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Abstract: Dehydration of i-PrOH is used in academic research as a test reaction to probe the acid
properties of solid acid catalysts. Also, it has practical importance for the utilization of surplus
acetone produced by the Hock process for the combined manufacturing of phenol and acetone as
well as for the production of propene from renewable resources and waste. This study demonstrates
the excellent performance of polyoxometalate acid catalysts comprising silica-supported Keggin-type
heteropoly acids H3PW12O40 and H4SiW12O40 for gas-phase i-PrOH-to-propene dehydration at
ambient pressure. These catalysts show similar efficacies, giving an i-PrOH conversion and propene
selectivity of 96.8 and 99.7% for 25%HPW/SiO2 and 97.1 and 99.4% for 25%HSiW/SiO2 in a fixed-
bed reactor at 120 ◦C, a relevant-to-practice i-PrOH partial pressure of 15 kPa and a contact time
W/F = 27 g h mol−1 (GHSV = 900 mL g−1 h−1). The catalysts are stable, resisting deactivation for at
least 24 h time on stream. The HPA/SiO2 catalysts are superior to aluminosilicate zeolites such as
H-mordenite, HZSM-5 and HY for i-PrOH-to-propene dehydration in terms of i-PrOH conversion,
propene selectivity and catalyst stability.
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1. Introduction

Dehydration of i-PrOH is widely used in academic research as a test reaction to probe
the acid properties of various solid acid catalysts [1–6], including heteropoly acids (HPAs)
([2–5] and references therein). For catalysts with strong proton sites, such as HPA, i-PrOH
dehydration is suggested to proceed via E1 elimination (Scheme 1) [2–4]. This mechanism
involves alcohol adsorption on the Brønsted acid sites of HPA followed by C–O bond
cleavage via a carbenium-ion transition state to produce isopropyl carbocation and H2O.
The carbocation forms propene through proton elimination or interacts with another alcohol
molecule to give diisopropyl ether (DIPE). Via this mechanism, the reaction turnover rate
scales with the HPA acid strength [3]. i-PrOH dehydration over many solid acid catalysts,
including HPA, follows the Langmuir kinetics and becomes zero-order in i-PrOH at i-PrOH
partial pressures above 0.6 kPa [4,6].
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Scheme 1. E1 elimination mechanism for i-PrOH dehydration. 
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i-PrOH dehydration also has significant practical value in two regards. The first is
the utilization of surplus acetone produced through the Hock process for the combined
manufacturing of phenol and acetone. The second is the production of propene from
renewable resources and waste. The Hock process involves the alkylation of benzene with
propene to cumene, followed by cumene oxidation to cumene hydroperoxide and then
acid-catalyzed cumene hydroperoxide cleavage to phenol and acetone, thus producing
0.62 tons of acetone per 1 ton of phenol [7]. This process will maintain its dominant market
share as long as the coproduct acetone has a market and its surplus can be recycled back
to propene. The latter is achieved through acetone hydrogenation to i-PrOH followed by
i-PrOH dehydration (for a recent review, see [8]). Meanwhile, the production of propene
from renewable resources and waste has been made feasible through the development
of industrial-scale fermentation of abundant waste gas feedstocks, to produce acetone
and isopropanol with 90% total selectivity [9]. i-PrOH can also be produced via biomass
fermentation to an isopropanol–butanol–ethanol mixture through a modified version of
the acetone–butanol–ethanol (ABE) process [10].

Industrial i-PrOH dehydration can be carried out under elevated or ambient pres-
sure [8]. The process under elevated pressure is carried out at a total pressure of 20 bar
and a reaction temperature of about 300 ◦C in the presence of γ-alumina as a catalyst.
Although thermodynamically unfavorable, this process facilitates downstream separation
to obtain high-purity polymer-grade propene. Meanwhile, the ambient-pressure process
produces a chemical-grade propene suitable for different end users as it may contain traces
of water, i-PrOH, DIPE, etc. For the ambient-pressure process, zeolite catalysts operating at
reaction temperatures of ≤200 ◦C have been patented ([8] and references therein). Given the
current global trend of sustainable economic development and minimization of the carbon
footprint of the chemical industry, a more energy-efficient process for i-PrOH dehydration
is desirable to selectively produce propene under mild conditions.

