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Abstract: A Zn–air battery serves as an energy storage solution to address fossil energy and envi-
ronmental concerns. However, sluggish kinetics in oxygen reduction reactions (ORRs) and oxygen
evolution reactions (OERs) demand innovative, cost-effective, and stable bifunctional catalysts to
replace precious metal catalysts. In this study, an FeCo-CNTs/KB catalyst was synthesized by
pyrolyzing NH2-MIL-101(Fe) coated with glu-Co and conductive carbon (KB). This hierarchical
structure comprises carbon nanotubes (CNTs) grafted onto a carbon matrix, housing abundant
FeCo nanoparticles within the nanotubes or matrix. KB introduction enhances FeCo nanoparticle
dispersion and fosters uniform CNT formation with smaller diameters, thus exposing active sites.
Consequently, the FeCo-CNTs/KB catalyst exhibits remarkable bifunctional electrocatalytic activity:
an ORR half-wave potential of 0.84 V and an OER overpotential of 0.45 V (10 mA cm−2). Furthermore,
the FeCo-CNTs/KB catalyst in a secondary Zn–air battery showcases enduring charge–discharge
performance (≥300 h).

Keywords: bifunctional catalyst; Zn–air battery; carbon nanotube

1. Introduction

Addressing the energy crisis and environmental concerns demands sustainable energy
storage and conversion solutions. Rechargeable Zn–air batteries (ZABs) have gained
substantial attention for their safety, affordability, and eco-friendliness [1–3]. The sluggish
kinetics of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER),
which are important electrochemical events throughout the charging–discharging process
of ZABs, have restricted the practical applications of ZABs [4,5]. Therefore, catalysts are
always employed to improve the kinetic processes of the ORR and OER [6]. Currently,
noble metal-based materials, such as Pt for ORR and Ru/Ir for OER, are the most effective
commercial catalysts, but their lack of availability, high price, poor stability, and insufficient
bifunctional catalytic activity have limited their widespread usage. Therefore, it is essential
to design bifunctional catalysts with high catalytic activity, low costs, and good stability for
rechargeable Zn–air batteries.

A high specific surface area (SSA) is widely known to expose more active areas for
electrocatalysts; meanwhile, the existence of a metal–nitrogen–carbon network can enhance
both ORR and OER activities. It was reported that metal particles self-assembled with or-
ganic ligands as nodes could exhibit high SSA [7,8], and metal–organic frameworks (MOFs)
based on organic ligands are usually used to derive metal–nitrogen–carbon catalysts with
high SSAs, which can facilitate active site exposure and electron transfer in electrocatalytic
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processes [9]. Recently, MOF-derived transition metal–nitrogen–carbon catalysts (M-N-C,
M = Fe, Co, Ni) have gained extensive attention as promising bifunctional ORR/OER cata-
lyst alternatives [10,11]. Moreover, diverse nanostructured catalytic materials derived from
MOFs have found widespread utility in efficient Zn–air batteries [12–15]. The synthesis of
M-N-C catalysts includes the pyrolysis of transition metal precursors and the carbonization
of the carbon framework. Most M-N-C catalysts exhibit a granular appearance due to the
self-aggregation of metal during carbonization, contributing to the inadequate utilization
of active sites in surface catalytic reactions [16]. Moreover, metal particles on the surface
can be corroded during electrochemical reactions, and the decreased nitrogen content
attributed to the direct carbonization of MOFs is not conducive to electrocatalysis [17]. The
design of hierarchically structured catalysts with metal particles encapsulated in a carbon-
or nitrogen-doped carbon layer could prevent their aggregation during carbonization and
protect active nanoparticles from corrosion [18–20], and nitrogen-doped carbon substrates
can modulate active sites and thus enhance ORR and OER performances [21,22]. Pei et al.
obtained a hollow-structured FeCo-N-C through the calcination of a ZIF-67 coating with
iron [23]. Zhang et al. wrapped a MOF with polydopamine to avoid metal sintering [24].
Furthermore, various reagents such as NH3, urea, and melamine have been adopted as
nitrogen sources to enhance nitrogen content [25–27]; in particular, melamine has been
extensively studied for OERs [28–30], which decomposes and assembles with metal atoms
to form M-Nx sites during high-temperature carbonization [31–33]. The pyrolysis of or-
ganic frameworks with nitrogen sources could produce nitrogen-doped carbon with a
relatively high nitrogen content [34,35]. In our previous work, glucosamine (glu) was
directly utilized to develop a high-performance bifunctional catalyst for ZABs [36], and
the wrapping of glu on an MOF precursor would protect metal particles from aggregation
during pyrolysis [37,38]. However, the direct pyrolysis of glu or MOF displayed a relatively
low yield.

