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Abstract: This review introduces transition metal phosphide nanoparticle catalysts as highly efficient
and reusable heterogeneous catalysts for various reductive molecular transformations. These trans-
formations include the hydrogenation of nitriles to primary amines, reductive amination of carbonyl
compounds, and biomass conversion, specifically, the aqueous hydrogenation reaction of mono- and
disaccharides to sugar alcohols. Unlike traditional air-unstable non-precious metal catalysts, these are
stable in air, eliminating the need for strict anaerobic conditions or pre-reduction. Moreover, when
combined with supports, metal phosphides exhibit significantly enhanced activity, demonstrating
high activity, selectivity, and durability in these hydrogenation reactions.
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1. Introduction
1.1. Challenges and Innovations in Non-Precious Metal Catalysis for Hydrogenations

Catalytic hydrogenation using molecular hydrogen (H2) is a vitally important and
atom-efficient method in modern chemical production, suitable for a wide range of applica-
tions ranging from milligram-scale organic synthesis to multi-ton-scale chemical production.
In the industrial hydrogenation, traditionally, sponge metal catalysts based on non-precious
metals such as nickel and cobalt, which have a high surface area, have been prevalently
employed in these hydrogenation reactions [1,2]. However, these sponge metals, epito-
mized by Raney catalysts, suffer from significant drawbacks [3–5]. Their instability in
the air, leading to rapid oxidation and deactivation, poses a major challenge. The highly
pyrophoric nature of these sponge metals necessitates handling under the exclusion of air,
limiting their applicability. Furthermore, the low catalytic activities of sponge metals re-
quire harsh reaction conditions such as high temperature and high H2 pressure. Therefore,
these drawbacks have led to a growing demand for the development of more stable and
active non-precious metal catalysts.

Recent advances have witnessed a surge in reports detailing the development of
non-precious metal nanoparticle catalysts, which demonstrate higher activity compared
to traditional sponge metal catalysts [6–8]. Despite these advancements, the air instabil-
ity issue of non-precious metal nanoparticle catalysts remains unresolved. These novel
catalysts frequently require the in situ generation of nanoparticles using H2 reduction at
elevated temperatures prior to their application. The air instability not only raises safety
concerns due to ignition risks, but also impedes the precise design of nanoparticle catalysts,
including aspects such as morphology control and composite formation with a support
material. Additionally, it complicates the structural analysis of the actual active species.
Consequently, the development of air-stable non-precious metal catalysts would not only
enhance the safety profile of reaction systems, but also expand the possibilities for precise
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design of catalysts and analytical evaluation. Such progress could potentially lead to
the discovery of even more active catalysts. In this context, our group has embarked on
developing non-precious metal catalysts that are both air-stable and highly active. Our
efforts have led to the discovery that nanosized transition metal phosphides function as
non-precious metal catalysts, combining atmospheric safety, high activity, and durability for
a wide range of hydrogenation reactions including the hydrogenation of nitriles to primary
amines, reductive amination of carbonyl compounds, and the aqueous hydrogenation
reaction of mono- and disaccharides to sugar alcohols.

1.2. Advancements in Transition Metal Phosphide Catalysts

The study of transition metal phosphide catalysis began with Sweeny’s report in
1958 [9], demonstrating that nickel phosphide catalysts were effective in the vapor-phase hy-
drogenation of nitrobenzene. Research expanded throughout the 1970s and 1980s to include
the hydrogenation of alkenes, dienes, and alkynes [10–14], dehydrogenation of methylcy-
clohexane [15], and the dimerization of isobutylene [14] using primarily nickel phosphide.
From 1990 onwards, transition metal phosphides were recognized for their high activity
and durability in hydrodenitrogenation [16] and hydrodesulfurization [17–25], both of
which are crucial reactions in petroleum refineries. The 2010s saw a surge in studies on
transition metal phosphides as electrocatalysts for the hydrogen evolution reaction [26–30].
The pioneering work has been achieved by the R. E. Schaak. They demonstrated that
shape-controlled Ni2P nanoparticles were the most active non-precious metal-based elec-
trocatalysts for this reaction at the time [31]. Subsequently, other nanosized non-precious
metal phosphides including CoP [32,33], FeP [34], MoP [35,36], Co–Fe–P [37], and Ni–Co–
P [38] have also been reported as effective catalysts for this reaction. Currently, the catalytic
performance and structure–activity relationship of these catalysts in hydrogen evolution
reaction represents one of the most vibrant areas of research in transition metal phosphide
catalysis. A comprehensive bibliometric analysis using Scifinder, with criteria focusing on
the inclusion of “phosphide” and “catalyst” in the title, abstract, or keywords, revealed a
substantial body of literature comprising 6008 publications. The year 2023 marked a peak
with 831 publications, underscoring the growing research interest in this field.

