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Abstract: The control of stereo-, regio-, and chemo-selectivity in transition-metal-catalyzed coupling
reactions is a key topic in organic synthesis. Several methods for controlling selectivity have been
reported thus far. On the other hand, the reduction of catalyst loading during reactions is one of
the most important issues in organic synthesis from the standpoint of green sustainable chemistry.
As another advantage of reducing catalyst loading, the expression of reaction selectivity and the
substituent effect caused by the reduction of catalyst loading to the parts-per-million (ppm) level in
various catalytic reactions is presented herein.

Keywords: selectivity control; catalyst loading; ppm

1. Introduction

The control of stereo-, regio-, and chemo-selectivity in transition-metal-catalyzed
coupling reactions is a key topic in organic synthesis. Several methods for controlling
selectivity have been reported thus far. For example, stereoselectivity has been controlled
using chiral ligands in most cases [1–5]. Regarding the control in regioselectivity [6–14],
Yudin et al. reported the control of regioselectivity in allylic amination with and without the
base [13]. Catalyst-dependent regioselective reactions have also been reported; Fairlamb
et al. achieved site-selective cross-coupling of 2,4-dibromopyridine using specific types of
catalysts, such as mononuclear, clusters, or nanoparticles [6]. Regioselective reactions of
ligands have been the most extensively studied, and it has been reported that the existence
or type of ligand affects regioselectivity [8–12,14]. With regard to chemoselectivity [15–22],
Newman et al. achieved the selective cross-coupling reaction of phenyl esters with alkyl
boranes by controlling decarbonylation with the ligand [16]. In addition, the selectivity
control of the Ni-catalyzed Ullmann coupling reaction with and without Pd [17], the control
of Suzuki and Buchwald–Hartwig coupling reactions using aryl halides [18], and the control
of Hiyama and Ullmann coupling reactions using the valence of Pd nanoparticles [19] have
been reported to date. This study reports the expression of selectivity by reducing the Pd
content to the parts-per-million (ppm) level.

Typically, catalytic activity increases with decreasing catalyst concentration in reactions
that are catalyzed by molecular catalysts, in situ-generated metal nanoparticles, and metal
nanoparticles, which act as a reservoir of an active form of the catalyst [23–30], probably
because the aggregation of metal species is more likely to occur by increasing the metal
content in the reaction solution. Therefore, it is possible to select the reaction field in the
solution and on the surface of the nanoparticles by changing the metal content. That is, in
the case of a high amount of Pd, Pd easily aggregates and the reaction occurs on the surface
of the Pd aggregates. In contrast, the reaction occurs in the solution phase in the case of a
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low amount of Pd. Indeed, we observed the expression of substrate-dependent selectivity
at the mol ppm level of Pd loading in allylic arylation (Scheme 1) [31]. In this paper, it is
proposed that the reaction with the blanch-type substrate proceeds in solution phase, and
the linear-type substrate reacts on the surface of the nanoparticle.
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relative to Pd) in THF at 50 °C for 24 h [21], quantitative formations of the coupling 
product were achieved in both cases. In contrast, when Pd loading was decreased to 150 
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2. Results and Discussion