Keggin-type HPAs, also known as polyoxometalates, possess strong Brønsted acidity.
These are represented by the general formula H8-x[Xx+M12O40], where usually X = P5+ or
Si4+ and M = W6+ or Mo6+ [11–15]. HPAs have found several industrial applications as
acid catalysts [13,15–19]. For example, silica-supported H4SiW12O40 is used as the acid
catalyst in the BP AVADA process for the production of ethyl acetate from ethene and
acetic acid on a scale of >300 kt/year, which is the largest industrial application of HPA in
catalysis [17–19]. Tungsten HPAs have great potential as catalysts for the ambient-pressure
process of i-PrOH dehydration. They have very high catalytic activity in i-PrOH-to-propene
dehydration [3–5]. However, previous studies have largely been carried out at low i-PrOH
partial pressures ≤1 kPa and propene space–time yield and catalyst stability have not
been optimized. Here, we investigate the gas-phase dehydration of i-PrOH catalyzed
by silica-supported H3PW12O40 (HPW) and H4SiW12O40 (HSiW) at relevant-to-practice
i-PrOH partial pressures of up to 15 kPa. The process conditions are varied to optimize
isopropanol conversion, propene selectivity and catalyst stability. The HPA catalysts are
compared with 10- and 12-ring aluminosilicate zeolites HZSM-5, H-mordenite and HY.

2. Results and Discussion
2.1. Catalyst Characterization

It has been shown that gas-phase dehydration of lower alcohols, such as MeOH, EtOH
and i-PrOH, in a flow system over HPA catalysts supported on SiO2, TiO2 and ZrO2 occurs
via a surface-type mechanism, with catalyst activity scaling with the number of catalyst
surface proton sites [5,20]. Upon increasing HPA loading, the number of surface proton
sites passes a maximum due to the decrease in catalyst surface area [5,20]. Consequently,
upon increasing HPA loading, the reaction rate passes a flat maximum at between 25% and
50% HPA loading. The catalyst activity decreases in the order of HPA/SiO2 > HPA/TiO2
> HPA/ZrO2, in line with the catalyst acid strength [5,20]. For this reason, here, we used
HPA/SiO2 catalysts with 25 and 40% HPA loading to achieve a high conversion rate
of i-PrOH.
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Information about the HPA/SiO2 catalysts is given in Table 1. According to DRIFT
spectroscopy (Figure 1), the Keggin structure of HPA in these catalysts was intact, in agree-
ment with previous reports [5,20]. The characteristic IR bands of the Keggin polyanions
[PW12O40]3− and [SiW12O40]4− (W=O, corner-sharing W–O–W and edge-sharing W–O–
W bands) [21] could be seen in the spectra, except for the P–O band of [PW12O40]3− at
1080 cm−1 and the Si–O band of [SiW12O40]4− at 1019 cm−1, which were obscured by the
intense band of SiO2 at around 1100 cm−1.

Table 1. Information about HPA/SiO2 catalysts.

Catalyst
SBET

a

m2 g−1
Vp

b

cm3 g−1

Dp
c

Å

Weight Loss (wt%) −∆H d

kJ mol−1
B e

mmol g−1RT–300 ◦C 300–700 ◦C

Aerosil 300 SiO2 293 1.26 172 3.64 0.91
25%HPW/SiO2 183 0.73 161 4.77 1.78 171 0.26
25%HSiW/SiO2 195 0.81 167 5.39 2.27 154 0.35
40%HPW/SiO2 139 0.66 191 4.36 1.31 177 0.42
40%HSiW/SiO2 130 0.56 172 4.79 1.52 158 0.56

