
Citation: Abbasi, H.A.; Al Moneef,

M.M.; Khan, J.; Hafeez, M.; Hameed,

M.U.; Khan, M.A.; Shahida, S.; Abbasi,

H.A.; Chang, S.-K. Unveiling the

Exceptional Performance of

ZnO/Zn2TiO4 Nanocomposites.

Catalysts 2024, 14, 156. https://

doi.org/10.3390/catal14020156

Academic Editors: Andrei

V. Shevelkov and Maxim N. Sokolov

Received: 10 December 2023

Revised: 29 January 2024

Accepted: 31 January 2024

Published: 19 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

catalysts

Article

Unveiling the Exceptional Performance of
ZnO/Zn2TiO4 Nanocomposites
Husnain Ahmad Abbasi 1, Maha M. Al Moneef 2,* , Jahanzeb Khan 3 , Muhammad Hafeez 1,*,
Muhammad Usman Hameed 4, Muhammad Abdullah Khan 5 , Shabnam Shahida 4, Habib Ahmad Abbasi 6

and Sook-Keng Chang 7

1 Department of Chemistry, University of Azad Jammu and Kashmir, Azad Kashmir,
Muzaffarabad 13100, Pakistan

2 Department of Physics, College of Science, Princess Nourah Bint Abdulrahman University,
Riyadh 11671, Saudi Arabia

3 Department of Chemistry, Mirpur University of Science and Technology (MUST), Azad Kashmir,
Mirpur 10250, Pakistan

4 Department of Chemistry, University of Poonch Rawalakot, Rawalakot 12350, Pakistan
5 Department of Environmental Sciences, Quid-i-Azam University, Islamabad 45320, Pakistan
6 Department of Physics, University of Azad Jammu and Kashmir, Azad Kashmir,

Muzaffarabad 13100, Pakistan
7 Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Putra Nilai,

Nilai 71800, Negeri Sembilan, Malaysia
* Correspondence: mmalmoneef@pnu.edu.sa (M.M.A.M.); muhammadhafeezchemist@gmail.com (M.H.)

Abstract: In this study, we engineered a sub-70 nm nanocomposite of ZnO/Zn2TiO4 using a low-
temperature solution-phase method with titanium isopropoxide and zinc acetate as precursors, and
isopropyl alcohol and water as solvents. The investigation focused on nanocomposite growth by
varying precursor and surfactant concentrations and their efficiency within different pH ranges. All
three ZnO/Zn2TiO4 nanocomposites exhibited hexagonal wurtzite ZnO and Zn2TiO4 structures. The
crystallite size in these nanocomposites ranged from 39.50 nm to 62.67 nm for ZnO and 21.24 nm to
26.15 nm for Zn2TiO4. Morphological observations using FESEM revealed the formation of dispersed
cotton packet-like nanocomposites with sizes ranging from 18 to 350 nm. FTIR analysis showed
peaks indicative of Ti–O and Zn–O bond formation, and EDX spectrum confirmed the presence of Ti,
O, and Zn. UV spectrums and photocatalytic investigations confirmed the successful formation of
ZnO/Zn2TiO4 nanocomposites with notable photocatalytic degradation efficiency for methylene blue
dye under various conditions. These findings suggest the potential applicability of the synthesized
nanocomposites for environmental pollutant degradation.

Keywords: ZnO/Zn2TiO4 nanocomposites; spectrum; methylene blue; dye

1. Introduction

Photocatalysis technology, conceived in the late 1960s as a solution for water and
wastewater treatment, addresses the critical issue of water pollution primarily caused
by organic pollutants, constituting over 50% of water contaminants [1]. The pervasive
presence of toxic contaminants in water and wastewater poses serious threats to both
human beings and aquatic life [1]. In this context, nanotechnology, involving the creation
of nanostructures with dimensions between atoms and bulk atom materials, presents
a transformative approach [2]. Photocatalysis, a technique utilizing photocatalysts and
light irradiation for pollutant degradation, has become a cornerstone in energy generation
and environmental restoration efforts [3,4]. The global expansion of the population has
heightened the demand for clean water, with billions of people experiencing freshwater
scarcity [5,6]. In recent years, mixed metal oxide additives have gained attention for their
unique properties and diverse applications in various fields [1]. Comprising different metal
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oxides, these additives enhance material performance, improving mechanical, electrical,
and catalytic properties. Their tunable properties, achieved by varying composition and
ratio, offer versatility for applications in industries such as energy storage, electronics, and
environmental remediation. Notably, mixed metal oxide additives exhibit excellent stability
and durability, making them suitable for long-term use in demanding conditions, with
resistance to corrosion and high temperatures [1].