Based on the above-mentioned assumption, we first investigated chemoselectivity in
the reaction of aryl halide. When 15 µmol of Pd(OAc)2 (3.0 mol% relative to aryl bromide)
was heated in ethylene glycol in the presence of NaOH at 100 ◦C for 5 h, and subsequently
5-bromo-1,3-benzodioxole was added and heated at 100 ◦C for 5 h, the Ullmann coupling
reaction occurred to give 5,5′-bi-1,3-benzodioxole (1) in an 83% yield. Even in the presence
of dibenzo[a,e]cyclooctene (DCT, 6.0 mol% relative to aryl bromide), 1 was obtained in an
88% yield, indicating that the Ullmann coupling reaction proceeded on the surface of the
Pd aggregates (Crabtree test). In contrast, hydrodebromination afforded 1,3-benzodioxole
(2) after heating aryl bromide in the presence of 50 mol ppm of Pd(OAc)2 (Scheme 2).
No 2 was obtained in the presence of DCT, indicating that hydrodebromination proceeded
in the solution phase.
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On the other hand, the lower the catalyst concentration used, the slower the reaction
rate, because the reaction rate depended on the collision frequency. That is, a subtle dif-
ference in the reaction rate was expected to become more observable by decreasing the
catalyst concentration, thereby allowing the expression of selectivity in the reaction. To
confirm the aforementioned scenario, the Suzuki coupling reaction, using bromobenzene
or phenyl trifluoromethanesulfonate, was selected as a model reaction, because it is well
known that the reactivity of these substrates are similar [32]. When the Suzuki coupling
reaction was performed in the presence of 2.0 mol% of Pd(OAc)2 and PCy3 (1.2 equivalent
relative to Pd) in THF at 50 ◦C for 24 h [21], quantitative formations of the coupling product
were achieved in both cases. In contrast, when Pd loading was decreased to 150 mol ppm,
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the coupling reaction occurred smoothly only in the case of bromobenzene, indicating that
reaction selectivity can be controlled by changing the catalyst concentration (Scheme 3a).
This result was derived from the difference in the rate of transmetalation step, because the
oxidative addition of aryl triflate to Pd(0) species is faster than that of aryl bromide [33].
Indeed, the coupling reaction with 4-methylphenylboronic acid took place smoothly in
the case of p-dibromobenzene to give 4,4′′-dimethyl-1,1′:4′,1′′-terphenyl (4) in an 85%
yield. In contrast, only 4′-methylbiphenyl-4-yl triflate (3c) was obtained in an 11% yield
in the case of 4-bromophenyl trifluoromethanesulfonate (Scheme 3b), suggesting that the
transmetalation did not proceed after the oxidative addition in the C–OTf bond occurred
preferentially. Furthermore, when the reaction of 4-bromophenyl trifluoromethanesulfonate
with 4-methylphenylboronic acid was performed using 2.0 mol% of Pd(OAc)2 and PCy3
(1.2 equivalent relative to Pd) in THF at 50 ◦C for 24 h, 3c and 4 were obtained in 91% and
4% yields, respectively, whereas at 60 ◦C, the yields were 75% and 25%, respectively. These
results are consistent with the assumption that the transmetalation of the Pd–OTf bond is
difficult to facilitate.
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These data prompted us to consider that important information about the reaction
mechanism could be obtained by decreasing the catalyst concentration. To confirm the
above-mentioned assumption, the Suzuki coupling reaction in aqueous KOH solution was
selected as a model reaction because this reaction occurs smoothly using mol ppm Pd
content. When 1.0 mol% of Pd(OAc)2 was used in the Suzuki coupling reaction of several
aryl bromides with arylboronic acids, quantitative yields of the products were obtained,
even when a substituent was introduced to either the aryl bromide or the arylboronic acid
(Table 1, entries 1–5). No substituent effect of aryl bromide was observed, even at 40 mol
ppm of Pd(OAc)2 (entries 6–8). In contrast, at 40 mol ppm of Pd(OAc)2, the reaction did
not proceed smoothly using the arylboronic acid with an electron-withdrawing group;
however, the coupling product was obtained in a quantitative yield via reaction with
arylboronic acids with electron-donating groups at 40 mol ppm (entries 6–10), which is
consistent with the fact that transmetalation with arylboronic acid is the rate-determining
step in the Suzuki coupling reaction of aryl bromides [34]. When the competitive reaction was
performed using 4-methoxyphenylboronic acid and 4-(trifluoromethyl)phenylboronic acid,
4-methoxybiphenyl (3f) and 4-(trifluoromethyl)biphenyl (3g) were obtained in 99% and 46%
yields, respectively. In the reaction of 4-bromotoluene with 4-(trifluoromethyl)phenylboronic
acid to give 4-methyl-4′-(trifluoromethyl)biphenyl (3e) in a 15% yield, 85% of 4-bromotoluene
was recovered and no other by-product was observed. These results are consistent with the
assumption that transmetalation is the rate-determining step. Furthermore, little effect of
steric hindrance was observed. Indeed, at 40 mol ppm of Pd(OAc)2, quantitative yields of
the products were obtained even when a methyl group was introduced at ortho-position to
either the aryl bromide or the arylboronic acid. Interestingly, when the Pd concentration
was reduced to 10 mol ppm, the substituent effect of the aryl bromide was also observed
(entries 11–13). In contrast, 4-methoxy-4′-methylbiphenyl (3d) and 3e were obtained in
44% and 94% yields, respectively, from the competitive reaction using 4-bromoanisole
and 4-bromobenzotrifluoride as the substrate. Although the reason why the reaction of
4-bromobenzotrifluoride proceeded smoothly is unclear, the results of non-competitive
and competitive experiments, as in Schmidt’s paper [35], are thought to reflect the rate-
determining step and the rate of oxidative addition (which is the first step in the reaction),
respectively. 4-Methoxy-4′-(trifluoromethyl)biphenyl was obtained in a 29% yield from
the reaction of 4-bromobenzotrifluoride with 4-methoxyphenylboronic acid using 10 mol
ppm of Pd(OAc)2, suggesting that the impurities in 4-bromobenzotrifluoride did not
retard the reaction. In addition, this result is consistent with the assumption that the
non-competitive experiment reflects the rate-determining step. The observed substituent
effect of aryl bromides at 10 mol ppm of Pd(OAc)2 may have originated from the rate of
the transmetalation step or the reductive elimination step [36,37]. These results suggested
that the change in the rate-determining step depending on the substrate combination could
be confirmed by reducing catalyst loading.