In addition to their established roles in hydrodenitrogenation, hydrodesulfurization,
and hydrogen evolution reaction, recent years have seen a burgeoning interest in the appli-
cation of non-precious metal phosphides to liquid-phase molecular transformations. This
emerging area of research encompasses various reactions, including the semihydrogenation
of alkynes [39–41], hydrogenation of polar functional groups [42–45], and coupling reac-
tions [46,47]. Despite these advances, the full potential of non-precious metal phosphides
in catalyzing a broader range of liquid-phase molecular transformations remains largely
untapped. This gap in research offers a fertile area for future studies aiming to discover
new sustainable pathways for chemical synthesis utilizing transition metal catalysts. This
review highlights the advancements in cobalt and nickel phosphide nanoparticle catalysts,
with a focus on their performance in hydrogenation reactions. By investigating the under-
lying factors that contribute to their catalytic efficiency, we facilitate future innovations in
green and sustainable chemistry. The exploration of such catalysts across diverse molecular
transformations not only deepens our understanding of their catalytic mechanisms, but
also introduces new opportunities for environmentally friendly chemical processes. To
this end, Figure 1 illustrates these themes in a conceptual diagram, offering an at-a-glance
overview of the synthesis, characterization, and application of air-stable and highly active
transition metal phosphide catalysts in reductive molecular transformations.
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width (nano-Co2P) can be obtained by the thermal decomposition of cobalt chloride and 
triphenyl phosphite in 1-octadecene in the presence of hexadecylamine, as depicted in 
Figure 2a,b [48,49]. The composition of the cobalt phosphide nanorods was confirmed as 
Co2P through selected area electron diffraction (SAED) patterns (Figure 2c), X-ray diffrac-
tion (XRD) patterns, and elemental analysis by energy dispersive X-ray spectroscopy 
(EDS) (Figure 2d–f). The prepared nano-Co2P is non-pyrophoric and can be handled in 
air. Furthermore, the nano-Co2P is easily immobilized on various metal-oxide supports 
under atmospheric conditions by redispersing it in hexane followed by the addition of the 
supports. 
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The hydrogenation of nitriles is one of the most important methods for the synthesis 
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genation is an ideal reaction with 100% atomic efficiency as it does not produce any by-
products. Traditionally, the hydrogenation of nitriles in the industry has relied on cobalt 
and nickel-based catalysts, such as Raney or sponge metal catalysts, due to their cost-ef-
fectiveness [50,51]. However, these catalysts often require high catalyst loadings and op-
erate under severe reaction conditions, including high hydrogen pressures ranging from 
200 bar to 400 bar [51,52]. To address these limitations, some metal complex catalysts 
based on iron [53–55], cobalt [56–58], and manganese [59–61] have been developed. These 
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Figure 1. Conceptual Diagram: Overview of Air-Stable and Highly Active Transition Metal Phosphide
Catalysts Synthesis, Characterization, and Applications in Reductive Molecular Transformations.

2. Catalytic Performance of Metal Phosphide Nanoparticle Catalysts
2.1. Cobalt Phosphide Nanoparticle Catalysts

Cobalt phosphide nanoparticle is prepared via the solvothermal method. Cobalt
phosphides with an hexagonal-columnar structure with 20 nm in length and 9 nm in
width (nano-Co2P) can be obtained by the thermal decomposition of cobalt chloride and
triphenyl phosphite in 1-octadecene in the presence of hexadecylamine, as depicted in
Figure 2a,b [48,49]. The composition of the cobalt phosphide nanorods was confirmed
as Co2P through selected area electron diffraction (SAED) patterns (Figure 2c), X-ray
diffraction (XRD) patterns, and elemental analysis by energy dispersive X-ray spectroscopy
(EDS) (Figure 2d–f). The prepared nano-Co2P is non-pyrophoric and can be handled in
air. Furthermore, the nano-Co2P is easily immobilized on various metal-oxide supports
under atmospheric conditions by redispersing it in hexane followed by the addition of
the supports.