Synthesizing ZnO: Zn2TiO4 nanocomposite powder has been explored through vari-
ous methods, including the co-precipitation method, sol–gel precipitating method, solid-
state reaction, and solution combustion. Among these, the sol–gel precipitating method
stands out for its prominence in synthesizing nanocrystalline materials, facilitating the
formation of distinctive metastable structures at low reaction temperatures, ensuring excel-
lent chemical consistency and the preparation of a high-purity, well-crystallized powder
of nanocomposites [1]. Nanostructured Zn2TiO4 and zinc oxide (ZnO) are recognized
n-type semiconductor materials with wide band gaps of approximately 3.22 eV and 3.37 eV,
respectively. These materials play crucial roles in absorbing electromagnetic energy and
degrading organic pollutants through photodegradation [1].

Despite their similar band gap energy values, Zn2TiO4 and ZnO exhibit distinct
redox energy levels, making them suitable for the preparation of core-shell heterojunction
nanostructures. Various synthesis methods, such as physical vapor deposition, microwave-
assisted hydrothermal techniques, and radiofrequency sputtering, have been explored for
ZnO/Zn2TiO4 heterostructures. However, achieving tunable structures through low-cost
fabrication procedures remains a significant challenge, with co-precipitation standing out
as a simple and cost-effective method widely used in industrial production [2].

ZnO/Zn2TiO4 boasts appealing properties, including excellent transparency in the
visible spectrum, a high piezoelectric constant, a significant electro-optic coefficient, and a
substantial excitation binding energy of approximately 60 meV at room temperature [7].
Significant efforts have been directed towards improving the photocatalytic performance
of ZnO/Zn2TiO4 through various approaches, including doping with other ions, surface
coupling with other semiconductors to form a heterojunction, photosensitization, and
nanostructure design [8]. The unique combination of oxygen and metal in ZnO/Zn2TiO4
creates distinct characteristics, contributing to reactive electrical transitions and broad
bandgaps [9,10]. Studies have explored the beneficial characteristics of ZnO nanostructures,
dependent on the concentration of Zn2TiO4, showcasing their importance for semiconduc-
tors [11]. Several approaches, such as Zn function doping and light stimulation, have been
investigated to enhance the performance of ZnO/Zn2TiO4 nanostructures. By employing
methods that decrease bulk materials, including etching, breaking, or cutting, nanostruc-
tures with diverse morphologies have been successfully created, providing a “top-down”
approach [12,13]. The nanocomposite demonstrates adaptability for photonic usage in the
UV spectral region at room temperature due to its broad super lattice and high ionization
potential energy of 60 meV [14].

ZnO, an affordable and harmless semiconductor material, maintains a higher level of
chemical stability. Various nanostructures, including nanorods, nanobelts, nanorings, nanowires,
and nanoflowers, have been synthesized to leverage its versatile properties [15–18]. The hy-
drothermal process has proven to be a useful strategy for producing ZnO nanostructures
and other luminescent materials [19]. Exhibiting iconicity between ionic and covalent
materials, ZnO has distinct crystal formations such as wurtzite, zinc blende, and rock salt.
ZnO wurtzite structure, frequently thermodynamically stable in natural settings, exhibits
unique arrangements of Zn and O ions in tetrahedrons, resulting in an asymmetric structure
with surfaces carrying positive or negative charges [20,21]. ZnO finds various technical
uses, including in heterogeneous catalysis and optoelectronics, emphasizing the critical
importance of understanding its band structure for potential effects in devices and improv-
ing their functionality [14]. Research groups have explored dual core-shell nanostructures
to enhance the photocatalytic performance of metal oxide semiconductor nanomaterials.
For instance, Kwiatkowski et al. prepared ZnO/Zn2TiO4 core/shell composites through
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sol–gel deposition, demonstrating their efficacy in the photodecomposition of methylene
blue [3]. Experimental techniques, such as X-ray-induced photoabsorption and photoe-
mission spectroscopy, are commonly employed to recognize the band structure of ZnO,
providing insights into its optoelectronic characteristics [22].

