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Abstract: Cr(VI) is a common heavy metal pollutants present in the aquatic environment, which
possess toxic and carcinogenic properties. In this study, a solvothermal reaction was used to prepare
porphyrin (TCPP)-modified UiO-66-NH2 (UNT). The UNT integrated adsorption and photocatalytics
in the application for dealing with Cr(VI). The photocatalytic reduction activities of UNT for Cr(VI)
were investigated under visible light illumination. We found that the TCPP doping amount of
15 mg UNT (15-UNT) had a 10 times higher reduction rate of Cr(VI) than pristine UiO-66-NH2. The
optimal 15-UNT photocatalyst demonstrated the highest photocatalytic activity, and Cr(VI) was
completely removed within 80 min. In addition, the introduction of porphyrin not only enhanced
the absorption of light but also enabled the transport of photogenerated electrons from porphyrin to
UiO-66-NH2, which promoted the separation of charge carriers. Furthermore, the effects of factors
such as porphyrin content, pH and light source on the photocatalytic reduction performances of
UNT were also explored. Overall, this work presented a possible relationship between the crystal
structures and the performance of UNT.

Keywords: photocatalytic reduction; porphyrin; UiO-66-NH2; hexavalent chromium

1. Introduction

With the development of human society, various heavy metal ions in industrial wastew-
ater have caused great harm to both the environment and human health [1,2]. Among
the many toxic metal ions, Cr(VI) is one of the common heavy metal pollutants in the
environment, which mainly originates from the metallurgical, textile and pharmaceuti-
cal industries. Cr(VI) is a toxic and carcinogenic metal ion that causes the human body
complications, such as liver function damage and lung congestion. The best method of
eliminating hazardous Cr(VI) is to reduce it to less hazardous Cr(III) and precipitate it [3–5].
Nowadays, some techniques, such as adsorption, electrocatalysis and photocatalysis, have
been used to eliminate Cr(VI) from wastewater [6–8]. Photocatalysis is considered to be one
of the most efficient methods due to its many advantages, such as convenient operation,
non-pollution and recycling. Thus, it has been widely employed in the environmental field.

Nowadays, several catalytic systems have been reported for the photoreduction of
Cr(VI). The metal–organic framework (MOF) is a type of periodic porous crystal mate-
rial formed by organic ligands and metal ions [9]. In particular, MOFs have received
widespread attention due to their unique advantages, such as large specific surface area,
high crystallinity, tunable framework structure and thermal stability [10]. Using MOFs
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as photocatalysts not only preserves the nanostructure of the metal–oxygen clusters, but
its abundance of metal nodes and variety of organic ligands also allow for fine-tuning
and design at the molecular level. For instance, Wang et al. prepared MIL-125 (Ti) and
NH2-functionalized MIL-125 (Ti) via a simple solvothermal method and investigated their
performance for the photocatalytic reduction of Cr(VI) [11]. Additionally, Liang et al. have
reported an amino-modified MIL-68(In) (MIL-68(In)-NH2), a targeted photoactive cata-
lyst, which can effectively shift the light absorption edge to the visible region by briefly
introducing the amino group into the organic ligand [12]. Consequently, MOFs have been
widely used in the field of catalysis [13–15].

UiO-66 consists of Zr4+ and dicarboxylic acid ligands, and has excellent stability over a
wide pH range [16,17]. It has been widely reported as a very popular photocatalyst. Due to
limited charge separation and low light utilization, the UiO-66 exhibits poor photocatalytic
performance. In order to improve its photoactivity, two main processes are carried out to
modify UiO-66. One involves using other semiconductors (such as g-C3N4 [18], BiOBr [19]
and ZnIn2S4 [20]) to compound with UiO-66, forming a heterojunction structure. For
example, Shen et al. synthesized RGO-UiO-66 by the self-assembly of electrostatically
derived UiO-66-NH2 with graphene followed by hydrothermal reduction [21]. Compared
to UiO-66-NH2, this nanocomposite showed enhanced photocatalytic activity in the re-
duction process of Cr(VI). Moreover, Yi et al. simply prepared Z-scheme g-C3N4/UiO-66
heterojunctions constructed by 3D UiO-66 and 2D g-C3N4 sheets via ball milling [6]. Cr(VI)
reduction was also achieved with simulated wastewater prepared from tap water and lake
water, simulating seawater and leather tannery wastewater.