2.1.1. Hydrogenation of Nitriles Using Nano-Co2P Catalysts

The hydrogenation of nitriles is one of the most important methods for the syn-
thesis of primary amines, which are widely used as raw materials and intermediates in
pharmaceuticals, agrochemicals, polymers, surfactants, and dyes. Theoretically, nitrile
hydrogenation is an ideal reaction with 100% atomic efficiency as it does not produce
any by-products. Traditionally, the hydrogenation of nitriles in the industry has relied on
cobalt and nickel-based catalysts, such as Raney or sponge metal catalysts, due to their
cost-effectiveness [50,51]. However, these catalysts often require high catalyst loadings
and operate under severe reaction conditions, including high hydrogen pressures ranging
from 200 bar to 400 bar [51,52]. To address these limitations, some metal complex catalysts
based on iron [53–55], cobalt [56–58], and manganese [59–61] have been developed. These
catalysts promote the nitrile hydrogenation at lower hydrogen pressures of 30 bar to 60 bar.
Despite these advancements, homogeneous catalysts present challenges in terms of catalyst
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recovery and reuse, as well as potential contamination risks from dissolved metals. In
contrast, recent studies have introduced stable, non-precious metal-based heterogeneous
catalysts for nitrile hydrogenation [62–66]. Among these, the Beller group has reported sta-
ble cobalt nanoparticles derived from metal-nitrogen complexes [62,63] and metal–organic
framework [64]. These catalysts facilitate nitrile hydrogenation under even lower hydrogen
pressures of 2.5 bar to 30 bar. Although these nanostructured materials offer advantages
as reusable non-precious metal catalysts, they still necessitate pressurized hydrogen and
exhibit relatively low activity. Therefore, the pursuit of a highly active catalyst for efficiently
transforming nitriles under mild conditions remains a critical area of research.
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in Figure 3. For example, 1,6-hexamethylenediamine (16b), a significant precursor of Ny-
lon-6,6, can be obtained from adiponitrile with a high yield. Similarly, the biomass deriv-
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Figure 2. Characterization of nano-Co2P. (a) Side view TEM image of nano-Co2P showing a nanorod
morphology. (b) Top view TEM image of nano-Co2P showing the hexagonal phase structure. (c) HR-
TEM image of nano-Co2P with SAED pattern (inset). Elemental mapping images of (d) Co and
(e) P. (f) Composite overlay image of (d,e). Adapted from [48] Mitsudome, T.; Sheng, M.; Nakata,
A.; Yamasaki, J.; Mizugaki, T.; Jitsukawa, K. A Cobalt Phosphide Catalyst for the Hydrogenation of
Nitriles. Chem. Sci. 2020, 11, 6682–6689.

