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Abstract: Linear α-olefins (LAOs) are linear alkenes with double bonds at the ends of the molecular
chains. LAOs with different chain lengths can be widely applied in various fields. Ethylene oligomer-
ization has become the main process for producing LAOs. In this review, different homogeneous or
heterogeneous catalysts recently reported in ethylene oligomerization with Ni, Fe, Co, Cr, etc., as
active centers will be discussed. In the homogeneous catalytic system, we mainly discuss the effects
of the molecular structure and the electronic and coordination states of complexes on their catalytic
activity and selectivity. The Ni, Fe, and Co homogeneous catalysts are discussed separately based
on different ligand types, while the Cr-based homogeneous catalysts are discussed separately for
ethylene trimerization, tetramerization, and non-selective oligomerization. In heterogeneous catalytic
systems, we mainly concentrate on the influence of various supports (metal–organic frameworks,
covalent organic frameworks, molecular sieves, etc.) and different ways to introduce active centers
to affect the performance in ethylene oligomerization. Finally, a summary and outlook on ethylene
oligomerization catalysts are provided based on the current research. The development of highly
selective α-olefin formation processes remains a major challenge for academia and industry.

Keywords: ethylene oligomerization; linear α-olefins; homogeneous catalysts; heterogeneous catalysts;
Ni; Fe; Co; Cr

1. Introduction

Linear α-olefins (LAOs) are linear alkenes with double bonds at the ends of the
molecular chains. Due to their unique structure, they are applied widely in various fields
depending on the chain length. For example, 1-butene and 1-octene are often used as
copolymerization monomers for linear low-density polyethylene (LLDPE) and polyolefin
elastomers (POE) [1]. LAOs with carbon numbers of 6–30 are used as important raw mate-
rials for the synthesis of plasticizers, detergents, surfactants, and other chemical products.
LAOs have developed extremely rapidly in recent years, with the demand growing year
after year around the world [2]. Most of the currently commercialized LAO units mainly
produce full-fraction α-olefins, which can meet a variety of downstream markets, with
product carbon number distributions ranging from C4 to C30

+. However, owing to the
different demand in markets for various fractions of LAO products, the technology of
producing linear α-olefins with specific carbon numbers has also received attention.

Compared with wax pyrolysis [3], Fischer–Tropsch synthesis [4–6], and alkane dehy-
drogenation [7–9], the ethylene oligomerization method has become the main process for
producing LAOs due to its relatively mild operating conditions, flexible product distribu-
tion, and high linearity. According to literature reports, there are a wide variety of catalysts
for ethylene oligomerization, mainly Ni, Fe, Co, and Cr as metal active centers [10–13], and
some catalysts have been industrialized to produce linearity α-olefin products. For exam-
ple, the Shell higher olefin process (SHOP) is an important catalytic system for ethylene
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oligomerization, with more than one million tons of α-olefins prepared industrially via this
method [14]. Chevron Phillips realized the industrial production of 1-hexene using a Cr
catalyst in 2003 [15].

The mechanism of ethylene oligomerization can be divided into the Cossee–Arlman
mechanism and the metallacyclic mechanism. As early as 1966, Cosse [16] proposed the
mechanism of cis-ligand insertion. After the enrichment by Arlman [17], the Cossee–Arlman
mechanism (Figure 1) successfully demonstrated the process of catalyzing ethylene oligomer-
ization to α-olefins. The mechanism is divided into four steps: (i) coordination between
ethylene monomer and metal active centers; (ii) ethylene insertion into metal hydride or
alkyl intermediate; (iii) repeated coordination and insertion to promote chain growth; and
(iv) β-H elimination reaction to obtain α-olefins and regain active centers. The products
obtained from the catalytic process following the Cossee–Arlman mechanism tend to fol-
low a Schulz–Flory or Poisson distribution, with a wide distribution range and no specific
carbon number.
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However, Cr-based catalysts can produce 1-hexene and 1-octene through the cat-
alytic tri/tetramerization of ethylene, which cannot be explained by the Cossee–Arlman
mechanism. In 1989, Briggs [18] optimized the 2-ethylhexanoate chromium system and
validated the metallacyclic mechanism (as shown in Figure 2) to explain the trimerization
phenomenon. Chabbra et al. [19] used kinetics and deuterium isotope labeling techniques
to identify intermediate species in the catalytic process of chromium diethylene complexes,
further validating the metallacyclic mechanism. The mechanism for ethylene trimerization
is divided into four steps: (i) two ethylene molecules coordinate with Cr; (ii) oxidative cou-
pling to generate metallacyclopentane intermediates; (iii) insert another ethylene molecule
to form a metalcycloheptane intermediate; and (iv) H-shift or β-H elimination and re-
ductive elimination to generate 1-hexene. In the process of ethylene tetramerization, the
third step of the metal ring mechanism is the insertion of two ethylene molecules into the
metallacyclopentane intermediate to form a metalcyclononane intermediate.

