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Abstract: Recently, granular activated carbon (GAC) has shown its effectiveness as a cathode material
for in situ ROS generation. Here, we present an electrochemically modified GAC cathode using
electrode polarity reversal (PR) approach for enhanced H2O2 decomposition via 2-electron oxygen
reduction reaction (2e-ORR). The successful GAC modification using PR necessitates tuning of
the operational parameters such as frequency, current, and time intervals between the PR cycles.
This modification enhances the GAC hydrophilicity by increasing the density of surface oxygen
functionalities. After optimization of the electrode polarity, using the 20 (No PR)-2 (PR) interval and
140 mA current intensity, the •OH concentration reaches 38.9 µM compared to the control (No PR)
(28.14 µM). Subsequently, we evaluated the enhanced •OH generation for the removal of glyphosate,
a persistent pesticide used as a model contaminant. The modified GAC using PR removed 67.6%
of glyphosate compared to 40.6% by the unmodified GAC without PR, respectively. The findings
from this study will advance the utilization of GAC for in situ ROS synthesis, which will have direct
implications on increasing the effectiveness of electrochemical water treatment systems.

Keywords: granular activated carbon; surface modification; polarity reversal; hydrogen peroxide;
hydroxyl radical

1. Introduction

The inevitable intensification of industrial activities has led to severe environmental
pollution consequences in water, soil, and air. Over the years, the accumulation of different
recalcitrant pollutants in conventional biological and chemical treatments has directed
the research community to further the research on electrochemical advanced oxidation
processes (EAOPs) [1]. Significant efforts focused on the mechanisms of electrochemical
reactive species production, its application for the removal of aqueous organic pollutants,
and its optimization [2–4]. Electrochemical water treatment methods rely on the generation
and employment of powerful oxidants, such as hydrogen peroxide (H2O2) and hydroxyl
radicals (•OH), to degrade contaminants in water treatment [3,4]. The efficient generation
of these oxidizing agents depends primarily on the cathodic material and its surface
chemistry [5–8].

Over the past decade, several materials have been designed, optimized, and used
toward achieving efficient generation of H2O2 and •OH for water treatment [9–12]. Car-
bonaceous materials are considered one of the promising cathodic candidates because of
their stability, non-toxicity, good conductivity, cost-effectiveness, and chemical resistance
characteristics [3,13–16]. Given their advantages, several carbonaceous materials have
been used in the electro-Fenton (EF) processes for water treatment such as graphite [17],
carbon felt [18], activated carbon (AC) [19], and carbon-polytetrafluoroethylene (PTFE) [20].
AC has been used widely for the removal of pollutants from water [21–24], because of
its chemical adsorption, exceptional high surface area, wide range of surface group, and
regeneration characteristics [21,25,26]. Despite its several advantages, AC can exhibit poor
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kinetics such as activity, selectivity, and stability towards the 2-electron oxygen reduction
reaction (2e-ORR) [27,28], which affects H2O2 production; hence, the generation of •OH.