Conductive agents, such as Super-P, acetylene black, Ketjene black (KB), and Denka
black, have been introduced into carbon-based materials to effectively improve electrical
conductivity and electrocatalytic performance [39–42]. Moreover, the addition of a con-
ductive agent may also play an important role in yield improvement. KB is a conductive
additive with high electrical conductivity and a high specific surface area [43–45] that can be
used in the synthesis of MOF-derived carbon materials as a conductive agent and a carbon
source to improve their performance and product yield. NH2-MIL-101 is an ideal precursor
with a high content of nitrogen, highly dispersed iron, and a high SSA [46,47]. In this study,
glu-Co-coated NH2-MIL-101 served as a precursor for generating a bifunctional catalyst
(FeCo-CNTs/KB), encompassing carbon nanotubes (CNTs) and FeCo nanoparticles through
carbonization with melamine and conductive additives (KB) as nitrogen/carbon sources.
The glu-Co coating, coupled with the KB addition, can inhibit metal aggregation during
high-temperature carbonization by dispersing the NH2-MIL-101 precursors. Additionally,
it increased the nitrogen content within the catalyst, enhancing ORR and OER performance.
The FeCo-CNTs/KB catalyst exhibited a notable ORR half-wave potential of 0.84 V (vs.
RHE) and an OER overpotential of 1.68 V at 10 mA cm−2, highlighting its remarkable
bifunctional electrocatalytic capabilities. Incorporating the FeCo-CNTs/KB catalyst into
ZABs resulted in exceptional charge–discharge performance, efficiency, and stability.

2. Results
2.1. Structural Characterizations and Composition Analysis

The synthesis process of the FeCo-CNTs/KB catalyst is shown in Scheme 1. NH2-MIL-
101(Fe) was prepared through a solvothermal reaction with amino terephthalic acid and
ferric trichloride hexahydrate as a ligand and iron source in DMF. Then, NH2-MIL-101(Fe)
was used as a substrate to support glu-Co through a simple wet-chemical method with
glucosamine hydrochloride and cobalt trichloride hexahydrate. Finally, the obtained NH2-
MIL-101(Fe)@glu-Co was employed as the precursor to produce a FeCo-CNTs/KB catalyst
through a two-step pyrolysis process with KB and melamine.



Catalysts 2024, 14, 205 3 of 14

Catalysts 2024, 14, x FOR PEER REVIEW 3 of 14 
 

 

2. Results 
2.1. Structural Characterizations and Composition Analysis 

The synthesis process of the FeCo-CNTs/KB catalyst is shown in Scheme 1. NH2-MIL-
101(Fe) was prepared through a solvothermal reaction with amino terephthalic acid and 
ferric trichloride hexahydrate as a ligand and iron source in DMF. Then, NH2-MIL-101(Fe) 
was used as a substrate to support glu-Co through a simple wet-chemical method with 
glucosamine hydrochloride and cobalt trichloride hexahydrate. Finally, the obtained NH2-
MIL-101(Fe)@glu-Co was employed as the precursor to produce a FeCo-CNTs/KB catalyst 
through a two-step pyrolysis process with KB and melamine. 

 
Scheme 1. Schematic diagram of the preparatory procedure for FeCo-CNTs/KB. 