The second method of improving photoactivity is to introduce different functional
groups on the ligands of MOFs (such as –NH2 [22] and –OH [23]) to improve light ab-
sorption and electron-hole separation efficiency [24]. For instance, Xie et al. designed
UiO-66-(OH)2 for the photocatalytic reduction of Cr(VI), which achieved a 100% reduction
of Cr(VI) using the high catalytic reduction capacity of nanoscale Zr–O clusters and the
visible light photoexcitation capacity of 2,5-dihydroxyterephthalic acid [25]. Shen et al. also
successfully synthesized UiO-66-X (X = H, NH2, NO2, Br) and tested its photocatalytic
activity for the reduction of Cr(VI) in water treatment, demonstrating that different ligand
substituents have significant effects on the photocatalytic activity of UiO-66 [26]. There is
a clear structure–photocatalytic activity relationship between the electronic character of
the attached substituents and the reaction rate, whereby the electron-donating substituents
lead to superior photocatalytic activity of UiO-66, while the electron-absorbing substituents
weaken the photoreactivity of UiO-66.

Porphyrin (TCPP) has more carboxyl groups than terephthalic acid, and it is more
likely to be protonated for absorbing negatively charged Cr2O7

2−. With visible light
irradiation, electrons can transfer from TCPP to the Zr–O cluster, enhancing photo-induced
charge carrier separation necessary to reduce Cr(VI). Feng et al. prepared J-aggregated
aggregated MOFs using 5,15-di(3,4,5-trihydroxyphenyl)porphyrin reacted with zirconium
ions to facilitate the production of singlet oxygen [27]. However, synergistic photocatalytic
water treatment between TCPP and UiO-66-NH2 has not yet been reported.

Therefore, a simple solvothermal synthesis method was employed to fabricate the
TCPP-modified UiO-66-NH2. The introduction of TCPP enables electrons to transfer
from the ligands to the central zirconium–oxygen cluster. The visible light photocatalytic
performance test revealed that UNT was highly effective at reducing Cr(VI). Additionally,
the influence of factors such as pH and light source were systematically studied. It was
finally proposed that Cr(VI) reduction processes may follow a specific mechanism. This
work will contribute insights into the fabrication of prospective UiO-66-NH2 photocatalysts
to deal with Cr(VI) pollution in water under the sunlight.



Catalysts 2023, 13, 1073 3 of 16

2. Results and Discussion
2.1. XRD Analysis

The crystalline structure of the samples was analyzed by X-ray diffraction (XRD). For
the pure UiO-66-NH2, the diffraction peaks at 7.3◦, 8.5◦, 17.1◦, 25.8◦ and 30.8◦ correspond
to (111), (200), (400), (600) and (711) crystal planes, respectively (Figure 1) [28]. After
TCPP was introduced, the characteristic peaks from UNT-5 to UNT-20 were similar to
UiO-66-NH2, indicating that TCPP does not affect the structure of the MOF material.

Catalysts 2023, 13, x FOR PEER REVIEW 3 of 17 
 

 

2. Results and Discussion 
2.1. XRD Analysis 

The crystalline structure of the samples was analyzed by X-ray diffraction (XRD). For 
the pure UiO-66-NH2, the diffraction peaks at 7.3°, 8.5°, 17.1°, 25.8° and 30.8° correspond 
to (111), (200), (400), (600) and (711) crystal planes, respectively (Figure 1) [28]. After TCPP 
was introduced, the characteristic peaks from UNT-5 to UNT-20 were similar to UiO-66-
NH2, indicating that TCPP does not affect the structure of the MOF material. 

 
Figure 1. XRD patterns of UiO-66-NH2 and UNTs. 

2.2. FT-IR Analysis 
The FT-IR spectra of the prepared photocatalysts were compared in the wave number 

range of 2000−1000 cm−1 (Figure 2). The peak around 1722 cm−1 was the result of carboxyl 
group stretching vibrations in TCPP, and N–H bond stretching vibrations caused the peak 
at 1606 cm−1 [29]. Moreover, the weak band at 1508 cm−1 represented the C=C tensile 
vibration peak in the benzene ring, and the peak around 1657 cm−1 was attributed to the –
NH2 bending vibrational peak [30]. Additionally, the bands at 1400 cm−1 and 1262 cm−1 
could be assigned to the C–N stretching vibration and C–H bending, respectively. 
Compared to pure TCPP, the peak at 1722 cm−1 disappeared in UNTs, indicating the 
coordination between –COOH and metal ions. The above results suggest that the TCPP 
may be successfully loaded on the UiO-66-NH2. 