Upon investigating the catalysis of supported nano-Co2P for the nitrile hydrogenation,
it was discovered that nano-Co2P supported on hydrotalcite (HT: Mg6Al2(OH)16CO3·4H2O)
(nano-Co2P/HT) is an extremely effective catalyst for the hydrogenation of nitriles to primary
amines [48]. Nano-Co2P/HT was able to hydrogenate various nitriles including aliphatic nitriles
(Table 1, entries 1–4), aromatic nitriles (entries 5 and 6), heterocyclic nitriles (entries 7–10), and
substituted aromatic nitriles (entries 11–15), providing the corresponding primary amines with
high yields. Nano-Co2P is also effective for polynitriles containing multiple nitrile groups
within their molecules, as demonstrated in Figure 3. For example, 1,6-hexamethylenediamine
(16b), a significant precursor of Nylon-6,6, can be obtained from adiponitrile with a high yield.
Similarly, the biomass derivative sebaconitrile is smoothly transformed into the corresponding
1,10-diaminodecane (17b). Furthermore, this catalyst is applicable to tetranitriles, enabling
the synthesis of important amines (20b) used as intermediates in the production of functional
materials such as dendrimers. Unlike previously reported non-precious metal catalysts that
require high H2 pressure to facilitate the reaction, nano-Co2P/HT exhibits high activity under
atmospheric H2 pressure, selectively yielding primary amines (Figure 4).
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Reaction conditions: catalyst (0.1 g), substrate (0.5 mmol), 2-propanol (3 mL), Aq. NH3 (1.2 mL), a 
Aq. NH3 (0.4 mL). 
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Reaction conditions: catalyst (0.1 g), substrate (0.5 mmol), 2-propanol (3 mL), Aq. NH3 (1.2 mL), a 
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Reaction conditions: catalyst (0.1 g), substrate (0.5 mmol), 2-propanol (3 mL), Aq. NH3 (1.2 mL), a 
Aq. NH3 (0.4 mL). 
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Reaction conditions: catalyst (0.1 g), substrate (0.5 mmol), 2-propanol (3 mL), Aq. NH3 (1.2 mL), a 
Aq. NH3 (0.4 mL). 
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Reaction conditions: catalyst (0.1 g), substrate (0.5 mmol), 2-propanol (3 mL), Aq. NH3 (1.2 mL), a 
Aq. NH3 (0.4 mL). 
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Reaction conditions: catalyst (0.1 g), substrate (0.5 mmol), 2-propanol (3 mL), Aq. NH3 (1.2 mL), a 
Aq. NH3 (0.4 mL). 
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Reaction conditions: catalyst (0.1 g), substrate (0.5 mmol), 2-propanol (3 mL), Aq. NH3 (1.2 mL), a 
Aq. NH3 (0.4 mL). 
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Reaction conditions: catalyst (0.1 g), substrate (0.5 mmol), 2-propanol (3 mL), Aq. NH3 (1.2 mL), a 
Aq. NH3 (0.4 mL). 
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Reaction conditions: catalyst (0.1 g), substrate (0.5 mmol), 2-propanol (3 mL), Aq. NH3 (1.2 mL), a 
Aq. NH3 (0.4 mL). 
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Reaction conditions: catalyst (0.1 g), substrate (0.5 mmol), 2-propanol (3 mL), Aq. NH3 (1.2 mL), a 
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Reaction conditions: catalyst (0.1 g), substrate (0.5 mmol), 2-propanol (3 mL), Aq. NH3 (1.2 mL), a 
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This represents the first example of a non-precious metal catalyst promoting the
hydrogenation of nitriles under atmospheric H2 conditions.
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across up to seven cycles. This air-stability and durability markedly contrast with previ-
ously reported non-precious metal catalysts, which tend to deactivate easily under atmos-
pheric conditions, highlighting an outstanding feature of nano-Co2P/HT. 

 
Figure 5. Reuse experiments of nano-Co2P/HT in hydrogenation of 1a to 1b. 

2.1.2. Reductive Amination of Carbonyl Compounds Using Nano-Co2P Catalysts 
One characteristic feature of nanoparticle synthesis via the solvothermal method is 

the production of nanoparticles with various morphology by altering the metal precursors 
and surfactants. In the synthesis of cobalt phosphide nanoparticles, switching the cobalt 
source from cobalt chloride to cobalt acetylacetonate results in rod-shaped nanostructures 
approximately 50–150 nm in length and about 10 nm in width (Figure 6a,b) [67,68]. The 
high-resolution transmission electron microscopy (TEM) image of cobalt phosphide 

Figure 4. Hydrogenation of nitriles under ambient pressure of H2 using nano-Co2P. Reaction condi-
tions: catalyst (0.1 g), substrate (0.5 mmol), 2-propanol (3 mL), NH3 aq. (1.2 mL). a 130 ◦C. b NH3 aq.
(0.6 mL). c 16 h. d Catalyst (0.2 g), NH3 aq. (0.6 mL).

After the reaction, nano-Co2P/HT can be recovered from the reaction mixture through
centrifugal separation under atmospheric conditions and can be reused without the need for
any prereduction treatment. The result of the recycling experiment, as depicted in Figure 5,
demonstrates that the yield of the reaction remains consistently high at (93 ± 1)% across
up to seven cycles. This air-stability and durability markedly contrast with previously
reported non-precious metal catalysts, which tend to deactivate easily under atmospheric
conditions, highlighting an outstanding feature of nano-Co2P/HT.
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2.1.2. Reductive Amination of Carbonyl Compounds Using Nano-Co2P Catalysts

One characteristic feature of nanoparticle synthesis via the solvothermal method is
the production of nanoparticles with various morphology by altering the metal precursors
and surfactants. In the synthesis of cobalt phosphide nanoparticles, switching the cobalt
source from cobalt chloride to cobalt acetylacetonate results in rod-shaped nanostructures
approximately 50–150 nm in length and about 10 nm in width (Figure 6a,b) [67,68]. The