To overcome these limitations, a significant number of modifications have been con-
ducted to improve the surface chemistry of ACs towards enhancing their electrocatalytic
activity [29–32]. Given that the generation of H2O2 and •OH occurs via interfacial electron
transfer at the surface of the electrode, engineering and manipulating the surface chemistry
of the AC electrodes are key routes to effectively enhance the electrochemical processes.
Surface chemical properties of the electrodes such as their wetting and adsorption are
highly dependent on their content of the chemisorbed oxygen at the surface which can be
found in the form of various surface functional groups. Different types of modifications are
generally used to enhance the concentration and nature of the active sites on the surface.
The first modification approach is based on the impregnation of the AC with catalysts such
as acetylene black [33], carbon nanotubes [11], or metal oxides (i.e., MnO2 [34], IrO2 [35],
RuO2 [36]). The modified carbon-based catalysts are able to control the cleavage of the O-O
bonds by altering the chemisorption characteristics of O2 [37]. The catalytically modified
AC then acquires a high activity and selectivity in the 2e-ORR for H2O2 production [37].
Alternatively, heteroatom-doping on the surface of the electrode using O [38], N [39], or
F [40] produces impurity defects to improve ORR performance, but the catalytic active
center exhibits controversy [37]. Introducing surface oxygen groups (OGs) at the electrode
surface can also be achieved by either introducing strong oxidants [41] (H2O2, AgNO3,
H2PtCl6, HNO3) or electrochemical oxidation [4]. The introduction of OGs is an efficient
and facile way to increase the electrical conductivity and electrocatalytic activity of the elec-
trode due to the enhancement of wettability [42,43]. The modification of ACs using strong
oxidants can be difficult to control for water treatment due to the limitations of operating
both pH and temperature [44]. Introducing OGs via electrochemical oxidation has several
advantages [45]: (i) one of the reagents is the electron, which can be provided by a direct
current (DC) source; (ii) the treatment can be easily applied and regulated; and (iii) redox
processes are selective and can be controlled easily by the electrode potential. Although
a significant amount of research has been conducted to introduce OGs on carbonaceous
surfaces by electrooxidation [8,44,46], few studies focused on enhancing the surface groups
of granular activated carbon (GAC) to produce H2O2 and •OH. Lately, GAC has been used
widely as an effective way for water treatment due to its adsorption characteristic [47,48].
One of the issues of utilizing GAC is its poor absorption and selectivity when it comes
to certain contaminants [49]. To overcome this limitation, the recent trend is focused on
different treatment methods (e.g., electrochemical oxidation) that involve physicochemi-
cal modifications of the GAC properties using strong acids as electrochemical oxidizing
agents [29,50]. In these few studies, strong acids were mainly used as electrochemical
oxidizing agents during the surface modification of GAC, which makes these processes
difficult to control, costly, and hard to implement on large scales.

Recently, polarity reversal (PR) has received considerable attention to achieve sequen-
tial cathode modification and H2O2 generation [4]. Electrode PR is defined as an approach
to alternate the anode and cathode polarity at different time intervals [51]. This technique
has been previously used as a practical and controllable approach in the electrokinetic re-
mediation applications of heterogeneous media [52]. In a recent study [4], polarity reversal
resulted in an enhanced H2O2 generation using the graphite felt cathode, consequently
improving the degradation of reactive blue 19 (RB19) and ibuprofen (IBP). Recently, Ansari
et al. [53] performed PR along with surface activation using acid treatment on a cathode
made primarily of banana peel-derived biochar to enhance the concentration of oxygen
surface groups, hence improving the generation of H2O2. While PR technique has been
used for improving the modification of electrodes in the presence of acidic oxidants, it
has not been evaluated for GAC electrode enhancement, and the production of H2O2 and
•OH in an Fe-free EF process operating at a neutral pH. This method could be efficient for
tuning the wettability of the carbonaceous surface, hence obtaining an optimal catalytic
performance of GAC electrodes.
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Thus, this paper provides a systematic investigation of achieving electrochemical
modification of AC-PTFE via PR. This technique can be applied in situ for enhancing the
decomposition of H2O2 into •OH in an acid-free solution. This study analyzes the influence
of the electrode polarity (anodic or cathodic) and the effect of specific parameters of the
polarity reversal such as frequency, duration of intervals, and the intensity of the applied
current in an Fe-free EF process for the generation of •OH. This study would provide a
way to implement polarity reversal on carbonaceous surfaces to tune its wettability degree
and active sites, hence increasing its effectiveness for H2O2 activation into •OH.

2. Results and Discussion
2.1. Electrogeneration of H2O2 and •OH by PR

Electrogeneration of both H2O2 and •OH were controlled by manipulating the PR
frequency and the current. First, the O2 was generated in situ at the Ti/MMO anode
through the O2 evolution reactions as follows:

2H2O → O2 + 4e− + 4H+ (anodic surface). (1)

The produced O2 becomes reduced via 2e-ORR at the cathodic surface to generate
H2O2 as follows:

O2 + 2H+ + 2e− → H2O2(cathodic surface). (2)

Subsequently, the H2O2 decomposes at the cathodic surface and within the pore
structure to form •OH as described in the following reaction:

H2O2 + GAC → •OH + OH− + GAC+(cathodic surface) (3)