The morphology of the electrocatalyst was examined using transmission electron mi-
croscopy (TEM) and scanning electron microscopy (SEM). The NH2-MIL-101(Fe) prepared 
exhibits a smooth surface and a typical polyhedral morphology (Figure 1a), with an aver-
age dimension of approximately 300 nm (Figure S1a, Supplementary Materials). As 
shown in Figure S2 (Supplementary Materials), M-CNTs cannot be derived through the 
direct heat treatment of NH2-MIL-101(Fe). The coating of glu introduces little change to 
the morphology of NH2-MIL-101(Fe)@glu-Co (Figure 1b) but results in a roughened sur-
face and an increase in the dimensions to about 330 nm (Figure S1b, Supplementary Ma-
terials), indicating the successful wrapping of glucosamine with a thickness of about 15 
nm. Upon high-temperature calcination in a N2 atmosphere, the carbon nanotubes re-
tained part of the precursor shape (Figure 1c). This phenomenon can be attributed to the 
reduction of Co3+/2+ and Fe3+/2+ during pyrolysis, leading to the formation of CoFe alloy 
nanoparticles, which further facilitate the synthesis of N-doped CNTs. This process helps 
prevent agglomeration, Ostwald ripening, and the dissolution of CoFe nanoparticles dur-
ing long-term electrocatalytic processes [48,49]. The glu-Co coating promotes carbon 
nanotube formation, but the yield of the FeCo-CNTs is only about 10%, probably due to 
insufficient carbon sources during metal nanoparticle agglomeration and calcination. To 
increase the carbon source, KB with a diameter of about 50 nm (Figure S3, Supplementary 
Materials) was mixed with NH2-MIL-101(Fe)@glu-Co by grinding. Figure S4 (Supplemen-
tary Materials) shows that the KB nanoparticles are uniformly distributed. After pyrolysis, 
homogeneous carbon tubes with diameters around 10 nm are formed for the FeCo-
CNTs/KB catalyst, with the KB nanoparticles distributed among the nanotubes (Figure 
1d). The addition of KB increases the yield of FeCo CNTs/KB to about 50% and promotes 
the formation of carbon nanotubes with smaller and more uniform diameters. This may 
be due to the carbon source supplied by the KB during pyrolysis and the more uniform 
distribution of NH2-MIL-101(Fe)@glu-Co caused by the addition of KB. Furthermore, the 
TEM image in Figure 1e exhibits a hierarchical structure, with carbon nanotubes growing 
out and wrapping around the carbon substrate decorated by metal nanoparticles. The di-
ameters of the carbon nanotubes and metal nanoparticles are similar, in a range of 5–10 
nm. Meanwhile, a high-resolution TEM (HRTEM) (Figure 1f) image shows a distance of 

Scheme 1. Schematic diagram of the preparatory procedure for FeCo-CNTs/KB.

The morphology of the electrocatalyst was examined using transmission electron
microscopy (TEM) and scanning electron microscopy (SEM). The NH2-MIL-101(Fe) pre-
pared exhibits a smooth surface and a typical polyhedral morphology (Figure 1a), with an
average dimension of approximately 300 nm (Figure S1a, Supplementary Materials). As
shown in Figure S2 (Supplementary Materials), M-CNTs cannot be derived through the
direct heat treatment of NH2-MIL-101(Fe). The coating of glu introduces little change to the
morphology of NH2-MIL-101(Fe)@glu-Co (Figure 1b) but results in a roughened surface
and an increase in the dimensions to about 330 nm (Figure S1b, Supplementary Materials),
indicating the successful wrapping of glucosamine with a thickness of about 15 nm. Upon
high-temperature calcination in a N2 atmosphere, the carbon nanotubes retained part of the
precursor shape (Figure 1c). This phenomenon can be attributed to the reduction of Co3+/2+