Catalysts 2024, 14, 193 7 of 19

high-resolution transmission electron microscopy (TEM) image of cobalt phosphide shown
in Figure 6c reveals lattice spacings corresponding to the (020) and (113) planes of Co2P,
confirming that the prepared cobalt phosphide nanorods (Co2P NR) have the same Co2P
composition as nano-Co2P. Co2P NR stored at ambient conditions demonstrates high
activity in the reductive amination of carbonyl compounds in aqueous media without the
need for prereduction treatment with H2 [15].
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The reductive amination of carbonyl compounds is an efficient and vital method for
synthesizing primary amines [69–74]. This efficiency stems from the fact that carbonyl
compounds are inexpensive and widely available starting materials. Furthermore, only
water is theoretically formed as a by-product, making this process environmentally benign.
Traditionally, reductive amination reactions in industrial processes have relied on air-
sensitive and relatively low active nickel or cobalt sponge metal catalysts [75–77]. However,
there have been significant advancements in enhancing the activity of heterogeneous
catalysts based on earth-abundant metals [78–84]. Notably, recent progress has been made
in the development of air-stable, non-precious metal catalysts. This advancement was
achieved through the pyrolysis treatment of metal–nitrogen complex precursors, resulting
in metal nanoparticles encapsulated within nitrogen-doped carbon layers [85–89]. These
nickel, cobalt, and iron-based nanoparticles prepared by this method exhibit air stability and
reusability in various fields of heterogeneous reactions, including the reductive amination
reaction [90–93]. Nevertheless, these catalytic systems still require the use of flammable
ammonia gas and/or high hydrogen pressures to facilitate the reaction. Additionally,
the nitrogen-doped carbon layers can inadvertently shield the active sites on the catalyst
surface, partially reducing their activity. Consequently, developing air-stable and highly
active non-noble metal nanoparticle catalysts for reductive amination remains a significant
challenge.

Table 2 presents the results of the reductive amination of benzaldehyde using the
Co2P NR catalyst. Using an NH3 aqueous solution or NH3 gas as the aminating agent
under 10 bar of H2 at 100 ◦C, the target product, benzylamine, is obtained with high
yield (entries 1–3). Moreover, Co2P NR can promote this reaction under atmospheric H2
pressure (entry 4). In contrast, traditional catalysts such as sponge cobalt (sponge Co)
and Co supported on SiO2 followed by a prereduction treatment (Co/SiO2-Red) show
negligible progress in the amination reaction under atmospheric H2 (entries 5 and 6).
Additionally, using commercial bulk Co2P does not facilitate the reaction at all (entry 7).
These results indicate that Co2P NR exhibits higher activity compared to conventional
catalysts, and that the incorporation of phosphorus into cobalt and nanosizing are crucial
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for enhancing cobalt’s activity. Furthermore, Co2P NR demonstrates a broad range of
substrate-applicability, efficiently converting various aldehydes and ketones into primary
amines under atmospheric H2 conditions, as illustrated in Figure 7.

Table 2. Reductive amination of benzaldehyde with Co2P NR and other cobalt catalysts.
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Entry Catalyst H2 (bar) NH3
Source

Time (h)
Yield (%)

1d 1e 1f

1 Co2P NR 10 Aq. NH3 10 93 0 0
2 a Co2P NR 10 NH3 gas 10 88 0 0
3 b Co2P NR 10 NH4OAc 10 15 0 73
4 Co2P NR 1 Aq. NH3 12 90 0 1
5 sponge Co 1 Aq. NH3 12 0 11 3
6 Co/SiO2-Red 1 Aq. NH3 12 0 0 0
7 bulk Co2P 1 Aq. NH3 12 0 0 0

Reaction conditions: Co catalyst (Co: 0.05 mmol), benzaldehyde (0.5 mmol), Aq. NH3 25% (3 mL), 100 ◦C. a NH3
gas (2.5 bar), water (3 mL). b NH4OAc (0.2 g), water (3 mL).
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Figure 7. Reductive amination of carbonyl compounds by Co2P NR at 1 bar H2. Reaction conditions:
Co2P NR (Co: 0.05 mmol), substrate (0.5 mmol), 12 h. a NH3 aq. 25% (3 mL). b NH4Oac (0.1 g),
ethanol (3 mL). c NH4Oac (0.15 g), ethanol (3 mL), 110 ◦C, 20 h.