A similar trend was observed for the Hiyama coupling reaction in propylene gly-
col [38]. When 1.0 mol% of Pd(OAc)2 was used for the Hiyama coupling reaction of several
aryl bromides with aryltrimethoxysilanes in propylene glycol, the reaction proceeded
smoothly, although the yields varied slightly (Table 2, entries 1–5). In contrast, at 100 mol
ppm of Pd(OAc)2, the reaction hardly proceeded using 4-fluorophenyltrimethoxysilane, al-
though the coupling product was obtained in high yield by the reaction with
4-methoxyphenyltrimethoxysilane (entries 9 and 10). This result is consistent with the gen-
eral trend that transmetalation with arylsilane is the rate-determining step in the Hiyama
coupling reaction of aryl bromides [38,39]. At 10 mol ppm of Pd(OAc)2, the Hiyama cou-
pling reaction of 4-bromobenzotrifluoride did not proceed smoothly (entries 11–13). In the
competitive reaction using 4-bromotoluene and 4-bromobenzotrifluoride, 3a and 3g were
obtained in 6% and 24% yields, respectively. As in the Suzuki coupling reaction, opposite
tendencies were observed between competitive and non-competitive reactions. Because the
transmetalation of arylsilanolate with arylpalladium species bearing electron-withdrawing
groups is faster than that with arylpalladium species bearing electron-donating groups [40],
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the observed difference may have originated from the rate of the reductive elimination
step to produce the coupling product [37]. In allylic arylation, although similar yields were
obtained at the 100 mol ppm level of Pd, the substituent effect of arylboronic acid became
observable at 40 mol ppm of Pd loading (Table 3).

