. For CO2RR applications, TMPs can be exploited in either gas-phase or
liquid-phase reactions, which facilitate the conversion of CO2 into chemical feedstocks such
as C1 and C2 products and other higher hydrocarbons. The P content and physicochemical
properties of TMPs play major roles in regulating their catalytic responses. Therefore,
optimizing reaction conditions and synthetic routes is instrumental in developing these
emerging functional materials for energy-related applications. TMPs can be a game-changer
in the field of nanocatalysis thanks to their Earth-abundance and cost-effectiveness.
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