and Fe3+/2+ during pyrolysis, leading to the formation of CoFe alloy nanoparticles, which
further facilitate the synthesis of N-doped CNTs. This process helps prevent agglomeration,
Ostwald ripening, and the dissolution of CoFe nanoparticles during long-term electrocat-
alytic processes [48,49]. The glu-Co coating promotes carbon nanotube formation, but the
yield of the FeCo-CNTs is only about 10%, probably due to insufficient carbon sources
during metal nanoparticle agglomeration and calcination. To increase the carbon source,
KB with a diameter of about 50 nm (Figure S3, Supplementary Materials) was mixed with
NH2-MIL-101(Fe)@glu-Co by grinding. Figure S4 (Supplementary Materials) shows that
the KB nanoparticles are uniformly distributed. After pyrolysis, homogeneous carbon tubes
with diameters around 10 nm are formed for the FeCo-CNTs/KB catalyst, with the KB
nanoparticles distributed among the nanotubes (Figure 1d). The addition of KB increases
the yield of FeCo CNTs/KB to about 50% and promotes the formation of carbon nanotubes
with smaller and more uniform diameters. This may be due to the carbon source supplied
by the KB during pyrolysis and the more uniform distribution of NH2-MIL-101(Fe)@glu-Co
caused by the addition of KB. Furthermore, the TEM image in Figure 1e exhibits a hier-
archical structure, with carbon nanotubes growing out and wrapping around the carbon
substrate decorated by metal nanoparticles. The diameters of the carbon nanotubes and
metal nanoparticles are similar, in a range of 5–10 nm. Meanwhile, a high-resolution TEM
(HRTEM) (Figure 1f) image shows a distance of 0.204 nm, corresponding to the (110) plane
of FeCo alloys, indicating the formation of FeCo nanoparticles coated with a carbon layer,
which can protect the metal particles from corrosion during electrochemical reactions.
Additionally, the energy-dispersive spectroscopy (EDS) elemental mapping of the FeCo-
CNTs/KB catalyst (Figure 1g–k) and FeCo-CNTs (Figure S5, Supplementary Materials)
indicates the presence and homogenous distribution of Fe, Co, N, and C, verifying the
effective synthesis of the FeCo alloy nanoparticles and N-doping in the carbon matrix, and
the corresponding composition of the FeCo-CNTs/KB catalyst is illustrated in Table S1
(Supplementary Materials).
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X-ray photoelectron spectroscopy (XPS) was used to characterize the surface elemental
composition and valence state of the samples, with the corresponding contents detailed in
Tables S2 and S3 (Supplementary Materials), respectively. The XPS spectrum in Figure 2a
validates the presence of C, N, O, Fe, and Co in the FeCo-CNTs/KB catalyst, corroborating
the EDS findings, and the elemental contents (Table S2, Supplementary Materials) are
similar to those obtained by EDS (Table S1, Supplementary Materials). The O element
detected could originate from partial oxidation due to oxygen exposure [50]. Notably, the
FeCo-CNTs exhibit reduced N, Fe, and Co contents compared to Fe-C. Conversely, the
KB introduction increases the N and metal contents in the FeCo-CNTs/KB catalyst. The
decline in N, Fe, and Co for the FeCo-CNTs might result from carbon nanotube shielding,
while the increase in the FeCo-CNTs/KB catalyst could arise from abundant, uniform,
small-diameter carbon nanotubes, enhancing M-N-C and metal nanoparticle exposure.
The C1s spectrum in Figure 2b can be decomposed into four peaks at 282.95 eV, 283.73 eV,
285.74 eV, and 289.36 eV, representing C=C, C-N, C=O, and π-π*, respectively, and the
existence of C-N demonstrates the successful doping of N into the carbon matrix [51].
Figure 2c exhibits the high-resolution spectrum of N1s, in which four peaks are fitted:
pyridinic N (396.91 eV), Fe/Co–Nx (397.69 eV), pyrrolic N (399.01 eV), and graphitic N
(400.62 eV) [52]. Figure S6 (Supplementary Materials) displays the N1s spectra of the
Fe-C and FeCo-CNTs, with the respective N contents detailed in Table S3 (Supplementary
Materials). It is evident that the cobalt addition notably reduces the Fe content while
elevating the M-N and graphitic N content on the surface of the FeCo-CNTs, likely due to
the surface coverage by large carbon nanotubes. Furthermore, the KB introduction further
enhances the M-N and pyrrolic-N content on the FeCo-CNTs/KB catalyst’s surface. The
FeCo-CNTs/KB catalyst demonstrates the highest N content across all the samples. This
elevated N content may be attributed to abundant active M-N-C sites resulting from the
small, uniform carbon nanotube formation facilitated by the KB addition. It has been
confirmed that the redistribution of spin density and charge density in the carbon matrix
due to N doping could modify its catalytic performance; in particular pyridine N and
pyrrole N can efficiently improve electrocatalytic activity [18]. Furthermore, the most
abundant distribution of active sites is predominantly located in pyridine N and Fe/Co-Nx,
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which can significantly enhance the selectivity of ORRs and OERs, particularly favoring
the 4e− transfer pathway [49]. Improved oxygen adsorption, linked to these specific N
types, has been reported to enhance ORR kinetics by reducing the bonding energy of
oxygen molecules [53]. Meanwhile, graphitic N can improve the electrical conductivity and
enhance the reaction kinetics of catalysts. In the Co 2p spectrum (Figure 2d), distinct peaks
are observed at 781.56 eV and 793.82 eV, attributed to Co 2p1/2 and Co 2p3/2, respectively,
associated with Co2+. The peaks at 785.22 eV and 797.30 eV correspond to Co 2p1/2 and
Co 2p3/2 linked to Co3+, while 792.04 eV and 800.96 eV signify Co 2p1/2 and Co 2p3/2
related to Co0. This indicates that Co’s surface oxidation generates varied oxidation states
due to oxygen exposure, with the outer carbon layer preserving Co0 [54]. Similarly, the
Fe 2p spectrum (Figure 2f) displays peaks at 712.15 eV and 721.62 eV for Fe3+, peaks at
715.30 eV and 724.95 eV for Fe2+, and peaks at 719.08 eV and 729.10 eV for Fe0 [45,55]. The
coexistence of Co0 and Fe0 further supports CoFe alloy formation, while Co2+/Co3+ and
Fe2+/Fe3+ pairs can enhance catalytic activity [56].