a BET surface area; the catalysts were pretreated at 220 ◦C in a vacuum. b Single-point total pore volume (at
P/Po = 0.99). c Average pore diameter (4Vp/SBET). d Initial enthalpy of ammonia adsorption at 150 ◦C
(±6 kJ mol−1) [20]. e Total number of Brønsted acid sites per 1 g of catalyst.
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XRD showed the presence of the HPA crystal phase in the HPA/SiO2 catalysts
(Figure 2), with the same XRD patterns as for the bulk HPAs. Significant line broad-
ening indicated a higher dispersion of HPA in HPA/SiO2 catalysts compared to bulk HPA.
As estimated from the Scherrer equation, HPA particle size in the HPA/SiO2 catalysts was
11–18 nm while that in bulk HPA was 40–60 nm. This agreed with the previous report [20].
As revealed by XRD [20], HSiW forms smaller particles on the SiO2 surface than HPW.
Hence, in HPA/SiO2 catalysts at the same HPA loading, HSiW has a larger number of
surface proton sites (proton site density) than HPW because HSiW has more protons per
molecule than HPW as well as a higher dispersion on the silica surface. This could lead to
greater activity of HSiW/SiO2 catalysts per HPA weight compared to HPW/SiO2 despite
HPW having stronger acid sites than HSiW [5,20].

Bulk tungsten HPAs are known to be purely Brønsted acids, as demonstrated by
IR spectroscopy of adsorbed pyridine (Py-DRIFTS) [11–14]. The Py-DRIFT spectra for
bulk and silica-supported HPW and HsiW are shown in Figure 3. The bulk HPAs have
solely Brønsted (B) acid sites. This is supported by the presence of the strong band of the
pyridinium ion at 1540 cm−1, whereas the band at 1450 cm−1 characteristic of Lewis (L)
acid sites [22] is absent. On the contrary, SiO2 exhibits only L sites, with no B sites capable
of protonating pyridine; the L sites can be attributed to low-coordinate surface Si4+ ions.
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As can be seen, the HPA/SiO2 catalysts possess both B and L sites, with B sites by far
dominating. The total number of proton sites in HPA/SiO2 catalysts is given in Table 1.
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Figure 2. XRD patterns for bulk and supported HPA. (A): (1) 25%HPW/SiO2,
(2) 40%HPW/SiO2, (3) bulk HPW. (B): (1) 25%HSiW/SiO2, (2) 40%HsiW/SiO2,
(3) bulk HsiW.
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Figure 3. Py-DRIFTS for HPA catalysts. (A): (1) SiO2, (2) 25%HPW/SiO2, (3) 40%HPW/SiO2, (4) bulk
HPW. (B): (1) SiO2, (2) 25%HSiW/SiO2 (3) 40%HSiW/SiO2, (4) bulk HSiW.

The strength of acid sites in HPA/SiO2 catalysts has been measured using ammonia
adsorption calorimetry in many previous studies [3,5,20,23–26]. This is the most accu-
rate technique for characterizing the acid strength of HPA catalysts. Table 1 presents
the values of initial enthalpy of ammonia adsorption (∆H) for the HPA/SiO2 catalysts
under study, taken from a recent report [20]. The ∆H values are in the range of –154 to
–177 kJ mol−1 and characterize the strongest proton sites in these catalysts. In comparison,
HZSM-5, HY and H-mordenite zeolites have weaker proton sites with ∆H values of –120 to
–150 kJ mol−1 [26,27].

Through TGA, we determined that HPA/SiO2 catalysts after pretreatment at 150 ◦C/1 Pa
retained 4–7% of the physically and chemically bound water, which was lost on heating to
700 ◦C, mostly from room temperature to 300 ◦C (Table 1).

2.2. Dehydration of Isopropanol over HPA/SiO2 Catalysts
2.2.1. Effect of Temperature

The effect of reaction temperature on HPA-catalyzed dehydration of i-PrOH was
studied in the temperature range of 50–100 ◦C at an i-PrOH partial pressure of 0.95 kPa,
a contact time W/F = 422 g h mol−1 and a time on stream (TOS) of 2 h. As expected,
i-PrOH conversion increased with increasing temperature, as illustrated by the data in
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Figures 4 and 5. Thus, for the 25%HSiW/SiO2 catalyst, the conversion was 22% at 60 ◦C,
progressing to complete conversion of ~100% at 90 ◦C (Figure 4). Similar results were
obtained for the catalysts with 40% HPA loading (Figure 5). The selectivity to propene
increased with increasing reaction temperature along with i-PrOH conversion, reaching
~100% at 90 ◦C. In contrast, the selectivity to diisopropyl ether (DIPE) declined to almost
zero as the temperature was increased from 60 to 90 ◦C (Figures 4 and 5).
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and 40%HSiW/SiO2 catalysts (0.20 g) at 20 mL min−1 flow rate, 0.95 kPa i-PrOH partial pressure,
W/F = 422 g h mol−1 and 2 h TOS.