 
Figure 2. FT−IR of the UiO-66-NH2, TCPP and UNTs. 

10 20 30 40 50 60 70 80

In
te

ns
ity

 (a
.u

.)

2 Theta (degree)

UiO-66-NH2

5-UNT

7-UNT

11-UNT

15-UNT

20-UNT

2000 1800 1600 1400 1200 1000

TCPP

20-UNT

15-UNT

11-UNT

7-UNT

Tr
an

sm
itt

an
ce

 (%
)

Wavenumber (cm-1)

UiO-66-NH2

5-UNT

1722 1606 1262

1657 1508 1400

Figure 1. XRD patterns of UiO-66-NH2 and UNTs.

2.2. FT-IR Analysis

The FT-IR spectra of the prepared photocatalysts were compared in the wave number
range of 2000−1000 cm−1 (Figure 2). The peak around 1722 cm−1 was the result of carboxyl
group stretching vibrations in TCPP, and N–H bond stretching vibrations caused the
peak at 1606 cm−1 [29]. Moreover, the weak band at 1508 cm−1 represented the C=C
tensile vibration peak in the benzene ring, and the peak around 1657 cm−1 was attributed
to the –NH2 bending vibrational peak [30]. Additionally, the bands at 1400 cm−1 and
1262 cm−1 could be assigned to the C–N stretching vibration and C–H bending, respectively.
Compared to pure TCPP, the peak at 1722 cm−1 disappeared in UNTs, indicating the
coordination between –COOH and metal ions. The above results suggest that the TCPP
may be successfully loaded on the UiO-66-NH2.
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Figure 2. FT−IR of the UiO-66-NH2, TCPP and UNTs.
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2.3. XPS Analysis

The surface elemental compositions and electronic structures of UiO-66-NH2 and
15-UNT were examined by XPS. As shown in Figure 3a, the characteristic peaks at 531.1,
399.1, 284.1 and 182.1 eV correspond to O 1s, N 1s, C 1s and Zr 3d, respectively, which
indicated the presence of O, N, C and Zr elements according to the survey XPS spectrum.
As shown in Figure 3b, the N 1s spectra of UiO-66-NH2 at 398.8 eV and 15-UNT at 398.9 eV
were attributed to the -NH2 group, which indicate the presence of –NH2 in 15-UNT. In
addition, as shown in Figure 3c, the characteristic peaks at 184.6 and 182.3 eV correspond to
Zr 3d3/2 and Zr 3d5/2, respectively, and the binding energy of Zr 3d3/2 and Zr 3d5/2 shifted
towards higher values, implying that a Zr–O coordination bond may be formed between
UiO-66-NH2 and TCPP. The O 1s spectrum is also shown in Figure 3d. The 15-UNT peak at
530.9 eV was attributed to the O–C bond. After the combination of UiO-66-NH2 with TCPP,
the binding energy of the O 1s of the O–C counterpart decreased from 531.1 eV to 530.9 eV,
which indicates that the distribution of its electron cloud was changed. All in all, the above
results prove the successful preparation of UNT.
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2.4. UV–Vis Analysis

As shown in Figure 4a, the absorption edge of UiO-66 was at about 300 nm. While
terephthalic acid was replaced by NH2-BDC, there was a redshift in the absorption edge
of UiO-66-NH2 at 450 nm. The absorption edge of UNT was also significantly shifted
to 700 nm in contrast to UiO-66-NH2. Collectively, these results indicate that the light
response of the samples could be improved by changing the ligand. The UNT improved
the light absorption for longer wavelengths, which correlated with the introduction of
TCPP. The UNT retained the specific peaks (Q band) that were assigned to TCPP [31]; this
phenomenon indicates that the inner ring of TCPP had not changed. We also found that the
light absorption capacity of UNT increased as porphyrin content increased, and, specifically,
20-UNT had the strongest light absorption capacity. The above results prove that TCPP
was successfully decorated in UiO-66-NH2. This observation is also consistent with the
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XRD and FT-IR of the samples. Moreover, the band gap energies (Eg) were computed with
the Tauc plots (Figure 4b). Here, the UiO-66-NH2 and 15-UNT were estimated to be about
2.92 eV and 2.68 eV, respectively. These values are in agreement with the values reported in
other works [32].
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2.5. SEM Analysis