Powder X-ray diffraction (XRD) was used to assess the sample’s structures. Figure 2f
displays a broad peak at 26.65◦, characteristic of graphitic carbon (JCPDS card no. 25–0284),
across all the samples. Fe-C presents a distinct peak at 44.67◦, corresponding to the (110)
planes of Fe (JCPDS card no. 06-0696). The FeCo-CNTs exhibit peaks at 44.87◦, 65.31◦, and
82.73◦, aligned with the (110), (200), and (211) planes of cubic CoFe alloys (JCPDS card no.
49–1568), confirming successful CoFe alloy synthesis [18]. In contrast, Fe or FeCo patterns
are absent in the FeCo-CNTs/KB catalyst, indicating that KB significantly elevates carbon
content, obscuring Fe or FeCo peaks. The XPS and TEM analyses above have corroborated
CoFe alloy formation.
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2.2. Electrocatalytic Properties

The ORR and OER performances of the samples were tested in an O2-saturated
0.1 M KOH solution. Figure S7 (Supplementary Materials) depicts the ORR and OER
performances of the FeCo-CNTs/KB catalyst carbonized at various temperatures. It is
obvious that the bifunctional performance of the FeCo-CNTs/KB is better than that of
the FeCo-CNTs/KB-6 and FeCo-CNTs/KB-8 samples. As shown in Figure 3a, the FeCo-
CNTs/KB catalyst shows a half-wave potential (0.84 V) comparable to that of Pt/C (0.84 V),
which is better than that of the Fe-C (0.63 V) and FeCo-CNTs (0.73 V). Meanwhile, the
limiting current density (jL) of the FeCo-CNTs/KB catalyst is 4.84 mA cm−2, which is
similar to that of Pt/C (4.86 mA cm−2) and FeCo-CNTs (4.95 mA cm−2). In comparison to
Fe-C, the lower activity of the FeCo-CNTs might stem from a lower N and metal content
linked to limited active sites, as discussed in XPS, along with sluggish electron transfer due
to large, non-uniform carbon nanotubes. Introducing KB yields more uniform, compact
carbon nanotubes, enhancing charge transfer and electrical conductivity. As previously
discussed, the substantial rise in M-N content attributed to the KB addition, coupled with
the synergistic effect of M-N-C and CoFe bimetallic electron interactions, markedly elevates
the ORR activity in the FeCo-CNTs/KB catalyst [18]. Compared to the single Fe-N-C active
sites, the CoFe-N-C active sites exhibit a narrower energy gap between the highest occupied
molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), which is
advantageous for ORRs. Furthermore, around the Fermi energy level, CoFe bimetallic sites
demonstrate a higher density of states (DOS), indicating enhanced electron mobility and
increased activity [57]. In addition, the Tafel slope value of the FeCo-CNTs/KB catalyst
(Figure 3b) is the lowest (96.39 mV dec−1) among the catalyst materials and lower than that
of Pt/C (96.7 mV dec−1), proving its excellent ORR dynamic performance. This excellent
dynamic property could be due to the formation of a large number of carbon nanotubes
with smaller diameters, and the carbon loss during pyrolysis could be supplemented by
the introduction of KB as a supplementary carbon source. Figure 3c illustrates that the
yield of H2O2 for the FeCo-CNTs/KB catalyst remains below 10%, and the electron transfer
number closely approximates four throughout the ORR reaction, similar to that observed
with Pt/C. This suggests that FeCo-CNTs/KB catalyst undergoes an efficient 4e− transfer
process. This observation further supports the role of pyridine–N in facilitating 4e− transfer.
The FeCo-CNTs/KB catalyst maintains 94.3% of its initial current density after 30,000 s of a
continuous reaction, in contrast to Pt/C, with a current density drop of 19.7% (Figure 3d),
demonstrating the FeCo-CNTs/KB catalyst’s superior stability over commercial Pt/C. The
excellent stability of the FeCo-CNTs/KB catalyst could be due to the maintenance of their
hierarchical structure over a long period of electrocatalytic reaction.