Understanding the ZnO band structure is crucial, considering its equal valence band
and conduction band zones at k = 0, indicative of a straight band gap material with a
wurtzite structure [23]. ZnO nanostructures exhibit photocatalytic properties that protect
against bacteria, fungi, and viruses, making them valuable for degrading environmental
pollutants. The generation of reactive oxygen species, catalytic activity using photosur-
factants, and UV radiation-induced cancer damage all depend on ZnO nanostructures,
a common excitation gap semiconductor [24]. The processing of higher exciton binding
energies by ZnO/Zn2TiO4 results in efficient exciton emission at ambient temperature
and visible spectrum, in addition to the ultraviolet spectrum [25]. ZnO photolumines-
cence spectra typically show a UV band corresponding to (NBE) at room temperature
and one or two visible bands consisting of defects, such as interstitial vacancies, extra
atoms occupying lattice interstices, and complicated defects [26]. The use of large ZnO
nanoparticles presents aesthetic challenges, and researchers have investigated the effects
of cross-linking activity mechanisms on the size, surface, and morphology of ZnO [27,28].
Noteworthy applications of ZnO include its use as a relief agent for infant diaper rash
and its inclusion in creams for cancer treatment to kill tumor cells while causing mini-
mal harm to healthy cells [29]. Among various photocatalysts, Zn2TiO4 stands out as a
widely employed “golden” photocatalyst, extensively used in heterogeneous photocatal-
ysis due to its chemical stability, nontoxicity, and low cost [30,31]. The rapid growth of
Zn2TiO4 heterogeneous photocatalysis in the past two decades has been driven by diverse
energy and environmental challenges, including direct solar water splitting into H2 and
the decomposition of air pollutants and water at low concentrations [32]. The literature on
heterogeneous photocatalysis has been extensively reviewed, addressing the development
of photocatalysts, characterization of photocatalytic processes, and the challenges and
opportunities confronting this field [33]. To the best of our knowledge, this work reports
the first instance of enhanced photoreactivity in the ZnO/Zn2TiO4 nanocomposite.

2. Results and Discussion
2.1. Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy

Figure 1a–c show the microstructures of three ZnO/Zn2TiO4 nanocomposites. The
ZnO/Zn2TiO4 nanocomposite structures were explained to have a magnitude of 200 nm
which is displayed. The particle thickness in the three ZnO/Zn2TiO4 nanocomposites
ranged in diameter from 18 to 350 nm. The size of the spherical nanocomposite in this
study indicates the structure of the ZnO/Zn2TiO4 nanocomposites [34,35].

Using the EDX method, the elemental composition of sample materials was identified.
Figure 1 shows the EDX spectrum for the three synthesized ZnO/Zn2TiO4 nanocomposites.
The EDX spectrum shows peaks for different contents in the synthesized sample. The
ZnO/Zn2TiO4 nanocomposite synthesis was confirmed by the presence of peaks for Zn,
O, and Ti. Zn, O, and Ti make up a significant amount of the final products’ weight, as
seen by the spectra. In the three ZnO/Zn2TiO4 nanocomposites, element Zn has the weight
percentage 49.44%, 48.03%, and 42.28%, while element Ti has the weight percentage 22.22%,
20.29%, and 23.26%. Also, element O has the weight percentage 25.8%, 31.69%, and 34.46%.
An EDX examination shows the presence of the anticipated ZnO/Zn2TiO4 nanocomposite
components with no additional impurities or elements discovered, demonstrating that the
nanocomposites were properly manufactured. Zn, Ti, and O all are included, and their
weight percentages almost exactly match the composition [36].
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Figure 1. FESEM magnification micrograph and EDX analysis of synthesized ZnO-Zn2TiO4 nano-
composites: (a) 85% ZnO–15% Zn2TiO4 nanocomposite, (b) 75% ZnO–25% Zn2TiO4 nanocomposite, 
and (c) 65% ZnO–35% Zn2TiO4 nanocomposite. 
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36.45°, 42.75°, and 63.05° which are consistent with the Miller indices of (100), (002), (101), 

Figure 1. FESEM magnification micrograph and EDX analysis of synthesized ZnO–Zn2TiO4 nanocom-
posites: (a) 85% ZnO–15% Zn2TiO4 nanocomposite, (b) 75% ZnO–25% Zn2TiO4 nanocomposite, and
(c) 65% ZnO–35% Zn2TiO4 nanocomposite.