Table 1. The substituent effect in the Suzuki coupling reaction at different Pd amounts 1.
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11 10 mol ppm 3a H Me 65% 
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Br

R1

Si(OMe)3

R2

Pd(OAc)2

R1

R2

KF, propylene glycol,
100 °C, 1 h

+

0.50 mmol 0.75 mmol  
Entry Amount of Pd Product R1 R2 Yield 2 

1 1 mol% 3a Me H 81% 
2  3f MeO H 99% 
3  3g CF3 H 69% 
4  3d Me MeO 70% 
5  3h Me F 72% 
6 100 mol ppm 3a Me H 99% 
7  3f MeO H 99% 
8  3g CF3 H 93% 
9  3d Me MeO 86% 

Entry Amount of Pd Product R1 R2 Yield 2

1 1 mol% 3a Me H 81%
2 3f MeO H 99%
3 3g CF3 H 69%
4 3d Me MeO 70%
5 3h Me F 72%
6 100 mol ppm 3a Me H 99%
7 3f MeO H 99%
8 3g CF3 H 93%
9 3d Me MeO 86%

10 3h Me F <1% 3

11 10 mol ppm 3a Me H 90%
12 3f MeO H 87%
13 3g CF3 H 2% 4

14 3d Me MeO 93%
15 3h Me F 0% 3

1 The reaction was performed with aryl bromide (0.5 mmol), aryltrimethoxysilane (0.75 mmol), KF (1.5 mmol),
Pd(OAc)2, and propylene glycol (1 mL) at 100 ◦C for 1 h. 2 NMR yield. 3 4-Bromotoluene was recovered
quantitatively. 4 4-Bromobenzotrifluoride was recovered in 90% yield.
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Table 3. The substituent effect in allylic arylation at low Pd loading 1.
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1 The reaction was performed with allylic substrate (0.5 mmol), arylboronic acid (0.75 mmol), K2CO3 (1.5 mmol),
Pd(OAc)2, and H2O (1 mL) at 70 ◦C for 5 h. 2 NMR yield. 3 Allyl acetate was recovered in 68% yield.

3. Materials and Methods
3.1. General Comments

All chemicals were commercially available and used without further purification
unless otherwise mentioned. 1H NMR spectra in CDCl3 were recorded using a JEOL
ECZ400s spectrometer (JEOL, Tokyo, Japan). Chemical shifts in 1H NMR are reported in
δ ppm referenced to an internal tetramethylsilane standard (δ = 0).

3.2. Procedure for the Selective Reaction of 5-Bromo-1,3-Benzodioxole

5-Bromo-1,3-benzodioxole (100 mg, 0.5 mmol), NaOH (60 mg, 1.5 mmol), ethylene
glycol (1 mL), and a THF solution of Pd(OAc)2 (1.0 mM, 25 µL, 50 mol ppm) were added
to a screw-capped vial (No. 02, Maruemu Co., Osaka, Japan) with a stirring bar. After
stirring at 100 ◦C for 20 h, the reaction mixture was extracted eight times using diethyl
ether. The organic extract was dried over MgSO4 and concentrated under reduced pressure.
The crude material was analyzed using 1H NMR, and the yield of 1,3-benzodioxole (2) was
calculated to be 84% (Figure S2).

3.3. Procedure for the Substrate-Dependent Suzuki Coupling Reaction

Bromobenzene (87.5 mg, 0.5 mmol), 4-methylphenylboronic acid (102 mg, 0.75 mmol),
KF (87.2 mg, 1.5 mmol), THF (1 mL), and a THF solution of Pd(OAc)2 and PCy3 (Pd:
1.0 mM, 75 µL, 150 mol ppm; phosphine: 1.2 mM, 75 µL, 180 mol ppm) were added to a
screw-capped vial (No. 02, Maruemu Co., Osaka, Japan) with a stirring bar. After stirring
at 50 ◦C for 24 h, the reaction mixture was extracted eight times using chloroform. The
organic extract was dried over MgSO4 and concentrated under reduced pressure. The crude
material was analyzed using 1H NMR, and the yield of 4,4′′-dimethyl-1,1′:4′,1′′-terphenyl
(4) was calculated to be 85% (Figure S4).

