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Abstract: Volatile organic compounds (VOCs) are common organic pollutants that can cause adverse
effects on human health. Treatment techniques, including photocatalytic oxidation, have been studied
to remediate VOCs. Acetone was used as a model pollutant to investigate the photocatalytic degra-
dation performance of electrospun photocatalytic nanofibers with synthesized flower-like titanium
dioxide (F-TiO2) and cellulose acetate (CA). The synthesized F-TiO2 and photocatalytic nanofibers
were characterized using FE-SEM, XRD, FTIR, UVVis, XPS, and a pore size and porosity analyzer.
The addition of F-TiO2 decreases the diameter of the nanofibers. The photocatalytic degradation
performance test showed an enhanced acetone degradation efficiency on F-TiO2/CA photocatalytic
nanofibers (FT-CFs), with an up to 95.0% acetone degradation efficiency under optimum conditions,
over P25 TiO2/CA photocatalytic nanofibers (T-CFs). The filtration efficiency of 3.0%FT-CF reached
99.9% with a filter basis weight of 0.660 g m−2 and face velocity of 5.0 cm−1 s. The filtration and
photocatalytic degradation cycle tests revealed excellent reusability, with 97% particle filtration and
no sign of material deterioration. Moreover, the biodegradability tests showed that the material can
biodegrade in water and in soil for 30 and 40 days, respectively. This study demonstrates that electro-
spun FT-CFs exhibit exceptional photocatalytic degradation of acetone, a high filtration efficiency,
excellent reusability, and biodegradability, making them a promising solution for VOC remediation.

Keywords: photocatalytic degradation; filtration; biodegradable; electrospinning; VOC degradation

1. Introduction

Volatile organic compounds (VOCs) are considered one of the common air pollutants
that are produced naturally and anthropogenically. Due to their high volatility and mobility,
VOCs can be difficult to treat and degrade [1]. In addition, VOCs can cause adverse
health effects to humans when they are exposed to them through inhalation, ingestion, or
skin contact, including respiratory illnesses, cancer, diabetes, obesity, and cardiovascular
diseases [2].

Several treatment techniques, including biodegradation, phytoremediation, electro-
static precipitation, adsorption, and photocatalytic oxidation, have been studied for their
effectiveness in VOC remediation [3]. Due to its simplicity, sustainability, and high effi-
ciency, photocatalytic degradation has been favored for VOC removal [4]. Photocatalytic
degradation utilizes UV and visible light for VOC removal. The photocatalytic reaction
produces radicals and positive holes in valence bands, which undergo a redox reaction
with the VOC, causing VOC degradation [4]. Metal oxides, such as ZnO2 and TiO2, have
been used as photocatalysts due to their non-toxicity and high photosensitivity [5].

TiO2 has a band gap of approximately 3.2 eV, which requires a light source of <390 nm [6].
The TiO2 anatase crystalline phase has shown the highest photocatalytic activity among other
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TiO2 nanostructures. The band gap, porosity, pore volume, and surface area of nanocrystalline
structure play an important role in the photocatalytic activity of TiO2 [7]. Controlling the
morphology of TiO2 nanoparticles can enhance their photocatalytic activity [8]. The flower-like
TiO2 (F-TiO2) nanoparticles have shown an enhanced photocatalytic property over P25 TiO2.
F-TiO2 nanoparticles are prepared via a hydrothermal process combined with a calcination
process [8]. In addition, to prevent nanoparticle agglomerations, support structures can be
used [9]. Due to its non-toxicity, biodegradability, sustainability, and low cost, cellulose acetate
(CA) is a promising support structure for nanoparticles. CA has been used in preparation of
polymeric membranes, electrospun nanofibers, and composite materials [10,11].

The present study aims to assess the performance of F-TiO2/CA photocatalytic
nanofibers (FT-CFs) on VOC degradation and PM filtration. Herein, TiO2 was synthesized
using a hydrothermal process combined with a calcination process to produce flower-like
nanoparticles. F-TiO2/CA photocatalytic nanofibers were prepared via electrospinning.
The synthesized F-TiO2 and electrospun F-TiO2/CA photocatalytic fibers were character-
ized using FE-SEM, XRD, FTIR, UVVis, XPS, and a pore size and porosity analyzer. The
photocatalytic degradation performance of the FT-CFs was evaluated using an annular
photocatalytic reactor equipped with UV lamps. Acetone was used as a model pollutant
for the photocatalytic degradation tests for VOC removal [12]. In addition, the particulate
matter (PM) filtration performance was evaluated. Moreover, the synergistic effect of the
filtration and photocatalytic degradation performance was investigated. Furthermore,
the reusability and biodegradability of the FT-CFs were investigated. To the best of our
knowledge, the present study provides a novel electrospun F-TiO2/CA photocatalytic
nanofiber material prepared via electrospinning with improved photocatalytic degradation
properties and applications in VOC remediation and PM filtration.