2.2. X-ray Diffraction Analysis (XRD)

XRD confirms the hexagonal wurtzite ZnO and Zn2TiO4 of the three synthesized
ZnO/Zn2TiO4 nanocomposites (Figure 2). Other reflections in the XRD pattern of the three
synthesized ZnO/Zn2TiO4 nanocomposites have been observed at 2θ = 31.98◦, 34.56◦,
36.45◦, 42.75◦, and 63.05◦ which are consistent with the Miller indices of (100), (002),
(101), (102), and (110) representing ZnO (JCPDS (Joint Committee on Powder Diffraction
Standards) card no: 36–1451) which nicely matched the observed peaks and showed that
they are highly crystalline.

Also, there are peaks at 53.8◦, 56.75◦, and 69.90◦ which is consistent with the Miller
indices of (020), (110), and (220) that correspond to the Zn2TiO4 phase (JCPDS card 25–1164).
Furthermore, the grain sizes of the ZnO/Zn2TiO4 nanocomposites are determined using
the Scherer formula.

D =
0.9λ
βcosθ

(1)

where D is the average grain-size, which might be smaller or larger than grain size, β indi-
cates full width at half maximum of the peak in radian, and ‘θ’ shows Bragg’s angle. In the
ZnO/Zn2TiO4 nanocomposites, ZnO crystallite size values were 62.67, 40.34, and 39.50 nm.
While the anatase phase size values were 26.15, 25.36, and 21.24 nm, respectively [35].
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Figure 2. XRD pattern of synthesized ZnO/Zn2TiO4 nanocomposites: 85% ZnO–15% Zn2TiO4

nanocomposite, 75% ZnO–25% Zn2TiO4 nanocomposite, and 65% ZnO–35% Zn2TiO4 nanocomposite.

2.3. Fourier Transform Infrared Spectroscopy (FTIR)

A double beam spectrophotometer was used to analyze the chemically synthesized
sample. Figure 3a shows the FTIR spectra of the ZnO/Zn2TiO4 nanocomposites, with peaks
observed at 3413 cm−1, 2070 cm−1, 1639 cm−1, 1381 cm−1, and 1117 cm−1. In Figure 3b, on
the left, the FTIR spectra of the ZnO/Zn2TiO4 nanocomposites reveal peaks at 3442 cm−1,
1629 cm−1, 1404 cm−1, 1116 cm−1, and 611 cm−1.
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Figure 3c at left displays the FTIR spectra of the ZnO/Zn2TiO4 nanocomposite in
which the peaks at 3454 cm−1, 1637 cm−1, 1384 cm−1, 1240 cm−1, and 615 cm−1 were
obtained. Peaks in the range of 610–1250 cm−1 are attributed to Ti–O bond formation.
The peak at 3652–3170 cm−1 represents the O–H bond. The peak at 1610–2335 cm−1 is
attributed to bending vibrations of the C=O molecule. The peaks located at 1350–1450 cm−1

are attributed to Zn–O bond formation [37,38].

2.4. Ultra Violet–Visible Spectroscopy

Intense peaks are seen in the UV spectrum of the three ZnO/Zn2TiO4 nanocompos-
ites. In Figure 4a, the synthesized ZnO/Zn2TiO4 nanocomposite showed absorbance at
345 nm and 251 nm. In Figure 4b, the synthesized ZnO/Zn2TiO4 nanocomposite showed
absorbance at 341 nm and 285 nm, respectively. In Figure 4c, the synthesized ZnO/Zn2TiO4
nanocomposite showed absorbance at 354 nm and 288 nm. This is an indication of the
fact that the synthesized ZnO/Zn2TiO4 nanocomposites are photosensitive in the UV
region [39,40].
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Figure 4. Ultraviolet–visible spectrum of ZnO–Zn2TiO4 nanocomposites: (a) 85% ZnO–15%
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Zn2TiO4 nanocomposite.