GAC+ + H2O2 → GAC + H+ + HO2•(cathodic surface) (4)

where GAC+ is the oxidized form of GAC. Equation (3) represents the formation of •OH
in an electron-Fenton-like process (i.e., iron-free). The •OH concentration was measured
through the concentration of 4-HBA as follows:

[•OH] = 5.87[4 − HBA] (5)

For investigating the PR effect on the generation of H2O2 and •OH, we measured their
concentrations under various testing conditions. Table 1 summarizes the testing variables
used during the various experiments. The obtained concentrations were measured using
spectrophotometer and HPLC for H2O2 and •OH, respectively (see Section 3 for more
details). The PR frequency (cycles/h) is calculated as follows:

PR frequency =
Number of cycles

(to + tr)
(6)

where to is the duration of the original electrode polarity (h) and tr is the duration of the
reversed electrode polarity (h). The following subsections present the obtained results of
H2O2 and •OH generation via the above reactions.

Table 1. Summary of the testing variables used to investigate the H2O2 and •OH generation.

Variable Unit Values Conditions

PR frequency Cycles/h 3; 6; 15; 30; 60 10 mM BA; 60 mA
Current intensity mA 40; 60; 100; 140; 180 10 mM BA; No PR; 15 cycles/h

PR - A/C; C/A 10 mM BA; 60 mA
Time interval mins 10-2; 20-2; 30-2 10 mM BA; 140 mA
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The current efficiency (CE) is calculated as follows:

CE% =
nFciV

It
100% (7)

where n is the number of transferred electrons which is set to 2 (Equation (2)), F (96, 486 C/mol)
is the Faraday’s constant, ci (mol/L) is the concentration of the chemical species where i is either
H2O2 or •OH, I (A) is the externally applied current, V is the liquid volume in the reactor (L),
and t is the reaction time (s).

2.1.1. Influence of PR Modification

In general, the H2O2 concentration profiles obtained over time during the application
of PR exhibit lower concentration values compared to the configuration without PR (i.e.,
A/C or C/A). The measured concentration of H2O2 after 130 min (see Figure 1a) exhibits
the highest value when no PR is used in the case of A/C arrangement while the lowest value
is observed when the PR frequency is 60 cycles/h (A/C). The H2O2 concentration between
60 and 100 min depicts an inverse relation to the PR frequency (e.g., as the PR frequency
increases, the H2O2 concentration decreases at a given time). Specifically, Figure 1c and 1d
show, respectively, the obtained concentration and CE of both H2O2 and •OH at time of
100 min using the various PR frequency testing conditions. The maximum obtained CE is
about 4% which is in agreement with the previous studies [54]. Clearly, the concentration
of H2O2 decreases as the PR frequency increases. This can be explained by the insufficient
reaction time for the electrode to act as either the anode or cathode. In other words, when
the PR frequency is high, it means that the electrode will have a shorter time to act as the
anode/cathode and vice versa. This short time limits the reaction of H2O2 generation and
OG formation at the surface of the GAC, leading to lower concentrations of H2O2 as the PR
frequency increases [8].