The performance of the OER is essential for the charging process of ZABs. Figure 4a
shows the LSV curves for Fe-C, FeCo-CNTs, FeCo-CNTs/KB, and RuO2. The FeCo-
CNTs/KB catalyst requires 1.68 V to reach 10 mA cm−2, which is much lower than that
needed for Fe-C (1.78 V) and FeCo-CNTs (1.71 V) and even better than for RuO2 (1.69 V).
The current density enhances rapidly with the overpotential for the FeCo-CNTs/KB cat-
alyst, reflecting its excellent OER kinetics, suggesting that the introduction of FeCo and
the formation of uniform carbon nanotubes are beneficial for the OER process. The su-
perior OER performance of the FeCo-CNTs/KB catalyst arises from the increased active
site exposure of the M-N-C and FeCo alloy nanoparticles. Tafel curves are fitted to further
investigate the kinetics of the OER. As observed in Figure 4b, the FeCo-CNTs/KB catalyst
exhibits the minimal Tafel slope of 116.6 mV dec−1, demonstrating its most favorable intrin-
sic OER kinetics compared to Fe-C (132.9 mV dec−1), FeCo-CNTs (127.6 mV dec−1), and
RuO2 (161.3 mV dec−1), further demonstrating its superior OER reaction dynamics. The
electrochemical active surface area (ECSA) was assessed by CV curves at various scan rates
in the non-Faraday potential range, as shown in Figure S8 (Supplementary Materials). The
results demonstrate that the FeCo-CNTs/KB catalyst has a larger ECSA, which is related
to the high level of exposure of the active sites of M-N-C associated with its hierarchical
structure. Nyquist plots of the samples obtained through EIS (electrochemical impedance
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spectroscopy) are displayed in Figure 4c, and the FeCo-CNTs/KB catalyst shows a smaller
semicircular diameter compared to the Fe-C and FeCo-CNTs, implying the lowest transfer
resistance and excellent conductivity, which confirms the positive effects of the formation
of carbon nanotubes and the introduction of KB [58]. Electrons face difficulties transferring
between Fe-C and iron MOFs because Fe-C is formed solely through the direct calcination
of an iron MOF without the creation of carbon tubes. In contrast, FeCo-CNTs produced
without the assistance of KB during high-temperature calcination exhibit higher resistance
due to the rough and uneven distribution of carbon tubes, affecting the electron transport
pathway. However, the addition of KB followed by calcination results in an FeCo-CNTs/KB
catalyst with abundant and uniformly sized carbon tubes, establishing an effective path-
way for electron conduction. To test the OER stability of the FeCo-CNTs/KB catalyst,
current–retention time (i–t) tests were carried out at a potential of 1.60 V (Figure 4d). After
30,000 s of continuous operation, the FeCo-CNTs/KB catalyst had outstanding OER dura-
bility and could maintain 94.7% of its initial current density; meanwhile, RuO2 could only
maintain 68.3%.
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Figure 3. (a) ORR Linear Sweep Voltammetry (LSV) curves and (b) Tafel plots of Fe-C, FeCo-
CNTs, FeCo-CNTs/KB, and Pt/C at a rotation rate of 1600 rpm with a scan rate of 10 mV s−1 in
an O2-saturated 0.1 M KOH solution. (c) Electron transfer number and H2O2 yield curves and
(d) current–retention time (i–t) curves at 0.715 V (vs. RHE) for FeCo-CNTs/KB and Pt/C catalysts.
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RuO2 in O2-saturated 0.1 M KOH solution with a sweeping rate of 10 mV s−1. (c) Nyquist plots of Fe-
C, FeCo-CNTs, and FeCo-CNTs/KB (the inset is the equivalent circuit diagram). (d) Current–retention
time (i–t) curves of FeCo-CNTs/KB and RuO2 catalysts at 1.6 V (vs. RHE) for 30,000 s.