2.5. Photocatalytic Activity

The photocatalytic activity of three ZnO/Zn2TiO4 nanocomposites was compared
by using methylene blue dye as the model pollutant. Experiments used 20 mL of methy-
lene blue solution with 2 mg of the catalyst suspended in it while being exposed to UV
light. By stirring the reaction mixture for 30 min in the dark prior to irradiation, the
adsorption–desorption equilibrium was achieved. Stirring the reaction mixture in the dark,
there was no decrease in methylene blue concentration due to no absorption of the dye
(MB) solution, but under light, passing time with repeated intervals of 20 min, absorbance
was shown by the MB solution (as depicted in Figure 5).
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Figure 5. UV-visible absorption spectra of MB dye on ZnO/Zn2TiO4 nanocomposites surface: (a) 85%
ZnO–15% Zn2TiO4 nanocomposite, (b) 75% ZnO–25% Zn2TiO4 nanocomposite, and (c) 65% ZnO–35%
Zn2TiO4 nanocomposite.

The ZnO/Zn2TiO4 nanocomposites exhibit an increase in photocatalytic activity due
to the synergistic interaction of Zn2TiO4 and ZnO. The design of the heterojunction be-
cause of the interfacial contact between ZnO and Zn2TiO4 may be the cause of this rising
influence in catalytic activity. When a photocatalyst is exposed to radiation, the valence
band and conduction band of the catalyst create a pair of positive holes and electrons.
Positive photogenerated holes switch from Zn2TiO4 to the ZnO valence band. It causes
the separation of positive holes and photoexcited electrons, which in turn increases the
life of charge carriers. The OH radicals are produced when positive holes oxidize water
molecules, while superoxide anions are produced when photoexcited electrons decrease
dissolved oxygen molecules. The dye molecules are converted to inorganic by-products, by
these OH radicals. The separation of positive holes and photoexcited electrons increase the
production of OH radicals, which enhances the photocatalytic activity [41,42].

The following is a summary of the suggested mechanism:

Catalyst + Irradiation → h+
VB + e−CB (2)

h+
VB + H2O → OH + H+ (3)

e−CB + O2 → O2
− (4)

H+ + O2
− → HO2 (5)

HO2 → H2O2 + O2 (6)

H2O2 → OH (7)
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OH + MB → Degradation products (8)

It is clear that OH radicals were crucial in the methylene blue dye breakdown. The
photonic crystal structure of ZnO/Zn2TiO4 has a great capacity for light harvesting, and
its heterostructure has the ability to separate the photogenerated electron–hole pairs. The
catalytic activity of the catalyst ZnO/Zn2TiO4 composites increases as a result of both of
these characteristics. One of the factors that lowers the cost of the catalytic process is the
recycling of the photocatalyst [43].

As seen in Figure 6a–d the effects of several experimental conditions including time,
catalyst amount, dye concentration, and pH on the percentage of degradation were carefully
evaluated. The photodegradation efficiency of methylene blue (MB) was calculated by
using the following equation.

Degradation (%) = Ce − C0/Ce × 100 (9)

where C0 and Ce correspond to the initial and final concentration of dye before and
after photoirradiation.
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The dye degradation properties of three ZnO/Zn2TiO4 nanocomposites on MB dye
surface were investigated.

According to Figure 6a, the degrading effectiveness of the ZnO/Zn2TiO4 nanocom-
posites on MB dye were examined along with interval of time as, at 0–30 min, degradation
percentage is zero, but with passing time through repeated intervals of 20 min, the percent-
age degradation goes on increasing. Nanocomposite “a” (at time 50 min, 70 min, 90 min,
110 min) percentage degradation goes on increasing to 5%, 35%, 70%, 80%, and 100% degra-
dation. Nanocomposite “b” (at time 50 min, 70 min, 90 min, 110 min, 130 min, 150 min)
percentage degradation goes on increasing to 6%, 8%, 12%, 15%, 25%, and 36% degrada-
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tion. Nanocomposite “c” (at time 50 min, 70 min, 90 min, 110 min, 130 min) percentage
degradation goes on increasing to 3%, 10%, 20%, 25%, and 34% degradation [34,35,44].