2. Results and Discussion
2.1. Characterizations

The surface morphology of F-TiO2 was investigated using a scanning electron mi-
croscope. Figure 1 shows the surface morphology of PT25 TiO2 and F-TiO2. P25 TiO2
has an inconsistent nanoparticle structure with visible agglomeration, while F-TiO2 has a
more consistent and uniform particle structure. The synthesized F-TiO2 was formed from
the hydrothermal reaction between titanium (IV) N-butoxide (TBOT) and glycerol, which
produced flower-like titanium glycerolate (TiGly) precursor nanostructures. The flower-like
structure of the TiGly was not affected by the calcination process, which produced TiO2
nanoparticles from the TiGly nanostructure precursors [8].
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Figure 1. FE-SEM surface morphology images: (a) P25 TiO2; (b) F-TiO2.

Similarly, the FE-SEM analysis of the photocatalytic fibers is shown in Figure 2a–c.
The FE-SEM images reveal that the CA nanofibers (CF) have a smooth and flat surface,
unlike the P25 TiO2/CA nanofibers (T-CFs) and FT-CFs, which have a rougher surface
and visible protrusions. Ten nanofibers were used to measure the average diameter. The
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average diameter of CF, 0.5%FT-CF, 1.0%FT-CF, 2.0%FT-CF, 3.0%FT-CF, and 3.0%T-CF were
measured as 182.2, 137.8, 107.6, 104.4, 96.1, and 97.9 nm, respectively. The addition of TiO2
decreased the diameter of the nanofibers, as shown in Figure 2d–f. The average diameters
of the nanofibers decreased from 182.2 nm to 96.1 nm. Moreover, FT-CFs have smaller
diameters than T-CFs. Along with the FE-SEM analysis, the EDS elemental analysis of the
3.0%FT-CF confirmed the presence of Ti on the surface of the nanofibers that are shown in
Figure 2g. In addition, the EDS elemental analysis revealed the percentages of C, O, and Ti,
which were 53.09, 43.69, and 3.22%, respectively.
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Figure 2. FE-SEM surface morphology analysis: (a) CF; (c) 0.5%FT-CF; and (e) 1.0%FT-CF (magnifi-
cation ×10,000). Diameter distribution of fibers: (b) CF; (d) 0.5%FT-CF; and (f) 1.0%FT-CF with dif-
ferent TiO2 addition amounts. And (g) EDS spectrum of 3.0%FT-CF. 
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Figure 2. FE-SEM surface morphology analysis: (a) CF; (c) 0.5%FT-CF; and (e) 1.0%FT-CF (magni-
fication ×10,000). Diameter distribution of fibers: (b) CF; (d) 0.5%FT-CF; and (f) 1.0%FT-CF with
different TiO2 addition amounts. And (g) EDS spectrum of 3.0%FT-CF.

The XRD analyses of the P25 TiO2 and F-TiO2 are shown in Figure 3. The XRD spec-
trum of F-TiO2 reveals that the F-TiO2 crystalline structure is purely anatase-phase TiO2,
confirmed with the characteristic peaks from [13] JCPDS 00-021-1272 standard reference
cards, with peaks at 25.3◦, 37.8◦, 48.0◦, 53.9◦, 54.9◦, 62.7◦, 68.7◦, 69.7◦, and 75.1◦, corre-
sponding to (101), (112), (200), (105), (211), (204), (116), (220), and (215) crystal planes of the
anatase-phase TiO2. Similarly, the P25 TiO2 XRD spectrum shows characteristic peaks of
anatase-phase TiO2. In addition, the XRD spectrum of P25 TiO2 contains the characteristics
peaks of rutile-phase TiO2, as can be seen from the [14] JCPDS 01-070-7347 characteristics
peaks at 27.4◦, 36.0◦, and 41.1◦, which correspond to (110), (101), and (111) crystal planes of
the rutile-phase TiO2. The XRD analysis reveals P25 TiO2 polycrystalline structures from
anatase- and rutile-phase TiO2.
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The energy band gaps of the P25 TiO2, F-TiO2, and prepared photocatalytic nanofibers
were measured using UVVis analysis (Figure 4). The F-TiO2 shows a lower energy band
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gap of 2.95 eV, which is lower than that of the P25 TiO2. Generally, anatase-phase TiO2 has
a lower energy band cap compared to other crystalline structures of TiO2. This confirms
the results from the XRD analysis of the F-TiO2 and P25 TiO2 crystalline structures, which
demonstrated a pure anatase phase and a mixture of an anatase and rutile phase, respec-
tively. This means that F-TiO2 requires less energy to excite its proton, thereby enhancing
its photocatalytic activity. The energy band gap and maximum absorption wavelength are
summarized in Table 1. P25 TiO2 and F-TiO2 showed excellent absorption values below
300 nm. In contrast, the T-CFs and FT-CFs have higher energy band gaps and lower absorp-
tion values below 300 nm. The stabilization of the P25 TiO2 and F-TiO2 in CA decreases the
absorption values and increases the energy band gap. The FT-CFs showed better optical
characteristics over the T-CFs, which can be attributed to the larger surface area of F-TiO2
and the lesser tendency of F-TiO2 to aggregate.
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Table 1. Energy band gaps of different TiO2 materials.