2.1.3. Structure–Activity Relationship of Nano-Co2P Catalysts: Atmospheric Stability and
Activity Factors

The results of X-ray absorption fine structure (XAFS) measurements of Co2P NR
stored at room temperature under atmospheric conditions are presented in Figure 8. The
K-edge X-ray absorption near edge structure (XANES) spectrum of Co2P NR shows that the
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absorption edge energy is lower than that of CoO and similar to that of Co foil (Figure 8a).
This suggests that the electronic state of Co in Co2P NR remains in a low oxidation state,
close to metallic (zero-valent), even in the presence of air. This is further supported by
XPS measurements of Co2P NR, where the binding energies of Co’s 2p3/2 and 2p1/2 are
777.8 eV and 792.8 eV, respectively, closely aligning with those of metallic cobalt (2p3/2
(777.9 eV) and 2p1/2 (793.5 eV)). Additionally, the Fourier transform (FT) plot of extended
X-ray absorption fine structure (EXAFS) reveals that Co2P NR possesses metal–metal bonds
(Co–Co bonds) around 2.3 Å, which are advantageous for H2 activation (Figure 8b) [15].
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S.; Mizugaki, T.; Mitsudome, T. Single-Crystal Cobalt Phosphide Nanorods as a High-Performance
Catalyst for Reductive Amination of Carbonyl Compounds. JACS Au 2021, 1, 501–507.

Curve-fitting analysis further shows that, while the bulk Co2P has a coordination
number (CNCo–Co) of 4.0, Co2P NR exhibits a smaller CNCo–Co of 2.8, indicating that it
contains a higher number of coordinatively unsaturated sites. These results reveal that the
cobalt species in Co2P NR are stabilized in a low oxidation state and possess advantageous
Co–Co bonds as well as a higher number of coordinatively unsaturated sites, contributing
to its air-stability and high catalytic activity for hydrogenation.

To further investigate the air stability, structural changes of Co2P NR with increasing
temperature in air were evaluated using XAFS measurements, as shown in Figure 9. The
absorption edge energy gradually shifts to higher energies from 200 ◦C, with the intensity
of the characteristic peak of oxides (7722 eV) increasing around 400 ◦C, indicating structural
changes due to oxidation. Indeed, Co2P NR treated at 300 ◦C under atmospheric conditions
exhibited significantly reduced catalytic activity compared to untreated Co2P NR, whereas
Co2P NR treated at 200 ◦C maintained nearly equivalent catalytic activity. These findings
robustly demonstrate that the active cobalt species in Co2P NR exhibit remarkable resistance
against oxidative degradation.

2.2. Nickel Phosphide Nanoparticle Catalysts

Similar to the preparation method for cobalt phosphide nanoparticle, replacing cobalt
with nickel results in the successful synthesis of nickel phosphide nanoparticles (nano-
Ni2P) with an average diameter of 5 nm and a composition of Ni2P, as shown in Figure 10a.
Energy-dispersive X-ray (EDX) line analysis in Figure 10b demonstrates the uniform dis-
persion of nickel and phosphorus within nano-Ni2P [94]. Additionally, nano-Ni2P, such
as cobalt phosphide, exhibits non-pyrophoricity and stability in air in a low oxidation
state [95].
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2.2.1. Synergistic Catalytic Effects with Support Materials

Traditional sponge metal catalysts, as well as supported non-noble metal nanoparticles,
present handling difficulties due to their air sensitivity. This sensitivity significantly limits
the scope for additional catalytic modifications of the metal species obtained. Furthermore,
the selection of suitable supports for metal nanoparticles is confined to those that can endure
high-temperature reduction treatment, a process necessary for nanoparticle formation. This
constraint restricts the opportunity for creating composites of metal nanoparticles with
various attractive support materials. Such a limitation, consequently, diminishes the
possibilities for achieving improved catalytic performances. In contrast, nano-Ni2P can
be handled in air and allows for room-temperature compositing with suitable support
materials for desired reactions [94–100].

Utilizing this feature, a nano-Ni2P/HT composite can be prepared by combining
nano-Ni2P with hydrotalcite to decompose its layered structure near 250 ◦C. This nano-
Ni2P/HT catalyst exhibited high activity in the hydrogenation of carbonyl compounds
in water, capable of reducing various carbonyl compounds under mild conditions [95].
Using acetophenone as a model substrate, the results of the hydrogenation reaction in
aqueous solution under a 20 bar pressure of H2 are shown in Table 3. With nano-Ni2P,
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the corresponding product 1-phenylethanol was obtained with a yield of 16%, while the
use of nano-Ni2P/HT increased the yield to 93%, significantly enhancing the activity
(entry 1 vs. 2). Additionally, other oxide supports such as Y2O3, ZrO2, TiO2, Al2O3, and
Nb2O5, excluding SiO2, were effective, providing moderate-to-high yields (entries 4–9).
Moreover, nano-Ni2P/HT was active even under atmospheric H2 pressure (entry 3). This
high catalytic performance is attributed to the synergistically catalytic behavior where the
oxygen-deficient sites of HT activate the carbonyl group of adsorbed acetophenone, which
is then hydrogenated by Ni2P (discussed later).