3.4. General Procedure for Suzuki Coupling Reaction at Mol Ppm Level of Pd Loading

Bromobenzene (78 mg, 0.5 mmol), 4-methylphenylboronic acid (102 mg, 0.75 mmol),
TBAB (161 mg, 0.5 mmol), aqueous KOH solution (1.5 M, 1 mL), and a THF solution
of Pd(OAc)2 (0.5 mM, 20 µL, 20 mol ppm) were added to a screw-capped vial (No. 02,
Maruemu Co., Osaka, Japan) with a stirring bar. After stirring at 90 ◦C for 1 h, the reaction
mixture was extracted eight times using diethyl ether. The organic extract was dried over
MgSO4 and concentrated under reduced pressure. The crude material was analyzed using
1H NMR, and the yield of 4-methylbiphenyl (3a) was calculated to be 90% (Figure S3).
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3.5. General Procedure for Hiyama Coupling Reaction at the Mol Ppm Level of Pd Loading

4-Bromotoluene (85 mg, 0.5 mmol), trimethoxyphenylsilane (149 mg, 0.75 mmol), KF
(87 mg, 1.5 mmol), propylene glycol (1 mL), and a THF solution of Pd(OAc)2 (0.5 mM, 20 µL,
20 mol ppm) were added to a screw-capped vial (No. 02, Maruemu Co., Osaka, Japan)
with a stirring bar. After stirring at 100 ◦C for 1 h, the reaction mixture was extracted eight
times using diethyl ether. The organic extract was dried over MgSO4 and concentrated
under reduced pressure. The crude material was analyzed using 1H NMR, and the yield of
4-methylbiphenyl (3a) was calculated to be 88%.

3.6. General Procedure for Allylic Arylaton at the Mol Ppm Level of Pd Loading

α-Vinylbenzyl acetate (0.088 g, 0.5 mmol), 4-methylphenylboronic acid (102 mg,
0.75 mmol), aqueous K2CO3 solution (1.5 M, 1 mL), and a THF solution of Pd(OAc)2
(1.0 mM, 50 µL, 100 mol ppm) were added to a screw-capped vial (No. 02, Maruemu Co.,
Osaka, Japan) with a stirring bar. After stirring at 70 ◦C for 5 h, the reaction mixture was
extracted eight times using diethyl ether. The organic extract was dried over MgSO4 and
concentrated under reduced pressure. The crude material was analyzed using 1H NMR,
and the yield of (E)-3-(4-methylphenyl)-1-phenylpropene (4a) was calculated to be 66%
(Figure S10).