Material Maximum Absorption Wavelength (nm) Energy Band Gap

F-TiO2 400 3.10
P25 TiO2 391 3.17
3%FT-CF 375 3.30
3%T-CF 372 3.33

The XPS analysis of the synthesized F-TiO2 revealed that the binding energy peaks of C
1s, Ti 2p, and C 1s appear at 530.0, 459.0, and 284.0 eV, respectively (Figure 5a). Similarly, the
binding energy peaks at 458.1 and 463.8 eV represent Ti4+2p3/2 and Ti4+2p1/2 (Figure 5b),
respectively, which are consistent with the values reported by previous studies [15,16]. In
addition, the binding energy peaks of lattice oxygen (Olatt) and adsorbed oxygen (Oabs) are
at 529.3 and 530.1 eV (Figure 5c), which is similar to the results obtained by the synthesis of
TiO2 using a hydrothermal process [17].
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The characteristic peaks of TiO2 and its functional groups in CA, CF, T-CFs, and
FT-CFs were identified using FTIR analysis (Figure 6). P25 TiO2 and F-TiO2 showed a
characteristic peak around 650 cm−1, which corresponds to the stretching vibration of the
Ti-O-Ti bond [6,18]. This characteristic peak is visible in the T-CF and FT-CF FTIR spectra.
The peak at 1,050 cm−1 corresponds to C-O-C stretching vibrations in dehydrated glucose
units. C-O stretching, C-H bending vibrations, and C=O stretching from acetyl groups can
be seen in the peaks at 1240 cm−1, 1370 cm−1, and 1750 cm−1, respectively. Additionally,
the peak in the range of 2900–2950 cm−1 corresponds to the C-H stretching vibrations of
CH2 or CH3. These peaks are characteristic peaks of CA [19,20]. The peak at 3450 cm−1

corresponds to O-H stretching vibrations, which are attributed to the adsorbed water on
the material.
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Figure 6. FTIR spectra of (a) P25 TiO2; (b) F-TiO2; (c) CA; (d) 3.0T-CF; (e) 3.0FT-CF.

The nitrogen adsorption/desorption isotherms of P25 TiO2 and F-TiO2 were analyzed
(Figure 7). P25 TiO2 exhibits Type II isotherms in the nitrogen adsorption/desorption
curves, which means that P25 TiO2 has a microporous structure [19]. On the other hand,
F-TiO2 follows a Type IV isotherm with a hysteresis loop in the middle section, which
indicates the mesoporous structure of F-TiO2, with capillary condensation in the pores [21].
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The specific surface areas and pore characteristics of the P25 TiO2 and F-TiO2 were an-
alyzed using the Brunauer–Emmett–Teller (BET) method and the Barrett–Joyner–Halenda
(BJH) method, respectively. The specific surface area and pore characteristics of the TiO2
nanoparticles are summarized in Table 2. F-TiO2 exhibits a higher specific surface area
than P25 TiO2. The high specific surface area of F-TiO2 can be attributed to its nanopetal
structures and uniform distribution without visible agglomerations, which can be seen
from the FE-SEM images of the F-TiO2 nanoparticles. In contrast, P25 TiO2 has a tendency
to agglomerate and has inconsistent structures, which can lower its specific surface area.
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Table 2. Specific surface area and pore characteristics of different TiO2 nanoparticles.