The results obtained demonstrated that catalysts with 25% and 40% HPA loading
exhibited similar performance levels in i-PrOH dehydration. Therefore, further catalyst
testing was carried out on 25%HPW/SiO2 and 25%HSiW/SiO2 catalysts. Before further
optimizing the performance of HPA catalysts, we investigated the performance levels of
several aluminosilicate zeolites in i-PrOH dehydration in order to compare the activity and
selectivity of the two types of catalysts.

2.2.2. Dehydration of i-PrOH Catalyzed by Zeolites

The zeolites studied included 10-ring HZSM-5 and 12-ring HY and H-mordenite,
namely, HZSM-5 (Si/Al = 12 and 20), HY (Si/Al = 18) and H-mordenite (Si/Al = 12).
Zeolite texture and proton site density are shown in Table 2 and XRD patterns in Figure 6.
XRD confirmed the structure and high crystallinity of the zeolite samples used.
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Table 2. Zeolite catalysts.

Catalyst SBET
a

m2 g−1
Vp

b

cm3 g−1
Dp

c

Å
Particle Size d

nm
Proton Site Density e

mmol g−1

HZSM-5 (Si/Al = 12) 378 0.22 24 54 1.28
HZSM-5 (Si/Al = 20) 361 0.17 19 110 0.83

HY (Si/Al = 18) 733 0.48 26 83 0.92
H-mordenite (Si/Al = 12) 461 0.27 24 64 1.28

a BET surface area; the catalysts were pretreated at 245 ◦C in a vacuum. b Single-point total pore volume (at
P/Po = 0.99). c Average BET pore diameter. d Calculated from Scherrer equation. e Calculated from Si/Al ratio.
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Figure 6. XRD pattern of zeolite catalysts: H-mordenite (Si/Al = 12) (1), HZSM-5 (Si/Al = 12) (2),
HZSM-5 (Si/Al = 20) (3) and HY (Si/Al = 18) (4).

To draw a comparison between HPA and zeolite catalysts, the dehydration of i-PrOH
over zeolites was studied under the same conditions as the reaction with HPA. The effect
of reaction temperature on zeolite performance is illustrated by the data in Figures 7 and 8.
It can be seen that under the specified reaction conditions, zeolites reached ~100% i-PrOH
conversion and 97–100% propene selectivity at 140–180 ◦C. The activity of zeolites in
terms of i-PrOH conversion was in line with their proton site density (Table 2), decreasing
with an increase in the Si/Al ratio: H-mordenite (Si/Al = 12) > HZSM-5 (Si/Al = 12) >
HY (Si/Al = 18) > HZSM-5 (Si/Al = 20), with the light-off temperatures of 90, 107, 115
and 140 ◦C corresponding to 50% i-PrOH conversion (Figure 7). H-mordenite showed a
better performance, which can be attributed to the favorable combination of its stronger
acidity [27], large pore size and large proton site density. The low activity of HZSM-5
(Si/Al = 20) may have been caused by its smaller proton site density as well as by its larger
particle size (Table 2) impeding access to the acid sites inside micropores.

Figure 7 compares the data for the zeolites and 25%HPA/SiO2 catalysts, clearly demon-
strating much greater activity of HPA catalysts over zeolites. The HPA catalysts reach
~100% i-PrOH conversion at 90 ◦C, whereas this occurs for zeolites at 140–180 ◦C. This
can be explained by the stronger Brønsted acidity of HPA compared to zeolites [11–13]
and the restricted accessibility of proton sites located in zeolite micropores. Also, zeolites,
except for H-mordenite, exhibit a lower propene selectivity than the HPA/SiO2 catalysts
(cf. Figures 4 and 8).