2.3. Aqueous Zn–Air Battery Performance

A zn–air battery was assembled with FeCo-CNTs/KB as the cathode catalyst to further
study its actual performance for applications. The ZAB was assembled with a Zn plate,
catalysts loaded on carbon paper, and 6 M KOH + 0.2 M Zn(OAc)2 as a cathode, anode,
and electrolyte, respectively (Figure 5a). As shown in Figure 5b, The FeCo-CNTs/KB-
based ZAB exhibits a stable open-circuit voltage of 1.46 V, which is higher than that of
the Pt/C-RuO2-based ZAB (1.41 V). In the charge–discharge and power density plots
(Figure 5c), the FeCo-CNTs catalyst exhibits a smaller charge–discharge gap than the Pt/C-
RuO2 catalyst, suggesting higher charge and discharge currents under the same voltage.
Meanwhile, the peak power density calculated from the related discharge polarization
curves is 84.51 mW cm−2 for the FeCo-CNTs/KB-based ZAB, which is superior to that of
the Pt/C-RuO2-based ZAB (67.05 mW cm−2). By calculating the mass of the consumed Zn
flakes, the specific capacity of the FeCo-CNTs/KB catalyst is 785.3 mAh g−1 higher than a
commercial Pt/C-RuO2 catalyst (695.4 mAh g−1). In addition, a FeCo-CNTs/KB-based ZAB
with a constant current density of 5 mA cm−2 can be continually charged and discharged
after 300 h with a minimal charge–discharge voltage gap, indicating its excellent long-cycle
durability (Figure 5e), which is better than that of the Pt/C-RuO2-based ZAB. Figure S9
(Supplementary Materials) depicts SEM images of the cathode catalyst before and after
the cycling test. Notably, no significant changes are observed after 300 h, underscoring its
exceptional cycle stability. The high performance of the FeCo-CNTs/KB-based ZAB could
be due to the excellent ORR and OER properties of the FeCo-CNTs/KB catalyst caused
by the synergistic interaction of Fe, Co, and carbon nanotubes, and its unique hierarchical
structure improves the effective utilization of active sites, which enhances its long-term
durability. Therefore, the FeCo-CNTs/KB catalyst demonstrates significant application
potential for energy storage devices as a high-performance bifunctional electrocatalyst.
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3. Experimental
3.1. Materials

Glucosamine hydrochloride (AR, 99%) and RuO2 (99.9%) were purchased from Aladdin
Industrial Corporation (Shanghai, China). FeCl3·6H2O (AR, 99%), methanol, and N,N-
dimethylformamide (DMF) were obtained from Sinopharm Chemical Reagent Corporation
(Shanghai, China). Commercial Pt/C (20 wt.%), melamine, and CoCl3·6H2O (AR, 99%)
were bought from Alfa Aesar (Shanghai, China). Ketjen black (KB), 2-aminoterephthalic
acid (H2ATA), and Nafion117 solution (5 wt.%) were obtained from Lion King Corporation
(Tokyo, Japan), Shanghai Macklin Biochemical Corporation (Shanghai, China), and Sigma-
Aldrich (Shanghai, China), respectively.

3.2. Preparation of NH2-MIL-101(Fe)

Typically, NH2-MIL-101(Fe) was synthesized according to a previous report [59]. In
detail, 2.5 mmol of FeCl3·6H2O and 1.25 mmol of 2-aminoterephthalic acid were dissolved
in 15 mL of N, N-dimethylformamide (DMF) and stirred at room temperature for 1 h to
form a homogeneous solution. Then, the reactants were sealed in a stainless Teflon-lined
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autoclave at 110 ◦C for 24 h. Finally, the products were collected and washed three times
with DMF and methanol, respectively, and dried at 60 ◦C in a vacuum oven.

3.3. Preparation of NH2-MIL-101(Fe)@glu-Co/KB

First, 100 mg of NH2-MIL-101(Fe) was dispersed in 20 mL of deionized water and
ultrasonicated for 10 min. Then, 200 mg of glucosamine hydrochloride and 60 mg of
CoCl3·6H2O were added to the solution and stirred for 2 h prior to freeze-drying. Finally,
the NH2-MIL-101(Fe)@glu-Co above and KB were milled together in a 10:3 mass ratio and
named NH2-MIL-101(Fe)@glu-Co/KB.

3.4. Synthesis of FeCo-CNTs/KB

Typically, 50 mg of NH2-MIL-101(Fe)@glu-Co/KB and 2 g of melamine were, respec-
tively, placed in the furnace along the downstream and upstream of the N2 flow and were
subjected to a two-step pyrolysis comprising a heat treatment at 200 ◦C for 2 h at a ramping
rate of 5 ◦C min−1, followed by carbonization at 700 ◦C for 2 h under flowing N2 gas.
Finally, FeCo-CNTs/KB samples were obtained after cooling to room temperature. As a
comparison, FeCo-CNTs/KB-6 and FeCo-CNTs/KB-8 were obtained with a similar process
to FeCo-CNTs/KB by carbonizing at 600 ◦C and 800 ◦C, respectively.

Additionally, FeCo-CNTs and Fe-C were prepared using the same two-step pyrolysis
method with FeCo-CNTs/KB using NH2-MIL-101(Fe)@glu-Co and NH2-MIL-101(Fe) as
precursors, respectively.