Table 3. Hydrogenation of acetophenone using nano-Ni2P catalysts in water.
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aH2 (1 bar), 150 ◦C, 12 h.

2.2.2. Application of in Biomass Conversion

In molecular transformations aimed at the efficient utilization of biomass, it is desirable
to develop solid catalysts based on non-noble metals that are low-cost, highly active, and
durable for converting a large number of biomass-derived compounds into high-value-
added compounds. Nano-Ni2P/HT shows high activity for the aqueous hydrogenation
reaction of mono- and disaccharides to sugar alcohols.

The hydrogenation of D-glucose to produce D-sorbitol has been extensively studied,
utilizing a variety of heterogeneous catalysts that includes nickel [101–115], cobalt [116–118],
rhodium [103], ruthenium [119–132], or platinum [133,134]. Among these catalysts, sponge
nickel catalysts are most commonly employed in the industrial production of D-sorbitol.
This preference is due to their composition consisting of low-cost and abundant materi-
als. However, sponge nickel catalysts are prone to pyrophoricity and suffer from rapid
deactivation, which can be attributed to metal leaching, sintering of the metal, and the
degradation of the support [135,136]. Additionally, these catalysts exhibit low catalytic
activity, necessitating the use of high pressures of hydrogen gas and elevated temperatures
(ranging from 100 ◦C to 180 ◦C and from 50 bar to 150 bar, respectively). Therefore, in align-
ment with the principles of green and sustainable chemistry, it is of paramount importance
to develop air-stable, highly active, and recyclable catalysts for D-glucose hydrogenation.

As depicted in Figure 11, under conditions of 20 bar H2 and 100 ◦C in an aqueous
medium, nano-Ni2P/HT efficiently catalyzes the hydrogenation of D-glucose to produce
D-sorbitol with a 99% yield [98]. The resulting D-sorbitol, used in food additives, phar-
maceuticals, and cosmetic ingredients, can also be produced at room temperature with a
90% yield (Figure 11b). For practical applications, it is essential to assess the catalyst perfor-
mance at high D-glucose concentrations. In such conditions, the nano-Ni2P/HT catalyst
maintains its efficiency, achieving a 92% yield of D-sorbitol in a 50 wt% D-glucose solution,
as demonstrated in Figure 11c. In the aqueous hydrogenation of maltose, nano-Ni2P/HT
efficiently produces the desired maltitol, which is second only to D-sorbitol in terms of a
production volume and demand among sugar alcohols. Despite the α-1,4-glycosidic bonds
in maltose being sensitive to acids and heat, the robust activity of nano-Ni2P/HT under
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mild conditions enables the selective production of maltitol without compromising these
bonds (Figure 11d) [99]. Nano-Ni2P/HT also shows high activity for the hydrogenation
of D-xylose, providing D-xylitol which is commonly used as a sweetener in high yield
(Figure 11e) [100]. Even a small amount of catalyst is adequate for facilitating the hydro-
genation reactions of maltose and D-xylose, with the respective turnover numbers being
153 and 960. These values are over 150 times higher than those of traditional sponge nickel
catalysts, highlighting the superior efficiency of the nano-Ni2P/HT catalyst. Furthermore,
after the reaction, nano-Ni2P/HT can be easily separated from the reaction mixture by
centrifugation and retains high yields in subsequent uses. Additionally, it demonstrates
high durability with no leaching of nickel species from HT during the reaction.
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Figure 11. Selective hydrogenation of sugars using nano-Ni2P/HT in water. (a) Hydrogenation
of D-glucose under standard conditions. (b) Hydrogenation of D-glucose at room temperature.
(c) Hydrogenation of D-glucose at a concentration of 50 wt%. (d) Hydrogenation of maltose with
nano-Ni2P/HT (0.6 mol% Ni). (e) Hydrogenation of D-xylose with nano-Ni2P/HT (0.10 mol% Ni).