Material Specific Surface Area (m2 g−1) Pore Volume (cm3 g−1) Pore Size (nm)

P25 TiO2 47.2 0.054 5.8
F-TiO2 70.1 0.082 7.9

2.2. Photocatalytic Degradation Performance
2.2.1. Effect of TiO2 Concentration

The concentration of P25 TiO2 in the photocatalytic nanofibers was varied at 0, 0.5,
1.0, 2.0, 3.0, and 4.0% (CF, 0.5%T-CF, 1.0%T-CF, 2.0%T-CF, 3.0%T-CF, and 4.0%T-CF) to
determine its effect on the degradation efficiency of acetone using the following parameters:
a residence time of 90 s, light source at 254 nm, and acetone initial concentration of 30 ppm.
The degradation rate of acetone by P25 TiO2 at different concentrations is summarized in
Figure 8. The degradation efficiency of the 254 nm UV light alone only reached approxi-
mately 5% reduction, while the CF reached 4% reduction, which is lower than the UV light
alone. This can be attributed to the shielding effect of CF, which blocks the UV light.
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While the concentration of P25 TiO2 increases, the degradation efficiency of acetone
increases. More TiO2 is distributed on the nanofiber surface, which provides more active
sites for photocatalytic reactions for the degradation of acetone. The degradation efficiency
of acetone reaches 65.6% for 3.0%T-CF. However, as the concentration of P25 TiO2 reaches
4.0%, the degradation efficiency decreases from 65.6% to 55.5%. The addition of more P25
TiO2 above 3.0% makes the solution more viscous, which causes a poor nanofiber quality
with an inconsistent fiber diameter. In addition, P25 TiO2 nanoparticle agglomeration is
more favorable at higher concentrations. The agglomeration of P25 TiO2 nanoparticles
decreases the specific surface area and active sites for photocatalytic degradation.

Similarly, the effect of the concentration of F-TiO2 on the degradation of acetone was
investigated. Different F-TiO2 concentrations, namely, 0.5, 1.0, 2.0, and 3.0% (0.5%FT-CF,
1.0%FT-CF, 2.0%FT-CF, and 3.0%FT-CF), were used in the photodegradation performance
test. Similar trends were observed between the effect of the concentration of P25 TiO2 and
F-TiO2. The degradation efficiencies of 0.5%FT-CF, 1.0%FT-CF, 2.0%FT-CF, and 3.0%FT-C
are 25.1%, 47.0%, 66.1%, and 81.8%, respectively. As shown in Figure 9, FT-CFs exhibit a
better degradation efficiency than T-CFs. The superior photocatalytic activity of FT-CFs can
be attributed to the excellent properties of FT-CFs compared with T-CFs, including higher
adsorption properties, a lower band gap, a thinner fiber diameter, and a larger specific
surface area. Moreover, F-TiO2’s superior photocatalytic activity over P25 TiO2 enhanced
the degradation efficiency of the FT-CFs. F-TiO2 has an anatase-phase TiO2 crystalline
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structure, which has better photocatalytic activity than rutile-phase TiO2, while P25 TiO2
has a combination of anatase- and rutile-phase TiO2 crystalline structures.
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2.2.2. Effect of Initial Concentration, Residence Time, and UV Light Source

The experiment was conducted using a fixed amount of photocatalytic nanofibers. As
shown in Figure 10, the degradation efficiency of acetone decreases as the initial concen-
tration of acetone increase. The degradation efficiency at 15 ppm reached 95.0%, while it
only reached 34.0% at 90 ppm. At higher concentrations, acetone molecules compete for
the limited active sites of the photocatalytic nanofibers.
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The effect of residence time was evaluated by adjusting the flow rate of the acetone gas
mixture through the annular photocatalytic reactor (Figure 11). The degradation efficiency
of acetone reached 59.7%, 72.5%, 79.7%, and 89.8% for residence times of 23, 45, 90, and
180 s, respectively. The degradation efficiency of acetone increases as the residence time is
increased. A higher residence time means a longer contact of acetone with the photocatalytic
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nanofibers and a longer exposure to UV light, thereby increasing the photodegradation
reaction of acetone. In contrast, it can be observed at one minute of contact time that the
degradation efficiency of acetone at 23 s is higher than at the other residence time. A higher
flow rate increases the convective mass transfer and diffusion rates, thereby increasing
the interactions between the acetone molecules and the active sites in the photocatalytic
nanofibers. However, as the contact time increases, the surface reactions dominate the
photodegradation, which means that a higher residence time has a higher degradation
efficiency.
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The effect of the light source on the degradation efficiency of acetone was evaluated
using light sources at 254 nm and 365 nm (Figure 12). The experiment was conducted using
0.5%FT-CF, 1.0%FT-CF, 2.0%FT-CF, and 3.0%FT-CF, with a residence time of 90 s and an initial
acetone concentration of 30 ppm. It can be observed that the degradation efficiency of acetone
using a 254 nm light source is higher than using 365 nm light source. A 254 nm light source
carries more energy, which promotes more electrons and radicals, promoting more interactions
between the radicals and acetone molecules, thereby enhancing the degradation of acetone. In
addition, the degradation efficiency under dark conditions is 25%.
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2.2.3. Photocatalytic Degradation Kinetics and Mechanism

The reaction kinetics of acetone degradation were studied using 0.5%FT-CF, 1.0%FT-
CF, 2.0%FT-CF, 3.0%FT-CF, and 3.0%T-CF (Figure 13). A pseudo-first-order kinetic model
was used to determine the photocatalytic reaction rate. The authors of [22] state that the
photodegradation rate follows the pseudo-first-order kinetic model, which means that the
reaction depends on two reactants; however, it appears that it only depends on a single
reaction, due to its concentration being significantly higher than that of the second reactant.
The reaction rate constants of the different photocatalytic nanofibers are summarized in
Table 3. The highest reaction rate is 0.1358 min−1 and belongs to 3.0%FT-CF.
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Table 3. Reaction rate constants for TiO2/CA nanofibers.