Figure 1b represents the •OH concentration as a function of time under different PR
frequencies. While the H2O2 concentration showed an inverse relationship with the PR
frequency, the obtained concentrations of •OH showed no direct proportional relation to
the PR frequency. First, the concentration of •OH exhibits a maximum value in the case of
no PR testing condition with the A/C arrangement, and a minimum concentration value
for the no PR testing condition with the C/A arrangement. Second, the concentration
of •OH at the final time (i.e., 100 min) increases as the PR frequency increases, until it
reaches the maximum at a PR frequency of 15 cycles/h, and then it starts decreasing as
the PR frequency further increases. This parabola-like behavior can be related to the time
duration for the GAC and Ti/MMO to serve as the anode and cathode, respectively. Oxygen
evolution reaction (OER) is a four-electron process that occurs at the anode, possessing a
higher kinetic barrier than the hydrogen evolution reaction [55]. The OER requires stable
and active electrocatalyst materials due to the high overpotential required for the oxidation
of water [56]. While GAC is considered an effective cathode, it behaves as a “nonactive”
anode and does not possess an elevated overpotential for the OER [57,58]. According
to Yuan et al. [59], Ti/MMO can be used as a cathode for O2 reduction in electro-Fenton
processes. Unlike activated carbon, Ti/MMO is unable to activate H2O2 into •OH in an
iron-free system [59]. Also, when increasing the PR frequency, the polarity duration and
time for reactions decrease. For the 30 and the 60 cycles/h, the ratio of polarities was 2:1,
respectively. The amount of charge evolved for reduction and oxidation in one cycle is
dictated by the current interval. Thus, it can be assumed that 30 and 60 cycles/h are not
sufficient to favor the reactions on the electrodes. Consequently, with an increase in the PR
frequency to 30 and 60 cycles/h, there is a decrease in the •OH concentration. This can be
ascribed to the limited capability of Ti/MMO to effectively generate anodic O2, resulting in
a lower concentration of H2O2 that is insufficient for •OH activation.
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Figure 1. The experimentally measured concentrations of (a) H2O2 and (b) •OH as a function of time,
along with (c) the final concentrations of H2O2 and •OH, and (d) CE after 100 min under varying PR
frequencies using a current intensity of 60 mA.

2.1.2. Influence of Current Intensity

Figure 2a,b exhibit the generation of H2O2 and •OH, respectively, without applying
PR conditions. The experiments were conducted under different current intensities as listed
in Table 1. It can be noticed from both figures that the concentrations of H2O2 and •OH
increase as the current increases from 40 mA to 180 mA. This is expected and can be related
to Faraday’s law where the amount of the generated H2O2 and •OH, m, can be explained
by the following:

m =
I × t × Mw

n × F
(8)

where I is the electrical current, t indicates the reaction time, Mw is the molar mass of the
H2O2 or •OH, n is the number of electrons transferred, and F is the Faraday’s constant.
This indicates that as the time progresses, the amounts of H2O2 and •OH increase with
increasing current, hence achieving the highest concentrations at 180 mA.
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Figure 2. (a,b) Variation of H2O2 and •OH concentration with no PR modification under the influence
of different current intensities, and (c,d) influence of PR using 15 cycles/h as a modification on H2O2

and •OH production under different current intensities.

Next, we applied 15 cycles/h PR on the electrochemical systems with varying current
intensities to compare the obtained results with no PR. The PR frequency of 15 cycles/h
was selected among the previous cycles (3, 6, 30, and 60 cycles/h) since it showed the best
performance toward •OH generation. Figure 2c,d show the concentrations of H2O2 and
•OH, respectively, for the various current intensities under the influence of PR. Similar to
the no PR configuration, the H2O2 concentration increases as the current intensity increases.
However, the obtained concentration profiles as a function of time have lower values when
the PR is applied compared to the cases without PR, as previously discussed in Section 2.1.1.
Specifically, the concentration of H2O2 under 15 cycles/h PR modification is notably lower
compared to the H2O2 concentration generated by the cathode without PR under 180 mA.
This can be attributed to the increase in the current, which leads to a gradual increase in
the degree of oxidation but to a lesser extent when PR is applied. Additionally, it might
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result in the anodic oxidation of H2O2 to generate H2O [3,44]. Higher current can also
mineralize the GAC surface OGs, hence limiting the H2O2 and •OH production [4]. On
the contrary, establishing a direct relationship between the •OH concentration and the
current intensity is challenging. The •OH generation exhibits distinct trends during PR
experiments. Specifically, at 40 mA, it is the lowest, followed by 100 mA. Surprisingly,
the •OH concentration at 60 mA surpasses that at 100 mA. This indicates a non-linear
relationship between •OH concentrations and current intensity. This trend persists even at
higher current intensities (140 and 180 mA) where the •OH concentrations remain nearly
similar during the initial 50 min of the experiment. However, the •OH concentrations at
140 mA exceed that at 180 mA after the initial 50 min duration.