The proposed reaction mechanism for the hydrogenation of D-glucose catalyzed by the
synergistically catalytic behavior of nano-Ni2P and HT is illustrated in Figure 12. Initially,
(I) H2 is activated at the Ni–Ni bond sites on the nano-Ni2P surface. (II) The adsorbed
hydrogen species on the nano-Ni2P surface spill over onto the interface or the surface of HT.
Meanwhile, (III) the aldehyde group of D-glucose is activated at the oxygen-deficient sites
on the HT surface. (IV) The activated aldehyde group is then reduced by the spilled-over
hydrogen species to form D-sorbitol, thus completing a catalytic cycle. The activation of
H2 by nano-Ni2P was confirmed using H2–D2 exchange reaction and H2–TPD, while the
activation of the carbonyl moiety by HT was confirmed through IR analysis. Consequently,
the notable catalytic efficiency is attributed to the concurrent activation of H2 by nano-Ni2P
and D-glucose by HT, illustrating their synergistic effect.
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3. Conclusions

In this review, we introduce metal phosphide nanoparticle catalysts, particularly cobalt
and nickel phosphides, as remarkably efficient heterogeneous catalysts for a variety of
reductive molecular transformations. We focused on developing air-stable, non-precious
metal catalysts with significantly high activity. These nanosized transition metal phos-
phides represent a significant advancement over traditional air-unstable non-precious
metal catalysts. Their air stability not only eliminates the need for strict anaerobic condi-
tions or pre-reduction treatments, but also enables easy integration with support materials
under ambient conditions. In combination with suitable support materials, these metal
phosphides exhibit enhanced activity and selectivity in a wide range of hydrogenation
reactions.

Cobalt phosphide nanoparticle catalysts, prepared via a solvothermal method, have
been shown to be effective in the hydrogenation of nitriles to primary amines, a crucial
process in the production of various chemicals. These catalysts demonstrate high activity
under atmospheric hydrogen pressure and can be easily recovered and reused, highlighting
their practical advantages. Moreover, cobalt phosphide catalysts exhibit high activity in the
reductive amination of carbonyl compounds, converting various aldehydes and ketones
into primary amines under mild conditions. The structural analysis of these catalysts has
revealed that the cobalt species in cobalt phosphide nanoparticles are stabilized in a low
oxidation state and possess advantageous Co–Co bonds as well as a higher number of
coordinatively unsaturated sites, contributing to their air stability and high catalytic activity
for hydrogenation.

Nickel phosphide nanoparticle catalysts exhibit similar non-pyrophoric and air-stable
properties and, when combined with support materials, they demonstrate a synergistically
enhanced catalytic performance. One of the remarkable applications of nickel phosphide
nanoparticle catalysts is in the efficient utilization of biomass. For example, nano-Ni2P/HT
catalysts show high activity in the aqueous hydrogenation of mono- and disaccharides
to sugar alcohols, such as D-sorbitol and maltitol. These sugar alcohols have significant
industrial demand and are used in various products such as food additives and pharma-
ceuticals. Nano-Ni2P/HT maintains high efficiency and selectivity even at high substrate
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concentrations and under mild conditions. The proposed reaction mechanism involves
the concurrent activation of H2 and the substrate carbonyl moiety by nano-Ni2P and HT,
respectively, demonstrating a synergistic effect.

Non-precious metal phosphide nanoparticle catalysts offer a solution to the limitations
of traditional non-precious catalysts by providing high stability, activity, and durability.
These attributes make them highly promising for broadening the scope of sustainable
molecular transformations and improving current hydrogenation processes. Furthermore,
recent advancements have significantly extended the scope of phosphide nanoparticle
catalysts. Notably, there has been remarkable progress in the development of iron phos-
phide catalysts. The iron phosphide catalyst demonstrates high activity, air stability, and
durability for the nitrile hydrogenation, while the conventional iron nanoparticle catalysts
exhibit no activity under the same conditions [137]. Although this represents a significant
step forward in phosphide catalyst technology, it is part of an ongoing journey of discovery
and improvement. Additionally, the research has now expanded to include phosphide
nanoparticles incorporating precious metals such as ruthenium and palladium. These cata-
lysts have demonstrated remarkable activity and durability, attributed to the ligand effect
and ensemble effect [138–140]. They are particularly interesting because of their high sulfur
tolerance, which is a significant advantage for certain reductive molecular transformations.
These developments open new avenues for the application of metal phosphide catalysts
in more diverse and challenging chemical environments. The future of these catalysts is
promising, with potential applications in various fields owing to their unique properties
and efficiency.
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