Parameter 0.5%FT-CF 1.0%FT-CF 2.0%FT-CF 3.0%FT-CF 3.0%T-CF

k1 (min−1) 0.0488 0.0596 0.0854 0.1358 0.0956
R2 0.916 0.935 0.987 0.975 0.975

The reaction involved in the photocatalytic degradation of acetone is illustrated in
Scheme 1. Radicals are formed when an electron and positively charged hole, generated
from the photoexcitation of TiO2, react with H2O and O2 molecules that are present in the
air [6]. These radicals participate in the oxidation of acetone, producing CO2 and H2O.
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2.3. Filtration Performance
2.3.1. Effect of TiO2 on Filtration Performance

CF, 3.0%T-CF, and 3.0%FT-CF were used to investigate the effect of TiO2’s nanocrys-
talline structure on the filtration performance of the nanofibers (Figure 14a). Filtration
performance tests were conducted with the following parameters: a particle size range from
10 to 500 nm, particle number concentration between 3.04 and 3.83 × 105 particles per cm−3,
face velocity of 5.0 cm s−1, and filter basis weight of 0.33 g m−2. The average penetration
ratios for CF, 3.0%T-CF, and 3.0%FT-CF were 3.59%, 2.07%, and 0.38%, respectively. The
Most Penetrating Particle Sizes (MPPSs) for the CF, 3.0%T-CF, and 3.0%FT-CF materials
were 92 nm, 89 nm, and 47 nm, corresponding to maximum penetration ratios of 5.74%,
2.99%, and 0.99%, respectively. For ultrafine particles (10–50 nm), the penetration ratio
peaks vary significantly due to the instability of particle generation. Ultrafine particles are
captured via Brownian diffusion. As the particle size increases, direct interception and
inertial impaction capture mechanisms dominate, which improves the filtration efficiency.
T-CF and FT-CF have significantly lower penetrations ratio than CF.
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(particle sizes: 10 to 500 nm; particle count: 3.04–3.83 × 105 particles cm−3; face velocity: 5.0 cm s−1;
filter basis weight: 0.33 g m−2).

The filtration qualities of CF, 3.0%T-CF, and 3.0%FT-CF were calculated based on the
penetration ratio and pressure drop (Figure 14b). A high filtration quality is achieved when
the penetration ratio and pressure drop are both low. The addition of TiO2 increases the
pressure drop across the filter. 3.0%FT-CF has the highest filtration quality, followed by CF,
and then 3.0%T-CF. The high pressure drop across the T-CF nanofibers lowers its filtration
quality. Although FT-CF has a high pressure drop as well, its low penetration ratio allows
the FT-CF nanofibers to have a high filtration quality. The nanocrystalline structure of
F-TiO2 contributes to the lower penetration ratio and lower pressure drop. In addition,
FT-CFs have thinner diameters compared to T-CFs.

The effect of the TiO2 content on the filtration performance of the nanofibers was eval-
uated using 0.5%FT-CF, 1.0%FT-CF, 2.0%FT-CF, and 3.0%FT-CF (Figure 15). Particle sizes
ranging from 10 to 500 nm, particle number concentrations between 3.04 and 3.83 × 105 parti-
cles per cm−3, a face velocity of 5.0 cm s−1, and a filter basis weight of 0.33 g m−2 were used
in this experiment. The average permeability rates were 2.01%, 1.02%, 0.67%, and 0.38% for
0.5%FT-CF, 1.0%FT-CF, 2.0%FT-CF, and 3.0%FT-CF, respectively. In addition, the MPPSs were
44 nm, 48 nm, 49 nm, and 47 nm, respectively. The permeability rates decrease as the amount
of TiO2 is increases. Intuitively, increasing the concentration of TiO2 above 3.0% may increase
the filtration efficiency of the nanofibers. However, a higher concentration above 3.0% TO2
results in electrospinning issues including needle blockage, fiber breakage, and inconsistent
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fiber diameters. Moreover, the filtration quality of 3.0%FT-CF showed superiority among
the FT-CFs nanofibers. The filter quality increased from 0.087 Pa−1 to 0.103 Pa−1. Therefore,
3.0%FT-CF was used for further studies.
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weight: 0.33 g m−2).