Figure 6b is used to demonstrate the removal effectiveness of MB dye with various
catalyst amounts. The findings show that the percentage degradation efficiency rises
with increasing catalyst amount of the three different ZnO/Zn2TiO4 nanocomposites
when starting from 1 mg and using 30 mL of the MB dye solution. In nanocomposite
“a”, increasing the amount from 2 to 8 mg increases the degradation percent (20–80%);
in nanocomposite “b”, increasing the amount from 2 to 4 mg increases the degradation
percent (33–70%); in nanocomposite “c”, increasing the amount from 2 to 5 mg increases
the degradation percent (3–60%). The degradation percent efficiency goes on increasing,
which could be attributed to an increase in the number of accessible adsorption sites on the
catalyst surface [34].

When using ZnO/Zn2TiO4 nanocomposites, it was discovered that the percentage of
degradation efficacy decreased as the concentration of dye increased. In nanocomposite “a”,
increasing the concentration (5 mL, 20 mL, 35 mL, 50 mL) results in decreasing degradation
(85%, 64%, 30%,0%); in nanocomposite “b”, increasing the concentration (5 mL, 10 mL,
20 mL, 30 mL, 45 mL) results in decreasing degradation (85%, 45%, 25%, 10%, 0%); in
nanocomposite “c”, increasing the concentration (5 mL, 20 mL, 30 mL, 45 mL) results in
decreasing degradation (92%, 38%, 12%, 0%) as shown in Figure 6c. As a result of the
Vander Waals contact between the catalyst and dye, there are fewer adsorption sites, which
leads to degradation. The influence of the amount of catalyst on percentage degradation of
dye (MB) efficacy was observed using a series of adsorption tests [34].

The pH directly affects the surface binding sites, surface charges, and structural
characteristics of the dye molecule. As a result, the pH effect on percent dye degradation
efficacy was observed by varying the solution pH from 2 to 13 using 0.1 M HCl and NaOH
solutions, as shown in Figure 6d. Nanocomposite “a” at pH 7, 10, 13 had degradations of
68%, 62%, 70%. Nanocomposite “b” at pH 7, 10, 13 had degradations of 68%, 60%, 78%.
Nanocomposite “c” at pH 7, 10, 13 had degradations of 60%, 57%, 70%. At low pH range,
nanocomposite “a” at pH 2 and 5 had a degradation of 5% and 30%; in nanocomposite
“b” at pH 2 and 5, there was degradation of 40% and 55%; in nanocomposite “c” at
pH 2 and 4, there was degradation of 5% and 35%. Low pH to high pH increased the
degradation efficiency, which may have caused the negative charge to decrease as a result
of H+ neutralization. However, at pH levels higher than 7, some decrease may be as a result
of increased competition between H+ and the dye.

Figure 7 shows the optical energy band gap of nanocomposites containing different
ratios of ZnO and Zn2TiO4 (85% ZnO–15% Zn2TiO4, 75% ZnO–25% Zn2TiO4, and 65%
ZnO–35% Zn2TiO4) was assessed utilizing the Kubelka-Munk function. The UV-visible
data were utilized to calculate the bandgap of the synthesized nanocomposite. By analyzing
the absorption edge in the UV spectrum and applying the formula Eg (eV) = 1240/λ [41–48],
the estimated band gap serves as a key parameter for understanding the electronic structure.
The calculated values of the band gap for the 85% ZnO–15% Zn2TiO4 nanocomposite, 75%
ZnO–25% Zn2TiO4 nanocomposite, and the 65% ZnO–35% Zn2TiO4 nanocomposite are
3.15 eV, 3.25 eV, and 3.26 eV, respectively [49]. The broader absorbance maxima were
used to calculate the band gap from each spectrum. The appearance of a negative charge
on ZnO/Zn2TiO4 nanocomposites is compatible with the zeta potential results of the
breakdown of dye molecules with various charges at various pH levels. As a result, it has
been found that the degradation of dyes is extremely specific to the surface charge of the
catalyst. Thus, ZnO/Zn2TiO4 nanocomposites may be categorized as ultrafast catalysts,
which would be very beneficial for the quick and significant destruction of dangerous
compounds [34,44].
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nanocomposite, and 65% ZnO–35% Zn2TiO4 nanocomposite were evaluated using Kubelka-Munk
function [39,40].