This review will discuss the different homogeneous or heterogeneous catalysts re-
ported in ethylene oligomerization with Ni, Fe, Co, and Cr as active centers. Homogeneous
catalysts of various metals exhibit high activity, good selectivity, mild reaction conditions,
and ligand modifiability in ethylene oligomerization, while heterogeneous catalysts have
the characteristics of easy product separation and good thermal stability. In this review, the
Ni, Fe, and Co homogeneous catalysts are discussed separately based on different ligand
types, while the Cr-based homogeneous catalysts are discussed separately for ethylene
trimerization, tetramerization, and non-selective oligomerization. Meanwhile, the Ni, Fe,
Co, and Cr heterogeneous catalysts with different supports are discussed. In addition,
zinc-, ruthenium-, and gallium-based heterogeneous catalysts are also mentioned. Finally,
a summary and outlook on ethylene oligomerization catalysts are provided based on the
current research.
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2. Nickel-Based Catalysts
2.1. Nickel-Based Homogeneous Catalysts

In the 1950s, researchers discovered the “nickel effect” [20], in which ethylene and
triethylaluminium were induced to form butenes in the presence of small amounts of
nickel salts. The discovery stimulated the investigation of post-transition-metal-catalyzed
ethylene oligomerization. In 1966, the concept of “ligand” was introduced, which further
improved the development of transition metal catalysts. Shortly thereafter, Keim [21]
designed neutral (P, O) ligands for ethylene oligomerization to produce linear α-olefins.
In 1990, Keim invented the typical SHOP catalyst (Figure 3), which became a remarkable
milestone for the oligomerization reaction in industry. Another important breakthrough
was the development of a highly electrophilic cationic nickel complex bearing α-diimine
ligands by Brookhart [22] and co-workers in 1995 (Figure 4). When the substituent in the
neighboring position of the benzene ring is small (e.g., H), the polymerization of ethylene
produces a low-molecular-weight oligomerization product; when the substituent resistance
is gradually increased (CH3 to iPr), the molecular weight of the polyethylene increases
as well. This finding suggests that the selectivity can be altered by changing the site
resistance of the ligand in nickel complexes. Following this breakthrough, the influence
of electronic effects on catalytic performance was investigated by Tuskaev et al. [23,24].
Further investigations of nickel complexes bearing α-diimine ligands have involved the
modification of the ligand to alter its spatial site resistance and electronic effects.
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In addition, other types of bidentate ligands (including (N, O) [25–29], (P, N) [30–32],
(P, P) [33–35], (P, S) [36], and (N, S) [37]) as well as tridentate ligands (including (N, N,
N) [38–40], (N, N, O) [41,42], (N, O, O) [43,44], etc.) were synthesized. These above
ligands have been discussed in detail by Giyjaz E. Bekmukhamedov [45] and H. Olivier-
Bourbigou [46] and will not be repeated here. The nickel complexes with tridentate ligands
have better selectivity for linear α-olefins than the didentate nickel complexes, but the
activity is lower. On the whole, the bidentate ligands are still a hotspot of the current
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research. The main thrust of the research has been to modify the selectivity and activity by
changing the structure of the ligand in the catalyst.
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2.2. Nickel-Based Heterogeneous Catalysts

Compared with homogeneous catalysts, heterogeneous catalysts have the advantages
of easy separation, convenient recovery, and high selectivity. Heterogeneous catalysts have
the ability to tailor the synthesized product with controlled chain length and distribution.
The use of heterogeneous molecular species allows the active sites to be separated from each
other, thus preventing them from aggregating or interacting, which may lead to catalyst
deactivation or undesired reactivity [47]. The currently available heterogeneous catalysts
for the oligomerization of ethylene include metal–organic frameworks (MOFs), covalent
organic frameworks (COFs), molecular sieve materials, and other materials.