According to the scanning electron microscope images, UiO-66-NH2 appeared with
octahedral morphology and particle sizes of about 100 nm (Figure 5), which was similar to
a previous report [33]. As shown in Figure 5a–c, the particle size of the crystals remains
constant at around 100 nm when TCPP is added in amounts below 11 mg, and the apparent
octahedral “cone” form can be seen.
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As shown in Figure 6a–c, the particle size distribution plots showed that the particle
sizes of UiO-66-NH2, 5-UNT and 7-UNT were roughly 100 nm, 103 nm and 104 nm,
respectively, with minor variations in particle size. When the content of TCPP was greater
than 11 mg, the morphology of UNT began to slowly deform, the “rounded” crystal
structure started to appear, and the grain size tended to become larger (Figure 5d–f). In
addition, as shown in Figure 6d–f, the particle size distribution plots can be seen to be
roughly 108 nm, 110 nm and 123 nm for 11-UNT, 15-UNT and 20-UNT, respectively. Lastly,
the 20-UNT displayed an irregular shape and its particle sizes increased.
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2.6. Nitrogen Sorption Analysis

A type I curve was found to exist for both 15-UNT and UiO-66-NH2 samples at 77 K
(Figure 7a), implying that the samples possessed a microporous structure. With the addition
of TCPP to UiO-66-NH2, the adsorption isotherm still maintained the type I isotherm, but
the BET-specific surface area of 15-UNT decreased from 852.6 to 736.8 m2/g as compared
to pure UiO-66-NH2. A possible reason to explain this observation is that the loading of
TCPP increased the surface roughness and reduced the smoothness of the surface, which
decreased the specific surface area. However, the specific surface area of 15-UNT did not
change significantly, indicating that the introduction of TCPP had little effect on the specific
surface area. Furthermore, the existence of a microporous structure in the 15-UNT was
confirmed by the pore size distribution plots (Figure 7b).
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2.7. Photocatalytic Performance

UNT was investigated for its photocatalytic performance by reducing 100 ppm Cr(VI)
with full light illumination (Figure 8). Theoretically, the adsorption equilibrium should
be reached before the photocatalytic reaction; therefore, we performed 180 min dark ad-
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sorption experiments on the 15-UNT and found that it reached the adsorption equilibrium
point at 60 min (Figure 8a). From the 5-UNT to the 15-UNT, with increasing TCPP content,
Cr(VI) photocatalytic reduction performance improved (Figure 8b). However, the 20-UNT
did not increase significantly compared with the 15-UNT. Therefore, in this experiment, we
further investigated the sample performance of 15-UNT.
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Figure 8. (a) 15−UNT dark adsorption of Cr(VI). (b) Photocatalytic reduction performance for
100 ppm Cr(VI) under full light.

Notably, it had been reported in the literature that the reduction of Cr(VI) was suscep-
tible to the chemical environment of the system, especially to changes in pH [34]. Therefore,
we used 15-UNT to reduce Cr(VI) in a photocatalytic manner under different pH values
(tested pH = 1, 3, 5, 7 and system’s original pH). With the increase of acidity, Cr(VI) became
more efficient for photocatalytic reduction (Figure 9a). It was observed that Cr(VI) was
nearly reduced at the 80 min time point at pH = 1. Additionally, under the pH = 1 condi-
tion, the 15-UNT had the largest slope and the kinetic constant, k, was 5.9 × 10−4 min−1,
which was 18.43 times the constant value at pH = 3 and 29.5 times the value at original
pH (Figure 9b,c). The gradient color change of the system during the reaction is shown in
Figure 9d. From 0 min to 80 min, the color gradually became lighter. In the light condi-
tion at 80 min, the solution became colorless, indicating that the 15-UNT has an excellent
reduction property for hexavalent chromium.