2.3.2. Effect of Face Velocity and Filter Basis Weight on Filtration Performance

As shown in Figure 16, the filtration quality of CF, 3.0%T-CF, and 3.0%FT-CF at
different face velocities decreases as the face velocity increases. The filtration quality of
3.0%FT-CF decreased from 0.41 to 0.02 Pa−1. The decrease in the filtration quality was due
to the increase in both the penetration ratio and the pressure drop across the nanofiber filter
(Figure 17).
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As shown in Figure 18, the filtration efficiency is directly proportional to the filter’s
basis weight. The filtration efficiency reached a 99.9% filtration efficiency with a minimum
filter basis weight of 0.495 g m−2. The dense structure of the nanofiber filter allows for more
interaction between the particles and nanofibers. However, the same property blocks the
airflow, which drastically increases the pressure drop across the filter. The high pressure
drop lowers the filtration quality of the nanofiber filters. A filter basis weight of 0.330 g m−2

obtained the highest filtration quality.
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2.3.3. Filtration Penetration Ratio Simulation

Simulations were conducted to understand the behavior of the nanofiber filters
(Figure 19). The simulated average penetration ratio was 0.092%, and the MPPS was
72 nm. In contrast, the experimental results indicated a penetration ratio of 0.381%, with
an MPPS of 48 nm. The significant difference between the simulated result and the exper-
imental data reveals that there are more factors that affect the penetration ratio than the
parameters investigated in this study. The effect of TiO2 on the surface structure of the
nanofibers, such as the fiber roughness, dendritic structures, and other effects, makes the
experimental data deviate from the simulation result. The observed capture mechanism
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involved Brownian diffusion of ultrafine particles and an interception mechanism for larger
particles.
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2.4. Photocatalytic Degradation and Filtration Synergistic Effect

As shown in Figure 20a, the concentration of acetone in the gas mixture has no
significant effect on the filtration performance of the nanofiber filter. The filtration efficiency
remained 99.6% (±0.05%). The dominant filtration mechanism involved Brownian diffusion
and direct interception. Therefore, any gaseous pollutant has little to no effect on the
filtration performance of the filter.
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The degradation efficiency of photocatalytic nanofibers can be affected by the presence
of PM in the gas mixture, as shown in Figure 20b. The degradation efficiency decreased
from 81.8% to 66.3%. PM accumulation on the surface of the nanofibers blocks the UV light
from exciting the TiO2, resulting in less generation of positively charged electron holes,
which reduces the degradation efficiency of acetone by means of photocatalytic reaction.

2.5. Recyclability and Biodegradation Tests

The cycle tests reveal good stability and reusability of the nanofibers (Figures 21 and 22).
The degradation efficiency of the photocatalytic nanofibers decreased from 81.8% to 73.8%,
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which accounts for an approximately 10% reduction in the efficiency. Similarly, after five
cycles of filtration performance tests, the tests showed a minimal reduction in the efficiency
and pressure drop.
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The biodegradation tests revealed that the nanofiber material can be decomposed in
30 days in water environments and 45 days in a soil environment. These results highlight
the biodegradability of the nanofiber in natural environments, showcasing its ability to
degrade and decompose over time.



Catalysts 2024, 14, 233 17 of 21

3. Materials and Methods
3.1. Chemicals and Materials

Titanium(IV) N-butoxide [Ti(OBu)4] (TBOT) (99%, CAS no. 5593-70-4) and cellulose
acetate (CA) (MW 100,000; CAS no. 9004-35-7) were purchased from Dinghao Trading Co.,
Ltd., Weifang, China. Glycerol (99%, CAS no. 56-81-5) was obtained from Kehua Co., Ltd.,
Xiamen, China. Acetone (99.5%, CAS no. 67-64-1), ethanol (99.8%, CAS no. 64-17-5), and
N,N-dimethyl acetamide (99.8%, CAS no. 127-19-5) were purchased from Youhe Trading
Co., Ltd., Shenzhen, China. The deionized water was obtained from Lotun ultrapure water
system.

3.2. Synthesis of Flower-like Titanium Dioxide

The F-TiO2 nanoparticles were synthesized using a hydrothermal process under high-
temperature and high-pressure conditions as described in [8]. The hydrothermal process
combined with a calcination process induces nucleation and crystalline growth of titanium
dioxide [8].

With constant stirring, 1 mL of TBOT was mixed with 15 mL of ethanol. On a separate
container, 5 mL of glycerol was mixed with 15 mL of ethanol. Both of these solutions
were mixed for 10 min under constant stirring. The mixed solution was then placed in a
polytetrafluoroethylene (PTFE) reaction vessel at 180 ◦C for 24 h. After the reaction, the
vessel was allowed to cool at room temperature.