The steeper increase in i-PrOH conversion with reaction temperature for HPA/SiO2
compared to zeolites points to a higher activation energy of i-PrOH dehydration over
HPA/SiO2 compared to zeolites. The apparent activation energies Ea for zeolites and
25%HPA/SiO2 were determined in the temperature range of 50–100 ◦C at i-PrOH con-
version ≤10% for zeolites and ≤20% for 25%HPA/SiO2. Arrhenius plots are shown in
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Figure S1 in the Supplementary Materials. For zeolites, the Ea values were in the range
from 98 to 121 kJ mol−1 (Table 3), with the lower Ea for the more active H-mordenite.
Meanwhile, Ea values for 25%HPA/SiO2 catalysts were 134–145 kJ mol−1. Generally, Ea
values for i-PrOH dehydration can vary over a wide range depending on the catalyst and
reaction conditions [28]. Thus, the Ea values for γ-Al2O3, HY and 15%HPW/ZrO2 have
been reported to be 133–138 [29], 130 [30] and 100 kJ mol−1 [3], respectively.
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Figure 8. Effect of temperature on propene selectivity in i-PrOH dehydration over zeolite and
25%HPA/SiO2 catalysts (0.20 g) at 20 mL min−1 flow rate, 0.95 kPa i-PrOH partial pressure,
W/F = 422 g h mol−1 and 2 h TOS.

Table 3. Apparent activation energies for i-PrOH dehydration over zeolites and 25%HPA/SiO2.

Catalyst Ea, kJ mol−1

HZSM-5 (Si/Al = 12) 121
HZSM-5 (Si/Al = 20) 116
HY (Si/Al = 18) 114
H-mordenite (Si/Al = 12) 98
25%HPW/SiO2 134
25%HSiW/SiO2 145

2.2.3. Dehydration of i-PrOH Catalyzed by HPA/SiO2: Effect of i-PrOH Partial Pressure

As i-PrOH dehydration is a zero-order reaction [4,6], increasing the partial pressure of
i-PrOH is expected to decrease i-PrOH conversion. This is because the rate of a zero-order
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reaction, approximated as R = XF/W (X is the fractional conversion, F is the inlet molar flow
rate of substrate and W is the catalyst weight) [31], does not depend on the partial pressure
of substrate; hence, increasing the substrate partial pressure (i.e., increasing F) will cause a
decrease in conversion X. In addition, an increase in i-PrOH partial pressure is expected to
increase the selectivity to DIPE at the expense of propene. The results obtained showed
that this was indeed the case (Table 4). For both 25%HSiW/SiO2 and 25%HPW/SiO2,
the conversion almost halved as i-PrOH pressure was increased from 0.95 to 15 kPa at a
constant temperature of 100 ◦C, with a simultaneous increase in DIPE selectivity at the
expense of propene (the reaction time courses are shown in Figures S2 and S3).

Table 4. Effect of i-PrOH partial pressure on i-PrOH dehydration over 25%HPA/SiO2
a.

Catalyst
Temperature

◦C
i-PrOH Pressure

kPa
Conversion

%
Selectivity, %

Propene DIPE

25%HSiW/SiO2 100 0.95 99.5 100 0.0
100 5.5 86.4 97.3 2.7
100 10 69.4 94.5 5.5
100 15 57.1 87.5 12.5
120 15 97.2 99.4 0.6
130 15 99.3 100 0

25%HPW/SiO2 100 0.95 99.5 100 0.0
100 5.5 81.3 99.7 0.3
100 10 66.0 95.8 4.2
100 15 49.2 91.2 8.8
120 15 96.2 99.1 0.9
130 15 99.3 100 0

a 0.20 g catalyst, 20 mL min−1 N2 flow rate, 2 h TOS.

Increasing the reaction temperature from 100 to 130 ◦C at 15 kPa i-PrOH pressure
restored the conversion to >99% and propene selectivity to 100% (Table 4). Figure 9 shows
the effect of reaction temperature in the range of 100–130 ◦C on the time course of i-PrOH
dehydration at 15 kPa alcohol partial pressure for 25%HSiW/SiO2. At 100 ◦C, an initial
sharp decline in alcohol conversion was observed, with a stable i-PrOH conversion after
that. The initial decline was probably due to the adsorption of by-product water blocking
catalyst proton sites and reducing their strength. At higher temperatures of 120 and 130 ◦C,
at which water adsorption should be weaker, stable conversion and product selectivity were
observed from the beginning of reaction. Similar results were obtained for 25%HPW/SiO2
(Figure S4).