3.7. Compounds Data

5,5′-bi-1,3-benzodioxole (1) [CAS: 4791-89-3]: 1H NMR (CDCl3) δ = 6.96–6.99 (m, 4 H),
6.85 (d, J = 7.6 Hz, 2 H), 5.99 (s, 4 H); 13C NMR (CDCl3) δ 148.1, 146.8, 135.4, 120.4, 108.6,
107.6, 101.2.
1,3-benzodioxole (2) [CAS: 274-09-9]: 1H NMR (CDCl3) δ 6.86–6.81 (m, 4 H), 5.95 (s, 2 H);
13C NMR (CDCl3) δ 147.5, 121.7, 108.8, 100.7, 31.1.
4-Methylbiphenyl (3a) [CAS: 644-08-6]: 1H NMR (CDCl3) δ 7.60–7.55 (m, 2 H), 7.50–7.47
(m, 2 H), 7.43–7.39 (m, 2 H), 7.33–7.29 (m, 1 H), 7.25–7.20 (m, 2 H), 2.38 (s, 3 H); 13C NMR
(CDCl3) δ 141.1, 138.3, 136.9, 129.4, 128.7, 128.7, 126.9, 21.1.
4,4′′-dimethyl-1,1′:4′,1′′-terphenyl (4) [CAS: 97295-31-3]: 1H NMR (CDCl3) δ 7.64 (s, 2 H),
7.53 (d, J = 7.6 Hz, 2 H), 7.26 (d, J = 8.8 Hz, 3 H), 2.39 (s, 3 H); 13C NMR (CDCl3) δ 137.9,
137.2, 134.0, 129.6, 127.4, 127.0, 21.3.
4-Methoxybiphenyl (3f) [CAS: 613-37-6]: 1H NMR (CDCl3) δ 7.58-7.51 (m, 4 H), 7.42 (t,
J = 7.6 Hz, 2 H), 7.31 (t, J = 7.6 Hz, 1 H), 6.98 (d, J = 8.7 Hz, 2 H), 3.85 (s, 3 H); 13C NMR
(CDCl3) δ 159.1, 140.7, 133.7, 128.6, 128.0, 126.6, 126.6, 114.2, 55.3.
4-Trifluoromethylbiphenyl (3g) [CAS: 398-36-7]: 1H NMR (CDCl3) δ 7.76–7.68 (m, 4 H),
7.68–7.58 (m, 2 H), 7.51–7.38 (m, 3 H); 13C NMR (CDCl3) δ 144.7, 139.7, 129.3 (q, J = 32.3 Hz),
129.0, 128.2, 127.6, 127.4, 127.3, 125.6 (q, J = 3.2 Hz), 124.3 (q, J = 272.1 Hz).
4-Methoxy-4′-methylbiphenyl (3d) [CAS: 53040-92-9]: 1H NMR (CDCl3) δ 7.51 (d, J = 9.0 Hz,
2 H), 7.45 (d, J = 8.1 Hz, 2 H), 7.22 (d, J = 8.1 Hz, 2 H), 6.96 (d, J = 9.0 Hz, 2 H), 3.84 (s,
3 H), 2.38 (s, 3 H); 13C NMR (CDCl3) δ 158.9, 137.9, 136.3, 133.7, 129.4, 127.9, 126.6, 114.2,
55.3, 21.0.
4-Fluoro-4′-methylbiphenyl (3h) [CAS: 72093-43-7]: 1H NMR (CDCl3) δ 7.62–7.53 (m,
4 H), 7.51–7.42 (m, 2H), 7.37–7.33 (m, 1 H), 7.16–7.10(m, 2 H); 13C NMR (CDCl3) δ 163.8,
161.3, 140.3, 137.4 (d, J = 3.9 Hz), 128.9, 128.8 (d, J = 8.7 Hz), 127.4, 127.1, 115.9, 115.7 (d,
J = 28.8 Hz).
4-Methyl-4′-(trifluoromethyl)biphenyl (3e) [CAS: 97067-18-0]: 1H NMR (CDCl3) δ 7.67 (m,
4 H), 7.50 (d, J = 8.4 Hz, 2 H), 7.28 (d, J = 8.4 Hz, 2 H), 2.41 (s, 3 H); 13C NMR (CDCl3)
δ 144.6, 138.1, 136.8, 129.7, 129.2 (q, J = 32.3 Hz), 127.2, 127.1, 125.6 (q, J = 4.2 Hz), 124.3 (q,
J = 271.7 Hz), 21.1.
(E)-3-(4-methylphenyl)-1-phenylpropene (4a) [CAS: 134539-86-9]: 1H NMR (CDCl3) δ 7.13–7.37
(m, 9 H), 6.45 (dt, J = 15.2 Hz, 1 H), 6.34 (dt, J = 16 Hz, 1 H) 3.51 (d, J = 6.4 Hz, 2 H), 2.33 (s,
3 H); 13C NMR (CDCl3) δ 137.6, 137.1, 135.8, 130.9, 129.6, 129.3, 128.7, 128.6, 127.2, 126.2,
39.1, 21.2.
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(E)-3-(4-methoxyphenyl)-1-phenylpropene (4d) [CAS: 35856-80-5]: 1H NMR (CDCl3) δ 7.35