Since the Ti/MMO is an active anode for OER, higher current intensities facilitate
the formation of oxides on the surface, thereby aiding the OER [60]. Hence, the complex
correlation between the •OH concentration and the current intensities in the presence
of PR can be explained by the accumulation of O2 bubbles at the cathode surface of
GAC-PTFE, which can hinder the electrode’s surface activity [61]. At higher current
intensities, the kinetic rate of O2 production is faster, the gas bubbles will tend to accumulate
faster underneath the GAC, resulting in electrowetting which hinders the fresh electrolyte
penetrate GAC (see Figure S3). Furthermore, frequent alteration of electrode polarity
(15 cycles/h, with 4 min as cathode and 4 min as the anode) indicates that the Ti/MMO
electrode is not capable of generating O2 in a continuous manner. This will affect the rate
of bubble growth at the electrode surface since it depends on the concentration ratio of O2
between the electrolyte and the bubble [62]. If the growth rate is not fast enough, then the
bubble will reside for a longer time on the electrode surface given that it needs more time
to reach sufficient size before leaving the electrode [62]. However, when the Ti/MMO is
a constant anode, the oxygen will be continuously generated at the Ti/MMO anode and
as the bubble continues to grow larger, the probability of it detaching from the electrode
surface increases, allowing fresh electrolytes to interact with the cathode and produce
more •OH. It also should be noted that the bubble size should not be very large so it can
pass through the mesopores of GAC. Otherwise, if the bubble does not pass through the
electrode, it will reside for a long time and its size will be become very large due to the
coalescence of bubbles and this will lead to large coverage of the electrode surface, reducing
its electroactive area [63].

In addition to the bubble effects on the electrochemical reactions for •OH production,
competing reactions and their associated potential related to different current intensities
can nonlinearly influence the •OH production. Typically, the current response towards
ORR can increase when the current applied is higher [4]. However, parasitic reactions also
evolve as the current increases. The possible competing reactions at the GAC cathode can
be summarized as follows:

2H2O2 → O2(g) + 2H2O (9)

H2O2 + 2H+ + 2e− → 2H2O (10)

H2O2 → HO2•+ H+ + e− (11a)

HO2• → O2(g) + H+ + e− (11b)

These reactions indicate the several pathways that H2O2 can follow during its decom-
position, which include disproportion (Equation (9)), cathodic reduction (Equation (10)),
and anodic oxidation (Equation (11)) [4]. Moreover, the more the H2O2 decomposes, the
harder it becomes for the generation to take place. Therefore, in the following section, the
reaction time of the anode/cathode and cathode/anode is tuned to decrease the occurrence
of the competing reactions (Equations (9)–(11)).

2.1.3. Influence of Reaction Time

Figure 3 presents the obtained results where the time of the PR was tuned. We varied
the polarity interval as summarized in Table 1. All the experiments were performed under a
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current of 140 mA since it produced the highest concentration of •OH under PR application
as discussed in the previous section. The obtained results show that the control condition
(i.e., no PR) produces the highest concentration of H2O2 as a function of time. The time
interval has two indices: the first one corresponds to the interval of having no PR (i.e., GAC
is assigned as the cathode) and the second index corresponds to the interval of applying
PR (i.e., GAC can be either the cathode or anode). The obtained results show that the H2O2
increases as a function of time with a rate similar to the no PR trend until the PR testing
condition is turned on. Specifically, the trend for the case of 10-2 (i.e., 10 min no PR and
2 min PR) conveys that the H2O2 concentration increases during 10 min without PR and
then it starts to decrease.
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different PR intervals duration under a current intensity of 140 mA for the intervals of 10-2, 20-2,
and 20-3. The first number corresponds to the time (min) of no PR condition and the second number
corresponds to the time (min) of PR interval.

Upon increasing the cathodic time for the GAC from 10 to 20 and then to 30 min,
the concentration of H2O2 increases gradually, achieving a higher concentration of
~89 µM. When the no PR condition is prolonged (i.e., 30-2), it extends the period dur-
ing which GAC acts as the cathode, leading to increased H2O2 production. Conversely,
with the introduction of PR, the H2O2 concentration decreases since ORR over Ti/MMO
is kinetically not feasible. Instead, the Ti/MMO, acting as a cathode, facilitates the hy-
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drogen evolution reaction (HER) (Equation (12)) instead of the oxygen evolution reaction
(OER) [64]. However, the concentration of •OH keeps increasing even when the PR is on
due to the H2O2 high lifetime [65]. During no PR application, the generated H2O2 remains
adsorbed on the surface of the GAC until it becomes decomposed into •OH. The conversion
of H2O2 into •OH is a surface phenomenon that is facilitated by the microelectrode GAC
particles and is not governed by the electrode polarity. Therefore, it is the adsorbed H2O2
during PR that keeps decomposing into •OH.