The light waves below 420 nm are filtered out with a filter and then the property of
the catalyst is measured. Under visible light irradiation, 15-UNT still maintained excel-
lent photocatalytic reduction performance, reaching a degradation rate of 100% within
120 min (Figure 10a,c). The value of the kinetic constant, k, for 15-UNT was 10 times that of
UiO-66-NH2 (Figure 10b,d). Additionally, the experimental study showed that the photore-
duction capacity could be improved by introducing TCPP in the UiO-66-NH2 system.
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In order to investigate the removal of Cr(VI) by 15-UNT under visible light, XPS
analysis of 15-UNT was carried out before and after the reaction. As shown in Figure 11a,
the survey XPS spectrum of the reacted samples appeared as characteristic peaks at 576.1,
531.1, 399.1, 284.2 and 182.2 eV, which corresponded to Cr 2p, O 1s, N 1s, C 1s and
Zr 3d, respectively. This was followed by deconvolution integration peaks for Cr 2p,
which corresponded to Cr 2p3/2 at 576.9 and 580.2 eV and to Cr 2p1/2 at 586.7 and
589.6 eV (Figure 11b). In addition to these findings, the characteristic peaks at 576.9
and 586.7 eV respond to Cr(III), while the peaks at 580.2 and 589.6 eV correspond to Cr(VI).
The above results demonstrate the simultaneous presence of Cr(VI) and Cr(III) on the
surface of 15-UNT after photocatalytic reduction as well as the presence of the reduction of
Cr(VI) to Cr(III).
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Moving on, Figure 12 shows the reusability and stability of the 15-UNT. There was no
significant decrease in the second and third rounds of cycle experiments, indicating that
15-UNT has a stable photocatalytic reduction performance (Figure 12a). Simultaneously,
the stability of 15-UNT was further confirmed by XRD, SEM, FT-IR and UV–Vis analyses
(Figure 12b–f). As shown in Figure 12b, the XRD pattern of 15-UNT before and after the
reaction showed that the crystal structure did not change appreciably. The diffraction peaks
at 7.3◦, 8.5◦, 17.1◦, 25.8◦ and 30.8◦ correspond to the (111), (200), (400), (600) and (711) crystal
planes of 15-UNT, respectively. As can be seen in Figure 12c,d, after the three cycles, the
morphology of 15-UNT remained stable. Furthermore, as shown in Figure 12e, it was found
that the -NH2, N–H, C=C, C–N and C–H absorption peaks located at 1657 cm−1, 1606 cm−1,
1508 cm−1, 1400 cm−1 and 1262 cm−1, respectively, did not change significantly through
the FT-IR spectra of 15-UNT before and after the reaction. The 15-UNT also retained the
specific peaks (Q band) that were assigned to TCPP. Figure 12f showed the leaching of
TCPP before and after the reaction, with no changes in the position of the characteristic
absorption peak in the Q band of TCPP and without any significant intensity decrease.
Collectively, the results here show that the structure of 15-UNT did not change before and
after the reaction.
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the reaction.

3. Photocatalytic Reduction Mechanism

Photoluminescence (PL) measurements were useful for understanding the recombina-
tion of photogenerated carriers. The higher the photoluminescence intensity, the higher
the efficiency of the carrier complex efficiency. According to Figure 13a, the maximum
emission for UiO-66-NH2 was observed at around 450 nm. Comparatively, the PL intensity
of 15-UNT showed a significant decrease, which indicates that the carrier recombination
rate is lower than UiO-66-NH2. Time-resolved photoluminescence (TRPL) spectroscopy
was applied to monitor charge carrier dynamics (Figure 13b). The fluorescence lifetimes
of UiO-66-NH2 and 15-UNT were obtained by second-order fitting, as shown in Table 1.
UiO-66-NH2 has two time constants, which are τ1 = 1.91 ns and τ2 = 9.63 ns. The two time
constants for 15-UNT are τ1 = 1.36 ns and τ2 = 9.69 ns, respectively. The τavg (average
lifetimes of the carriers) for UiO-66-NH2 and 15-UNT were calculated to be 1.44 and 3.98 ns,
respectively. The results confirmed that the decay time of 15-UNT was faster than that
of UiO-66-NH2 and that the photogenerated carriers of 15-UNT had a longer lifetime,
suggesting that the loading of TCPP was beneficial in enhancing the photocatalytic activity
of UiO-66-NH2.
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Table 1. Fluorescence lifetime for UiO-66-NH2 and 15-UNT.