(d, J = 7.6 Hz, 2 H), 7.29 (t, J = 12.8 Hz, 2 H), 7.22–7.19 (m, 1 H), 7.16 (d, J = 8.8 Hz, 2 H), 6.86
(d, J = 8.8 Hz, 2 H), 6.43 (d, J = 15.6 Hz, 1 H), 6.34 (ddt, J = 6.4, 9.2, 12.8 Hz, 1 H), 3.80 (s,
3 H), 3.49 (d, J = 6.4 Hz, 2 H); 13C NMR (CDCl3) δ 158.1, 137.6, 132.3, 130.8, 129.8, 129.7,
128.6, 127.2, 126.2, 114.0, 55.4, 38.6.
(E)-1-phenyl-3-(4-trifluoromethylphenyl)propene (4e) [CAS: 723341-12-6]: 1H NMR (CDCl3)
δ 7.56 (d, J = 8.4 Hz, 2 H), 7.36 (d, J = 8.4 Hz, 2 H), 7.31 (d, J = 7.2 Hz, 2 H), 7.31 (t, J = 6.8 Hz,
2 H), (t, J = 6.8 Hz, 2 H), 6.45 (d, J = 16 Hz, 1 H), 6.32 (tt, J = 13.6 Hz, 1H), 3.60 (d, J = 6.8 Hz,
2 H); 13C NMR (CDCl3) δ 144.4, 137.2, 132.0, 129.1, 128.7, 128.5, 128.0, 127.5, 126.3, 125.8,
125.5 (q, J = 15.2 Hz), 39.2.
(E)-1-(4-methoxyphenyl)-3-(4-methylphenyl)propene (4b) [CAS:183621-28-5]: 1H NMR
(CDCl3) δ 7.28 (d, J = 8.8 Hz, 2 H), 7.13 (s, 4 H), 6.83 (d, J = 8.8 Hz, 2 H), 6.34 (d, J = 15.6 Hz,
1 H), 6.23–6.16 (m, 1 H), 3.79 (s, 3 H), 3.48 (d, J = 6.8 Hz, 2 H), 2.33 (s, 3 H); 13C NMR (CDCl3)
δ 158.8, 137.4, 135.7, 130.4, 130.2, 129.3, 128.7, 127.4, 127.3, 114.0, 55.4, 39.0, 21.2.
(E)-1-(4-methoxyphenyl)-3-(4-methylphenyl)propene (4c) [CAS: 1669332-26-6]: 1H NMR
(CDCl3) δ 7.54 (d, J = 8.0 Hz, 1 H), 7.44 (d, J = 8.0 Hz, 1 H), 7.14 (s, 2 H), 6.46 (t, J = 3.6 Hz,
1 H), 3.54 (d, J = 4.4 Hz, 1 H), 2.34 (s, 2 H); 13C NMR (CDCl3) δ 141.0, 136.5, 136.0, 132.5,
129.6, 129.4, 128.7, 126.9, 126.3, 125.5 (q, J = 15.2 Hz), 39.0, 21.2.

4. Conclusions

In summary, the expressions of several selectivities in various catalytic reactions
were confirmed by reducing catalyst concentrations. In the reaction catalyzed by in situ-
generated Pd nanoparticles, the catalytic reaction on the Pd surface and in the solution phase
could be controlled by changing catalyst loading. A slight difference in the reaction rate
was confirmed by the decrease in catalyst concentration. Moreover, the substituent effect
was confirmed using the Pd catalyst at the mol ppm level, and the rate-determining step in
the catalytic reaction could be predicted. That is, this study’s results indicate that control of
reaction selectivity or confirmation of the reaction mechanism could be achieved simply
by reducing the catalyst concentration. Therefore, reducing the catalyst concentration is
crucial not only in terms of environmental aspects and industrial applications, but also for
synthetic chemistry [41,42]. This investigation regarding other catalytic reactions is now in
progress to extend the versatility of this concept.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/catal13071115/s1, Figures S1–14: 1H and 13C spectra of products.
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