2H2O → H2(g) + 2OH− (12)

After the PR is off, the freshly produced H2O2 is effectively decomposed into •OH
due to the restoration of surface OGs on the GAC after the PR is applied, since anodic
current increases the amount of OGs [29]. The increase in active surface sites, mainly
through OGs, will efficiently increase the •OH generation through H2O2 decomposition by
eliminating the competing reactions (see Equations (9)–(11)) [23,66–68]. In addition, the
high concentration of H2O2 formed will serve as an oxidizing chemical when PR takes
place to introduce the surface OGs, including carboxyl, hydroxyl, carbonyl, and lactone
functionalities [69]. Figure 4b reveals that the obtained •OH concentrations are higher
for the PR testing conditions compared to the control case. The concentrations of •OH at
intervals 20 min (No PR)-2 min (PR) and 30 min (No PR)-2 min (PR) increase with time to
reach a value around 38.9 and 36.8 µM, respectively, compared to 35.7 µM under 10-2 PR
and 28.14 µM under control. A 38.2% increase in the generation of •OH when using 20 min
(No PR)-2 min (PR) was achieved.
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The obtained results show that the CE value of H2O2 for the control case (No PR) is
higher than the cases of different PR intervals. However, the CE values of •OH are higher
for the PR cases compared to the control system. The increase in the OGs enhances the
catalytic activity of the GAC. Therefore, providing the adequate time for the cathodic and
anodic reactions on the GAC is vital for regenerating its surface functionalities via in situ
modification toward efficient H2O2 activation [4].

This innovative approach assures continuous radical generation and reduces the loss
of catalytic activity for water treatment applications.

2.2. Characterization: Contact Angle Measurement and Cyclic Voltammetry

The introduction of OGs onto carbon surfaces increases its electrocatalytic activity
due to the formation of a hydrophilic surface [70]. To test the hydrophilicity of the surface,
contact angle measurements were performed on the controlled GAC electrode (No PR)
and the modified (i.e., 20-2) GAC electrode surface that were previously used in Figure 3.
Figure 4a demonstrates the droplet of water at the initial stage before contact with the
GAC surface. Figure 4b displays the droplet of water resting at the GAC electrode (No
PR) surface at an average angle of 86◦. Since the water droplet rested on the surface at an
angle < 90◦, this indicates that the GAC surface exhausted part of its OGs, which hinders
its surface activity due to reduced surface hydrophilicity [9]. Figure 4c demonstrates the
surface of the GAC electrode with 20-2 (20 min no PR and 2 min PR). The water was
absorbed by the GAC surface instantly, which made capturing the water droplet hard.
Since the water droplet rested at an angle of 86◦ on the GAC surface (No PR) and was
immediately absorbed by the surface of the GAC (20 min no PR and 2 min PR), this indicates
an increase in the surface’s hydrophilicity after performing PR at a certain time interval.
The increase in hydrophilicity allows enhanced mass transfer of O2 to the electrode while
preventing accumulation of O2 bubbles leading to electrowetting [70].