2.2.4. Stability of Catalyst Performance

The performance stability of HPA/SiO2 catalysts in i-PrOH dehydration was inves-
tigated at a relevant-to-practice i-PrOH partial pressure of 15 kPa and a temperature of
120 ◦C. The results are shown in Figure 10. As can be seen, there is no discernible catalyst
deactivation over a TOS period of 24 h. The average i-PrOH conversion and propene
selectivity were 97.1 and 99.4% for 25%HSiW/SiO2 and 96.8 and 99.7% for 25%HPW/SiO2,
i.e., both catalysts exhibited very similar performance in i-PrOH-to-propene dehydration at
ambient pressure. At 130 ◦C and 15 kPa i-PrOH partial pressure, both catalysts gave 100%
propene selectivity at 99.3% i-PrOH conversion (Table 4).

It was also interesting to test the performance stability of zeolite catalysts under the
same conditions for comparison with HPA/SiO2. Figure 11 shows a 24 h stability test
for the more active zeolite H-mordenite (Si/Al = 12). As can be seen, under the specified
conditions, the zeolite not only gave significantly lower i-PrOH conversion and propene
selectivity but also exhibited poor stability, with a decline in conversion from 47 to 22%
over 24 h TOS. The lack of stability could be attributed to catalyst coking as well as capillary
condensation of by-product water in zeolite pores at high i-PrOH partial pressures. This
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demonstrates the great advantages of HPA catalysts over zeolites in i-PrOH-to-propene
dehydration in terms of their activity, selectivity and mild operation conditions. It is
noteworthy that these HPA catalysts are similar to those that are used in the industrial BP
AVADA process for the synthesis of ethyl acetate [17–19].
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Finally, Table 5 shows the results of carbon analysis of spent 25%HPW/SiO2 and
25%HSiW/SiO2 catalysts after the reaction at 120 ◦C and 15 kPa i-PrOH partial pressure,
carried out for 2 or 24 h TOS. As can be seen, the amount of carbon deposited on the
catalysts was relatively small, at 1.8–2.5%, regardless of the reaction time. This suggests
that coke mainly deposited in the beginning of the reaction, i.e., at TOS ≤ 2 h. The minor
coking did not affect catalyst performance, as can be seen in Figure 10. The amount of
coke deposited on H-mordenite (5.7%) was significantly larger (Table 5) and may have
been responsible for the poor performance stability of this catalyst (Figure 11). For the
deactivation of zeolite catalysts via coking, see [32].
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Table 5. Carbon content in spent 25%HPA/SiO2 catalysts a.

Catalyst Time on Stream, h Carbon Content b, %

25%HPW/SiO2 24 1.8

25%HSiW/SiO2 24 2.2

25%HPW/SiO2 2 2.5

25%HSiW/SiO2 2 1.9

H-mordenite (Si/Al = 12) 24 5.7
a Reaction conditions: 0.20 g catalyst, 120 ◦C, 15 kPa i-PrOH partial pressure, 20 mL min−1 flow rate,
W/F = 27 g h mol−1. b From combustion chemical analysis.

3. Materials and Methods
3.1. Catalysts

H3PW12O40 (99%) was acquired from Sigma–Aldrich (Gillingham, Dorset, UK) and
H4SiW12O40 (99.9%) from Fluka (Charlotte, NC, USA). From TGA analysis, HPW and
HSiW contained 20–28 molecules of H2O per HPA molecule (for the thermal dehydration
of HPA, see [11,13,14]). i-PrOH (99.5%) was sourced from Sigma–Aldrich. Catalyst support
Aerosil 300 silica was obtained from Degussa. Aluminosilicate zeolites H-mordenite
(Si/Al = 12), HZSM-5 (Si/Al = 12), HZSM-5 (Si/Al = 20) and HY (Si/Al = 18) were
procured from Zeolyst International (Conshohocken, PA, USA). Before use, the zeolites
were calcined in air at 500 ◦C for 2 h.