3. Experimental Details
3.1. Materials

In the present research work, zinc acetate (99% pure), titanium tetra-isopropoxide
(99% pure), absolute ethanol, and distilled water were used. All chemicals were purchased
from Sigma Aldrich (Karachi, Pakistan) with analytical grades.

3.2. Synthesis of ZnO/Zn2TiO4 Nanocomposites

Three nanocomposite compositions were produced using the sol–gel method:
85ZnO–15 Zn2TiO4, 75ZnO–25 Zn2TiO4, and 65ZnO–35 Zn2TiO4. Weighed amounts of
Zn(CH3COO)2·H2O powder (11.5 g, 9.8 g, and 7.6 g) were added to the mixture, which
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was then agitated for 25 min at 40 ◦C. To synthesize the NaOH solution, we prepared three
different concentrations: namely, 0.5 M, 0.75 M and 1.0 M at 40 ◦C. The Zn(CH3COO)2·2H2O
solution was then added, and the mixture was agitated for approximately 140 min. The
ZnO sol was formed once the stirring was completed. Meanwhile, 50-mL of ethanol
was mixed with 5-mL, 10-mL, and 15-mL of titanium (IV) isopropoxide and agitated for
30 min to achieve homogeneity. After that, the solution was ionized with 20-mL of distilled
water. Precipitation of ZnO/Zn2TiO4 was observed when the ZnO and Zn2TiO4 sols were
combined and stirred for 250 min at 30 ◦C. The precipitate was then left for 25 h, filtered
using filter paper, rinsed with distilled water, and dried at 150 ◦C overnight in an oven.
Finally, the dried powder was calcined at 710 ◦C for 3 h.

3.3. Characterization

The SEM and EDX analysis were conducted using the FEI NOVA nano-SEM 450
(Hillsboro, OR, USA), which was equipped with an Oxford EDX detector (Abingdon,
UK). X-ray diffraction measurements were performed using the Bruker D2 Phaser XRD
model (Billerica, MA, USA). The FTIR spectrum of three ZnO/Zn2TiO4 nanocomposites
was recorded in KBr using the FTIR-8400S instrument from Shimadzu (Kyoto, Japan),
within the range of 4000–400 cm−1. The absorption spectra and other photocatalytic
measurements were obtained using the Shimadzu UV-2600 spectrophotometer, which is an
ultraviolet–visible instrument.

4. Conclusions

The sol–gel technique was found to be an efficient, quick, easy, and inexpensive
method for fabricating three ZnO/Zn2TiO4 nanocomposites. These nanocomposites were
formed to study the degradation of methylene blue dye in the presence of sunlight. Various
characterization methods, including XRD, EDX, UV-VIS, SEM, and FTIR, were used to
investigate the physiochemical characteristics of the samples. FESEM observations revealed
the formation of ZnO/Zn2TiO4 nanocomposites with a size range of 18–350 nm, resembling
spread-out cotton packets. XRD measurements confirmed the formation of wurtzite ZnO
and Zn2TiO4 structures in the three nanocomposites. UV spectra also confirmed the
formation of the nanocomposites, showing two peaks for each sample. FTIR spectra further
confirmed the formation of the nanocomposites, with peaks indicating Ti-O and Zn-O
bond formations. The elemental composition of the nanocomposites was determined
using energy dispersive X-ray spectroscopy, which revealed peaks for Ti, O, and Zn.
Photocatalytic investigations were then carried out, analyzing the UV-visible absorption
spectra of the dye on the nanocomposite surface, degradation of the dye at different
irradiation time intervals and catalyst concentrations, and the influence of pH on dye
degradation. The chemical synthesis of ZnO/Zn2TiO4 nanocomposites using the sol–gel
method demonstrated its simplicity and ease of fabrication. This work obliges as an
inspiration for young scientists to explore the potential applications of ZnO/Zn2TiO4
nanocomposites, particularly in photocatalytic activity studies.
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