Figure 4d shows the control, 10-2, 20-2, and 30-2 CV curves. The control curve exhibits
symmetry in the positive and negative direction and no hysteresis. The 10-2, 20-2, and 30-2
modifications do not present similarities in both directions; they are different in the positive
direction. This implicates a change in the redox reactions taking place at the GAC’s surface.
Looking at the voltage between 0 and 0.5 V, the control (No PR) has the lowest current. Also,
looking in the negative direction from 0 to −0.5 V, the control (No PR) exhibits the smallest
current values. From the other end, the 10-2, 20-2, and 30-2 exhibited a higher current
response in both directions than the control (No PR). Compared with Zhou et al. [70], the
carbon with lower hydrophilic surface area exhibited a lower current response than the one
with more hydrophilic area. Based on this result, it can be concluded that the control (No
PR) exhibits less hydrophilic characteristics that hamper O2 mass transfer, hence hindering
the effective H2O2 formation and its subsequent decomposition into •OH. This suggests the
significance of precisely engineering the electrode polarity, because the results indicate that
the efficiency of the PR is dependent on the time of each polarity. The adequate application
of PR can enhance the wettability of the GAC’s surface; hence, the effective decomposition
of H2O2 into •OH can take place and hinders the occurrence of competing reactions.

After optimizing the PR for enhanced •OH generation, glyphosate (a commonly used
herbicide) was used as the model contaminant to test the efficiency of the modified GAC
toward the degradation of glyphosate in an electrochemical flow through a reaction under
a current of 140 mA. The removal of glyphosate was evaluated for the control (No PR)
and the 20-2 GAC, respectively. Figure 4d demonstrates that when the PR condition of
20-2 is applied, the removal of the glyphosate increases from 40.6% to 67.6% in the span of
130 min. The removal of glyphosate is almost similar in both cases up to 45 mins. Beyond
this point, the glyphosate removal under the control condition (No PR) starts approaching
a constant removal percentage. In contrast, the GAC subjected to the PR treatment of 20-2
provides a continuous removal of the glyphosate as the reaction proceeds. This indicates
that the PR with optimized parameters is able to significantly enhance the contaminant
removal [71,72]. This is consistent with the results presented in Figure 4b, where the higher
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production of •OH was obtained when 20-2 condition was used, and the removal rate
exhibited a similar behavior to the production of hydroxyl radicals. In comparison to other
handful of studies that were carried out for the EF regeneration of GAC, several efficiency
metrics were used such as the removal of contaminants and current efficiency. In some
of the studies reported, optimal removal of orange II could reach 66% when using GAC
that was modified with 0.9 mM Fe2+ [73]. In another study performed by Trellu et al.,
the EF regeneration of phenol-saturated activated carbon reached 70% removal [74]. In
a study performed by Li et al., where GAC, as a heterogeneous catalyst, only achieved
25.4% of acid orange 7 removal [75]. Finally, in a study performed by Mines et al., where a
nanoporous polymetric network was grafted to activated carbon granules for the removal
of nitrobenzene, a 63.6% total removal was achieved [76].

3. Methodology

All chemicals used in this study were of analytical grade and purchased from Fisher
Scientific, Waltham, MA, USA which include the following: sodium sulfate (Na2SO4
anhydrous, ≥99%), calcium sulfate (CaSO4 anhydrous, 99.9%), titanium sulfate (Ti(SO4)2,
99.9%), hydrogen peroxide (H2O2, 30% solution), reagent alcohol (90%, HPLC grade), water
(HPLC grade), methanol (HPLC grade), phosphoric acid (H3PO4), sulfuric acid (H2SO4),
and benzoic acid (C7H6O2). PTFE was purchased from Fuel Cell Earth, Woburn, MA, USA.
Deionized (DI) water (18.2 MW cm) was obtained from a Millipore Milli-Q system and
was used in all the experiments. Ti/MMO (Ti/IrO2-Ta2O5-3N international) and granular
activated carbon (−20 + 40 mesh, Alfa Aesar, Ward Hill, MA, USA) were used as electrodes.
The Ti/MMO electrode consists of an IrO2 and Ta2O5 coating on a titanium mesh with a
diameter of 4.3 cm.

3.1. Preparation of GAC Cathode

The GAC was rinsed repeatedly with DI water and dried in an oven at 80 ◦C for
24 h. To fabricate the GAC electrode, a ratio of 1:2:4 of GAC, PTFE, and reagent alcohol
was mixed for 10 min in an ultrasonic bath to prepare a well-mixed thick paste. Alcohol
was added to wet the GAC surface. The mixture was then spread onto the SS mesh and
placed in the oven for annealing at 350 ◦C for 1 h.