3.5. Electrochemical Measurements

ORR and OER performances were characterized via a standard three-electrode system
by using an electrochemical station (CHI 760D) at room temperature. As the working,
counter, and reference electrodes, a rotating disk (3.0 mm in diameter) or glassy carbon
rotating disk (5.0 mm in diameter), a graphite rod, and Ag/AgCl electrodes were utilized,
respectively. A catalyst ink was prepared by combining 4 mg of sample powder, 1 mg
of carbon black (XC-72), 800 µL of deionized water, 200 µL of isopropanol, and 20 µL of
Nafion117 (5% solution, Sigma, Shanghai, China). The mixture was sonicated for 0.5 h.
Subsequently, 3 µL of the catalyst ink was drop-cast onto the surface of a glassy carbon
electrode and allowed to dry at room temperature, forming a uniform catalyst layer. ORR
and OER polarization curves were obtained using rotating disk experiments (RDE-3A,
ALS Co., Salt Lake City, UT, USA) from 0.2 V to 2 V (vs. Ag/AgCl) at 1600 rpm in an O2-
saturated KOH (0.1 M) solution with a scan rate of 5 mV s−1. Electrochemical impedance
spectroscopy (EIS) was conducted at 1.59 V (vs. RHE) over a frequency range of 100 kHz
to 0.01 Hz, with a potential amplitude of 5 mV. Throughout this study, all potentials are
reported with reference to the reversible hydrogen electrode (RHE).

The following methods were employed to fabricate zinc–air batteries in a two-electrode
configuration. A polished Zn foil with a thickness of 0.08 mm served as the anode, while
the electrolyte consisted of a solution containing 6 M of KOH and 0.2 M of Zn(Ac)2. To
create the air electrode, a mixture of catalyst, aqueous polytetrafluoroethylene (PTFE),
carbon black, and active carbon was combined (weight ratio = 10:35:25:30) and applied
onto the surface of a carbon fiber cloth (W1S1009, Cetech, Taizhong, China). The mass
loading of the active material was approximately 3 mg cm−2. Power density and charge–
discharge polarization plots were recorded using an electrochemical workstation (CHI
760E). Battery cycling tests, including specific capacity and cycling tests, were conducted at
room temperature with a current density of 5 mA cm−2 using battery cycling equipment
(Neware CT-4008).

4. Conclusions

In summary, an FeCo-CNTs/KB catalyst was synthesized through the pyrolysis of
glu-Co-coated NH2-MIL-101(Fe) incorporated with KB, forming a hierarchical structure
of carbon nanotubes and FeCo nanoparticles within the carbon matrix or nanotubes. The
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glu-Co coating facilitated carbon nanotube growth on the matrix, while the KB addition
dispersed metal nanoparticles and enabled smaller, uniform nanotube formation, enhancing
the FeCo-CNTs/KB catalyst’s ECSA. This unique structure contributed to excellent ORR
and OER performance, with an E1/2 of 0.84 V and an overpotential of 0.45 V. It also exhibited
long-term stability compared to commercial Pt/C and RuO2. The ZABs incorporating
FeCo-CNTs/KB as a cathode catalyst showed improved power density and superior charge–
discharge stability (≥300 h) versus Pt/C-RuO2-based ZABs.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/catal14030205/s1: Figure S1: Particle size distribution plots showing
the average size (based on measurements of over 50 particles) of (a) NH2-MIL-101(Fe) and (b) NH2-
MIL-101(Fe)@glu-Co; Figure S2: SEM image of Fe-C; Figure S3: SEM image of KB; Figure S4: SEM
image of NH2-MIL-101(Fe)@glu-Co/KB; Figure S5: EDS elemental mapping images of Fe, Co, N,
and C in FeCo-CNTs; Figure S6: N 1s spectra of (a) Fe-C and (b) FeCo-CNTs; Figure S7: (a) ORR
and (b) OER LSV curves of FeCo-CNTs/KB at different temperatures; Figure S8: CVs measured at
scan rates from 20 to 200 mV s−1 for (a) Fe-C, (b) FeCo-CNTs, and (c) FeCo-CNTs/KB in 1M of KOH.
(d) Current density (at 0.965 V) as a function of scan rate derived from (a) to (c); Figure S9: SEM
images of cathode catalyst (a) before and (b) after cycling test; Table S1: Elemental compositions of
FeCo-CNTs/KB from EDS analysis; Table S2: Elemental compositions (atomic%) in Fe-C, FeCo-CNTs,
and FeCo-CNTs/KB; Table S3: N-type contents in Fe-C, FeCo-CNTs, and FeCo-CNTs/KB.
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