The solution was filtered to obtain the solid product from the reaction. The solid
product was washed with ultrapure water and ethanol several times. The washed solid
product was dried in an oven at 80 ◦C for 12 h. The dried solid product was annealed at
450 ◦C in air for 3 h. The annealed solid product was ground and sieved to obtain the
F-TiO2.

3.3. Preparation of Titanium Dioxide/Cellulose Acetate Fibers

Titanium dioxide/cellulose acetate fibers were prepared by electrospinning method. A
known amount of CA was dissolved in a 2:1 solution of acetone and dimethylacetamide to
make 16 wt% CA solution. The solution was stirred for 8 h followed by 30 min of ultrasonic
agitation. The solution was coded as CF. Different amounts of synthesized F-TiO2 were
added to the CA solution to make 0.5, 1.0, 2.0, and 3.0% of F-TiO2 and coded as 0.5%FT-
CF, 1.0%FT-CF, 2.0%FT-CF, and 3.0%FT-CF, respectively. The solution was mixed for 8 h,
followed by 30 min of ultrasonic agitation. The solutions were separately transferred to a
10 mL syringe with a needle attachment and connected to the electrospinning instrument.
The electrospinning parameters are summarized in Table 4. The nanofibers were dried at
40 ◦C for 24 h.

Table 4. Electrospinning parameters.

Parameter Setting

Feed rate 1.5 mL h−1

Collector distance 15 cm
Electrical field voltage 20 kV

Collector rotation speed 100 rpm
Base material Polyethylene terephthalate nonwoven fabric

Similarly, P25 TiO2 powder was added to the CA solution to make 0.5, 1.0, 2.0, 3.0,
and 4.0% of P25 TiO2 and named 0.5%T-CF, 1.0%T-CF, 2.0%T-CF, 3.0%T-CF, and 4.0%T-CF,
respectively. The same electrospinning parameters were used for T-CFs. The collected
nanofibers were dried at 40 ◦C for 24 h.

3.4. Characterizations

Surface morphology analysis, crystal structure analysis, surface functional group
analysis, optic characteristics analysis, and nitrogen isothermal adsorption/desorption
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analysis were performed to characterize the P25 TiO2 powder and the synthesized F-TiO2.
The electrospun nanofibers were characterized using scanning electron microscope.

Surface morphology analysis was carried out using JEOL JSM-7800F scanning electron
microscope (FE-SEM) equipped with energy-dispersive X-ray spectrometer (EDS). Crystal
structure analysis was conducted using X-ray diffraction over a 2θ range of 10–80◦. JCPDS
card numbers 00-021-1272 and 01-070-7347 were used to identify surface functional groups
using Thermo Fisher Scientific Nicolet iS10 Fourier transform infrared (FTIR) spectrometer
in the range of 650–4000 cm−1. Optic characteristics were evaluated using HITACHI U-3900
UV–Visible absorption spectrophotometer in the range of 200–700 nm. Chemical valence
state and composition of F-TiO2 were identified using XPS analysis. Nitrogen adsorption
and desorption isotherms were analyzed using Micromeritics ASAP 2020 surface area and
porosity analyzer. Specific surface area was evaluated using Brunauer–Emmett–Teller (BET)
method, and for pore size and pore volume, Barrett–Joyner–Halenda (BJH) method was
used.

3.5. Photocatalytic Degradation Performance of Titanium Dioxide/Cellulose Acetate Nanofibers

The photocatalytic activity of the CF, T-CFs, and FT-CFs were evaluated using the
photocatalytic degradation performance testing system illustrated in Figure 23. The system
is equipped with an acetone generation system, which mixes acetone and nitrogen gas to
obtain acetone concentrations of 15, 30, 60, and 90 ppm. The flow rates were fixed at 50,
100, 200, and 400 mL min−1, which correspond to residence times of 180, 90, 45, and 23 s,
respectively.
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Figure 23. Schematic diagram of photocatalytic degradation performance testing system.

The acetone–nitrogen gas mixture flows through an annular photocatalytic reactor with
a capacity of approximately 150 mL. The reactor is equipped with 254 nm and 365 nm UV
lamps in the center of the reactor, as shown in Figure 24. The photocatalytic nanofibers (CF,
T-CFs, and FT-CFs) were placed inside the reactor to cover the entire UV lamp. The outer
stainless steel jacket has circulating water, which can be used to control the temperature
of the reactor. The concentration of the acetone–nitrogen gas mixture before and after the
photocatalytic reaction were measured using ION Science Tiger Photo Ionization Detector
(PID).