3.2. Electrochemical Reactor

The experimental setup of the electrochemical flow-through reactor with the PR device
is shown in Figure 5 Once the reactor was filled, flow-through experiments were carried
out. The reactor has a cylindrical column shape made of acrylic material with a height
and diameter of 16 cm and 4.4 cm, respectively. Sampling ports were set at a spacing of
3 cm. The spacing between the anode (i.e., Ti/MMO) and the cathode (i.e., GAC-PTFE) was
2.5 cm. The PR frequency was set by double pole double throw (i.e., DPDT) relay made
by Omron, Kyoto, Japan and its model number is H3CR-F8-300AC-100/240. The original
electrode polarity is defined by using the Ti/MMO as the anode and the SS + GAC as the
cathode. The abbreviation of the original electrode polarity is the anode/cathode (A/C)
arrangement, and the reversed polarity is a C/A arrangement. Artificial groundwater
consisting of 0.5 mM CaSO4 and 3 mM Na2SO4 was prepared in DI water and used as the
electrolyte in all experiments. The experiments were performed at room temperature and a
pH = 3.
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Figure 5. Experimental setup of the electrochemical oxidation of GAC.

3.3. Characterization of the GAC-PTFE

We initially investigated the effect of applying PR on the generation rate of H2O2
and •OH. We varied the current intensity and studied its effect on the electrode with and
without PR application. We explored the effect of electrode polarity duration to optimize the
electrochemical generation of •OH. The wettability of electrodes is typically characterized
by the contact angle measurement of a water droplet on the surface, which is defined as
the angle between the chord and the circular arc [6]. The contact angle was measured by a
contact angle meter (OCA15, Dataphysics, Riverside, CA, USA). To further evaluate the
GAC electrocatalytic activity towards ORR before and after PR, CV was performed in a
three-electrode system using Ag/AgCl as a reference cell.

3.4. Analytical Methods

To quantify the concentration of H2O2, 3 mL of solution samples were collected from
the port of the electrochemical reactor, and then 0.5 mL of 15 mM Ti(SO4)2 was used during
the spectrophotometric analysis. Ti(SO4)2 solution was prepared by adding 1.8 g of Ti(SO4)2
in 450 mL of DI and 50 mL of H2SO4 solution and then stirred for 3 h. The concentration
was then measured using the Shimadzu UV-1800 UV Spectrophotometer (Kyoto, Japan),
at a wavelength of 405 nm [77]. The pH was measured by using a pH meter. Benzoic
acid (BA) with a high second-order rate constant with •OH (4.2 × 10−9M−1s−1

)
was used

for the semi-quantitative measurement of •OH [4]. For the quantification of both BA and
hydroxylated isomer byproducts, a high-performance liquid chromatography with a UV
detector was used. The wavelength at which the 4-hydroxybenzoic acid was detected is
254 nm using an Agilent 1260 Infinity Quaternary LC, Santa Clara, CA, USA with an eluent
of 80% HPLC grade water and 20% methanol adjusted with phosphoric acid to reach a pH
of 2.3.

4. Conclusions

Engineered PR frequencies is a green technique for enhancing the surface functionali-
ties of GAC and promoting an efficient decomposition of H2O2 into •OH. The tuning of
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the OGs of the GAC’s surface through PR frequencies and current intensity allowed for a
higher concentration of •OH that led to an enhanced wettability and faster oxidation of
glyphosate. The enhanced adsorption by the GAC allowed for better contact between the
electrolyte and the active sites of the GAC as well. Consequently, tuning the PR method can
make the GAC acquire a larger surface of active sites through the form of additional OGs
and workability of these active sites without exceeding the limit of their oxidation through
an adequate current intensity. Hence, the selectivity of the GAC increases towards the
2e-ORR, as well as the efficient decomposition of H2O2 to •OH to degrade contaminants
more efficiently.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/catal14010052/s1. Figure S1: Calibration curve of H2O2 us-
ing spectrophotometer measured at a wavelength of 405 nm; Figure S2: Calibration curve of
4-hydroxybenzoic acid used for the quantification of •OH, using the HPLC; Figure S3: Electro-
chemical flow-through reactor showing the bubble accumulation at the surface of the cathode.
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