Supported HPA catalysts HPA/SiO2 (25 and 40% HPA content) were prepared as
described elsewhere [20] via the wet impregnation of support with an aqueous solution of
HPA. The catalysts were dried at 150 ◦C/1 Pa for 1.5 h and finally ground to a 45–180 µm
particle size. HPA loading in the catalysts was determined by ICP-AES (inductively coupled
plasma atomic emission spectroscopy) and water content by TGA.

3.2. Catalyst Characterization

The texture of catalysts (surface area and porosity) was characterized using the BET
method on a Micromeritics 3Flex instrument (Micromeritics Instrument Corp., Norcross,
GA, USA). Before analysis, the catalysts were heated at 220 ◦C for 1 h in a vacuum. Ther-
mogravimetric analysis (TGA) was carried out on a TA TGA 55 thermal analyzer (TA
Instruments, USA) under N2 atmosphere. X-ray diffraction (XRD) patterns of catalysts
were obtained on a PANalytical Xpert diffractometer (Malvern Panalytical, Malvern, UK)
with CuKα radiation (λ = 1.542 Å). DRIFT (diffuse reflectance infrared Fourier transform)
spectra were recorded on a Nicolet Nexus FTIR spectrometer (Nicolet Instrument Corp.,
Madison, WI, USA) using powdered catalyst mixtures with KBr. The same instrument was
used for recording DRIFT spectra of adsorbed pyridine (Py-DRIFTS), as described previ-
ously [3]. The ICP–OES analysis of catalysts was performed on a Spectro Ciros ICP–OES
instrument (Spectro Analytical Instruments GmbH, Kleve, Germany); catalyst samples
were digested by boiling in 15% aqueous KOH.

3.3. Catalyst Testing

The dehydration of i-PrOH was carried out at 50–130 ◦C, under ambient pressure in a
Pyrex fixed-bed microreactor (9 mm i.d.) with online GC analysis (Agilent 8860 GC System,
flame ionization detector, 30 m × 0.32 mm × 0.5 µm Agilent CP-WAX 52 CB capillary
column), as described elsewhere [4]. i-PrOH was fed with flowing nitrogen (20 mL min−1)
through a saturator holding i-PrOH at 0, 25, 33.6 and 41.1 ◦C to maintain the chosen alcohol
partial pressures of 0.95, 5.52, 10 and 15 kPa, respectively [33]. The catalysts were pretreated
at the reaction temperature in N2 flow for 1 h. The mean absolute percentage error in
i-PrOH conversion was ≤5% and the carbon balance was maintained within 95%. The rate
of reaction (R, mol g−1 h−1) was calculated as R = XF/W, where X is i-PrOH conversion,
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W/F is the contact time (g h mol−1), W is the catalyst weight and F is the inlet molar flow
rate of i-PrOH [31].

4. Conclusions

This work has demonstrated excellent performance of silica-supported Keggin-type
heteropoly acids HPW and HSiW for gas-phase i-PrOH-to-propene dehydration at relevant-
to-practice i-PrOH partial pressures and ambient total pressure. These catalysts show
similar efficacies, giving an i-PrOH conversion and propene selectivity of 96.8 and 99.7%
for 25%HPW/SiO2 and 97.1 and 99.4% for 25%HSiW/SiO2 at 120 ◦C, 15 kPa i-PrOH partial
pressure and a contact time W/F = 27 g h mol−1 (GHSV = 900 mL g−1 h−1) in a fixed-
bed reactor, without any catalyst deactivation for at least 24 h time on stream. The HPA
catalysts are superior to aluminosilicate zeolites such as H-mordenite, HZSM-5 and HY
in terms of i-PrOH conversion, propene selectivity and catalyst stability and, therefore,
have great potential as catalysts for the production of propene via i-PrOH dehydration at
ambient pressure.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/catal14010051/s1, Figure S1: Arrhenius plots for i-PrOH
dehydration over zeolites and 25%HPA/SiO2 catalyst; Figure S2: Effect of i-PrOH partial pres-
sure on i-PrOH conversion and product selectivity over 25%HPW/SiO2 catalyst; Figure S3: Ef-
fect of i-PrOH partial pressure on i-PrOH conversion and product selectivity over 25%HSiW/SiO2
catalyst; Figure S4: Effect of temperature on i-PrOH conversion and product selectivity over
25%HPW/SiO2 catalyst.
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