The reusability of 3.0%FT-CF photocatalytic nanofiber was investigated under 5 con-
secutive cycles of photocatalytic reactions. The experiment was conducted using 254 nm
UV lamp, with initial acetone concentration of 30 ppm and residence time of 90 s. The
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photocatalytic nanofiber was regenerated by heating in oven at 50 ◦C for 1 h to remove
CO2, water, and residual acetone.
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The rate of acetone’s photocatalytic reaction with photocatalytic nanofibers (CF, T-CFs,
and FT-CFs) was determined using first-order kinetic model. Experimental results from
using an initial acetone concentration of 30 ppm, a residence time of 90 s, and a 254 nm
light source were used to determine the photocatalytic reaction rate. Moreover, the reaction
mechanism of the acetone photocatalytic degradation was investigated.

3.6. Filtration Performance of Titanium Dioxide/Cellulose Acetate Nanofibers

The filtration performance of the CF, T-CFs, and FT-CFs were evaluated using a
filtration performance testing system illustrated in Figure 25. The system is equipped with
a particle generation system, which utilizes an atomizer to generate sub-micro to nanosized
particles. A 1 M NaOH solution was used to produce aerosol particles. The moisture was
removed from the aerosol particles using silica gel desiccant. The dried aerosol particles
were introduced into a Kr-85 electrostatic neutralizer. The electrostatic neutralizer releases
beta particles and a small amount of gamma radiation, which dissociates air molecules into
positive and negative ions. The aerosol particles reach Boltzmann charge equilibrium as the
ions attach to their surface. The generated particles were introduced to a mixing chamber.
The particle number and particle size distribution were monitored.
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The generated particles were passed through the photocatalytic nanofibers (CF, T-CFs,
and FT-CFs), fixed inside a stainless steel clamp. The photocatalytic nanofibers have an
effective area of approximately 16 cm2, with 0.165, 0.330, 0.495, and 0.660 g m−2 filter
basis weights. The flow rate of the particles was fixed at 1000, 4000, 7000, and 10,000 mL
min−1, which corresponds to a face velocity of 1, 4, 7, 10 cm s−1. The number of particles
before and after the filtration was measured using MSP 1000XP Wide-range Particle Size
(WPS) Spectrometer, which can measure particles with a size in the range of 10–50 nm. A
pressure gauge is connected to the filtration set up to measure the pressure drop across the
photocatalytic nanofibers.

The reusability of 3.0%FT-CF was evaluated under 5 cycles of filtration experiments,
with face velocity of 5 cm s−1, filter basis weight of 0.33 g m−2. The nanofiber filters were
regenerated by soaking in clean water for one minute under ultrasonic agitation. The
nanofiber filters were dried in an oven at 50 ◦C.

To evaluate the synergistic effect of filtration and photocatalytic reaction to acetone
degradation, 3.0%FT-CF photocatalytic nanofiber was used. A photocatalytic reaction
experiment using a 254 nm UV lamp, with parameters of initial acetone concentration of
30 ppm, residence time of 90 s, and particle number concentrations 0, 3.4 × 105, 7.6 × 105,
1.2 × 106, and 2.1 × 106 particles cm−3, was conducted to evaluate the performance of the
photocatalytic nanofiber at different particle number concentrations. Similarly, a filtration
experiment with initial acetone concentrations of 0, 15, 30, and 90 ppm, particle number
concentrations of 3.04 × 105–3.83 × 105 particles cm−3, face velocity of 5.0 cm s−1, and a
filter basis weight of 0.33 g m−2 was performed to evaluate the filtration performance of
the nanofibers at different acetone concentrations.

3.7. Biodegradation Tests

The biodegradation activity of the 3.0%FT-CF photocatalytic nanofiber in tap water,
artificial seawater, and soil was evaluated. The artificial seawater was prepared according
to the international standard ASTM D1141-98 from the American Society for Testing and
Materials (ASTM). In separate containers, samples of the photocatalytic nanofiber were
immersed in 500 mL of tap water and 500 mL of artificial seawater for 30 days. The soil
was obtained from the vicinity of the National Ilan University campus. The photocatalytic
nanofiber was buried under the soil at a depth of 10 to 15 cm, with a soil area of at least
30 × 30 cm2. The samples were observed regularly.

4. Conclusions

The photocatalytic degradation performance and filtration performance of electrospun
F-TiO2/CA under different parameters were studied. The synthesized F-TiO2 showed su-
perior properties and photocatalytic activity compared with P25 TiO2, which enhances the
properties of FT-CF nanofibers for both acetone degradation and PM filtration applications.
The acetone degradation filtration performance reached 95.0% and 99.6% efficiency under
optimal conditions. The synergistic effects of filtration and photocatalytic reaction were
investigated. The cycle tests revealed good stability and reusability of the nanofibers.
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