Sample τ1 τ2

UiO-66-NH2 1.91 ns 9.63 ns
15-UNT 1.36 ns 9.69 ns

The photocurrent test showed that 15-UNT had a stronger photocurrent intensity
than UiO-66-NH2 (Figure 14a), which indicates that the 15-UNT has a better carrier
separation efficiency under light illumination. Usually, a smaller arc radius represents
a smaller impedance. In this study, the 15-UNT possessed a smaller arc radius than
UiO-66-NH2 (Figure 14b), suggesting that the 15-UNT has a weaker charge transfer
impedance and that separation of electrons from holes is more likely to occur.
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Furthermore, through Mott–Schottky (MS) tests at different frequencies, the flat
band potential was calculated for the samples (Figure 14c,d). C−2 and potential were



Catalysts 2023, 13, 1073 12 of 16

found to be positively correlated, meaning that the photocatalysts are n-type semiconduc-
tors. In addition, the flat band potentials were determined for UiO-66-NH2 and 15-UNT
to be −1.00 V and −1.10 V, respectively. In accordance with the formula E(NHE) =
E(Ag/AgCl) + 0.0591 × pH + 0.1976 [35], E(Ag/AgCl) was the flat-band potential mea-
sured in this experiment. In this case, UiO-66-NH2 and 15-UNT at the normal hydrogen
electrode were found at −0.40 V and at −0.50 V, respectively. Due to the fact that the
flat band potential for n-type semiconductors is positive 0.2 V over the conduction band
potential [35], the CB of UiO-66-NH2 and 15-UNT were calculated for −0.60 V and −0.70 V,
respectively. These conduction bands were much higher than the reduction potential of
Cr(VI). Based on the formula VB = CB + Eg [35], VB values for UiO-66-NH2 and 15-UNT
were calculated to be 2.32 V and 1.98 V, respectively.

On the basis of the above analysis, the possible explanation for hexavalent chromium
reduction by the UNT via photocatalysis was provided in Figure 15. Under acidic condi-
tions, the amino group of UiO-66-NH2 and the carboxy group of TCPP will be protonated,
which means the UNT will be positively charged. Furthermore, the UNT will adsorb
the negatively charged Cr(VI) through electrostatic attraction. Meanwhile, the TCPP and
UiO-66-NH2 can produce photogenerated electrons to reduce Cr(VI) under light irradiation.
For the TCPP, its photogenerated electrons have a higher potential than UiO-66-NH2. This
result indicates that a portion of the electrons can transfer to UiO-66-NH2 through the
ligand. At the same time, the above electron transfer process promotes the electron-hole
separation on the UNT, thus facilitating photocatalytic Cr(VI) reduction.
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4. Materials and Methods
4.1. Chemicals and Reagents

NH2-BDC (C8H7NO4, 98.0%) was purchased from Aladdin Reagent Co., Ltd. (Shang-
hai, China). Zirconium chloride (ZrCl4, 98.0%), terephthalic acid (C8H6O4, 99.0%), DMF
(C3H7NO, 99.0%), acetate (CH3COOH, 99.0%), methanol (CH3OH, 99.0%), porphyrin
(TCPP, C48H30N4O8, 97.0%) and diphenylcarbazide (C13H14N4O) were purchased from
Macklin Chemistry Co., Ltd. (Shanghai, China), while Phosphoric acid (H3PO4, AR), Sulfu-
ric acid (H2SO4, AR) and Sodium hydroxide (NaOH, AR) were obtained from the Beijing
Chemical Industry Group Co., Ltd. (Beijing, China). All these chemicals were directly used
without further purification.
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4.2. Synthesis of UiO-66-NH2 and x-UNT

UiO-66-NH2 was synthesized based on the existing literature [36]. In DMF (6.0 mL),
ZrCl4 (50.0 mg) and organic ligand NH2-BDC (51.0 mg) were dissolved. Subsequently, in
an ultrasonic bath, the solution was added with 1.1 mL of acetic acid for 30 min, followed
by further ultrasonic treatment. After this was completed, an autoclave lined with Teflon
was used to bottle the solution, followed by an overnight heating process at 120 ◦C. As
soon as the reaction was complete, the solution was cooled to room temperature. After
centrifugation for three times with DMF and absolute methanol, the sample was dried at
60 ◦C for 12 h in a vacuum oven.

The UNT was prepared by using 5 mg, 7 mg, 11 mg, 15 mg and 20 mg TCPP in the
DMF solution, respectively. Thereafter, NH2-BDC (51.0 mg) and ZrCl4 (50.0 mg) were
added to the solutions, and the subsequent operation was the same as UiO-66-NH2. The
composites were denoted as 5-UNT, 7-UNT, 11-UNT, 15-UNT and 20-UNT, respectively.

4.3. Photocatalytic Measurements

The K2Cr2O7 was used as a simulated pollutant in the photocatalytic reduction experi-
ments. Typically, Cr(VI) model was made by 25.0 mg photocatalysts mixed with 50.0 mL
100.0 mg L−1 K2Cr2O7 aqueous solution. By adding H2SO4 or NaOH solutions, the pH of
the solution was adjusted. Moreover, the photocatalytic performance tests were carried
out under the illumination of a 500 W xenon lamp (XE-JY500, Beijing NBET Technology
Co., Ltd., Beijing, China), and its filter had a wavelength cut-off of 420 nm. The system was
exposed to light with stirring after adsorption–desorption equilibrium had been achieved.
Following this, 5.0 mL of solution was extracted every 20 min. A supernatant of 2 mL
was collected for further analysis after centrifuging at 8000 rpm for 5 min. The method
of diphenyl carbazide (DPC) was used to determine the concentration of the residual
Cr(VI) [37], and the photocatalytic reaction efficiency was obtained via Equation (1).

η =C/C0 (1)

where η is photocatalytic performance efficiency, C0 is the initial absorbance of the pollutant
and C is the absorbance of pollutants at different times.

A pseudo-first-order kinetic model was calculated via Equation (2) to make further
comparisons with the photocatalytic efficiencies.

ln (C0/C)= kt (2)

where C0 and C are the initial concentration and the remaining concentration of RhB or TC
at each time point, respectively. k is the kinetics rate constant, and t is the reaction time.

4.4. Characterization

The crystalline properties of all as-synthesized samples were determined via X-ray
diffraction (XRD, Bruker D8 Advance, Billerica, MA, USA) with a Cu Kα radiation source
(λ = 0.15406 nm) in the 2θ range of 5–80◦ at a rate of 2◦·min−1. An FT-IR spectrometer
(PerkinElmer Spectrum 100, Waltham, MA, USA) was used to obtain information about the
function groups. In addition, scanning electron microscopy (SEM, Field Emission Scanning
Electron Microscope SU8010, Tokyo, Japan) was used to examine the morphologies of
the samples. Moreover, the optical properties and band gap energies were determined
via UV–VIS diffuse reflectance spectra (DRS, Shimadzu UV-3900, Kyoto, Japan), and
the photoluminescence (PL) spectra of all photocatalysts were investigated by using a
steady-state/transient fluorescence spectrometer (F-4700, Hitachi, Tokyo, Japan). The
excitation wavelength was 365 nm. Lastly, in an Autosorb-1 nitrogen adsorption apparatus
from Quantachrome, the surface areas were analyzed with the Brunauer–Emmett–Teller
(BET) method.
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4.5. Electrochemical Tests

The electrochemical tests were measured on a widespread three electrode mode by the
electrochemical workstation (Huachen CHI-760E, Shanghai, China), and Na2SO4 solution
with a concentration of 0.1 M was used as the electrolyte. The photocurrent response was
recorded by using a 500 W xenon lamp (Solar-500, Beijing NBET Technology Co., Ltd.,
Beijing, China) equipped with a 420 nm cutoff filter. The working electrode was prepared
as follows: 10 mg of catalysts was first mixed with 1 mL of DI water to produce a slurry.
For counter electrodes, platinum electrodes were used; whereas, for reference electrodes,
saturated Ag/AgCl electrodes were used. A range of voltages between −0.6 and 0.8 V was
measured with Mott–Schottky tests. EIS tests were also conducted at the frequencies of 500,
750 and 1000 Hz.

5. Conclusions

In summary, porphyrin-modified UiO-66-NH2 was obtained via a solvothermal pro-
cess, which enhanced the light adsorption ability and the photocatalytic efficiency. In
addition, the photocatalytic performance remains essentially unchanged under visible and
full light irradiation. We have also investigated the removal of Cr(VI) at different pH values.
Under the visible light irradiation and pH = 1, the reduction rate of hexavalent chromium
by 15-UNT is 10 times greater than that of the original UiO-66-NH2 and eliminates 100%
of the Cr(VI) within 80 min. Based on the test of PL and the electrochemical analysis, the
introduction of porphyrin in UiO-66-NH2 facilitates the photo charge carriers’ migration
and separation. Overall, this work provides a reference for the modification of MOF photo-
catalysts from the perspective of ligands and provides additional insights into the study of
the synergistic photocatalytic performance of adsorption and photosensitization.
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