2.2.1. Metal–Organic Frameworks (MOFs)

Metal–organic frameworks (MOFs), known as crystalline porous coordination poly-
mers, are crystalline solids assembled by linking metal ions or clusters with ligand
molecules [48]. In recent years, MOFs have demonstrated promise as catalysts for olefin
oligomerization and polymerization. MOFs possess numerous active sites separated from
each other, which offers opportunities for sufficient coordination between the active center
and monomer. MOFs not only have unsaturated metal sites themselves (self-assembly) but
can also introduce active metal sites through post-synthetic modifications (cation exchange,
atomic deposition, or ligand metalation) (Figure 5). In this section, a comprehensive con-
trast of MOFs for olefin oligomerization in past decades is summarized (Table 1). The
highest activity of each catalyst as well as the reaction conditions (including temperature,
pressure, and solvent) and selectivity for the product under the highest activity (For calcu-
lations of activity, please see Appendix A) were listed. It can be seen from Table 1 that the
nickel-based heterogeneous catalysts are dominated by ethylene dimerization, regardless of
the method of introducing the nickel active site and structure of the MOFs [49]. One reason
may be that the lack of a large steric hindrance group around the nickel active site in the
microenvironment of Ni-based MOFs leads to fast β-H elimination [50,51]. Another reason
could be the higher nuclear charge number of nickel metals in the microenvironment,
which facilitates β-H elimination to produce dimers [52]. As can be seen in Table 1, the
current catalyst with the highest ethylene dimerization activity is Ni-ZIF-8 (0.4 wt%), syn-
thesized using the self-assembly method reported by Chen’s group [53], and the selectivity
of 1-butene can be maintained above 80%. The most promising nickel-based MOFs material
capable of catalyzing the trimerization of ethylene is MIL-125(Ti)-NH2(Ni), obtained by
Wang et al. [54]. In the presence of the MAO co-catalyst, the total selectivity to 1-hexene
can reach about 80% while achieving the highest activity.
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All the above-mentioned catalysts in the presence of alkylaluminium co-catalysts
form nickel active centers, which undergo coordination insertion with ethylene and β-H
elimination to produce linear α-olefins. Moreover, some Ni-MOF materials can directly
catalyze ethylene oligomerization without co-catalysts. Bhan [55] and co-workers reported
Ni-functionalized UiO-66 via the atomic deposition technique. Ni/UiO-66 that uniquely
engenders active sites on stream maintains stable oligomerization rates for over 15 days
under gas-phase conditions without any external co-catalyst. The authors demonstrated
that the number of active sites involved in the reaction indeed increases with increasing
ethylene pressures using in situ NO titration. Steady-state oligomerization kinetics are
proposed to follow the Cossee−Arlman mechanism by comparing experimental and com-
puted apparent activation enthalpies. Olsbye [56] and co-workers synthesized a series
of UiO-67-bpy MOFs with biphenyl-4,4′-dicarboxylate(bpdc) and different amounts of
2,2′-bipyridine-5,5′-dicarboxylate (bpydc). The post-synthetic metalation of the MOFs was
carried out in EtOH with Ni(acetate)2·4H2O as the metal source. Ni-UiO-67-bpy11% can
catalyze the dimerization of flowing ethene (P(ethene) = 26 bar, 250 ◦C, Time = 240 min)
with an activity up to 850 mg butene g−1

cath
−1 after activation at 300 ◦C in 10% O2 for 360 min.

This catalyst achieves 6% conversion and 99% selectivity for linear butene (1-butene:trans-
2-butene:cis-2-butene ratio was 41:26:32), which is attributed to homogeneously distributed
active sites in the microenvironment and spatial confinement.

2.2.2. Covalent Organic Frameworks (COFs)

Covalent organic frameworks are a class of organic porous crystalline materials linked
with light elements (such as H, B, C, N, O, etc.) by robust covalent bonds via reticular
chemistry [57]. COFs have promising applications in the field of heterogeneous catalysis
due to their ability to induce catalytically relevant ligands into their structure. Unlike con-
ventional support materials (zeolite, metal oxide, etc.), COFs are structurally predesignable,
synthetically controllable, and functionally manageable, suggesting that COFs may be
another promising support material for olefin oligomerization analogues to MOFs. Since
COFs have no active metal sites, they need to be modified by ligand metallization meth-
ods. Gascon et al. [58] synthesized Covalent Triazine Frameworks (CTFs) with micro- and
mesoporous structures and a lamellar-structured imine-linked polymer network (IL-PON).
The materials were metalated afterwards with nickel(II) bromide ethylene glycol dimethyl
ether salt (NiBr2·DME) in THF to afford the three catalysts Ni@meso-CTF, Ni@microCTF,
and Ni@IL-PON. Ni can either be chemically coordinated to the nitrogen functional sites



Catalysts 2024, 14, 268 6 of 35

of the backbone or remain on the surface and in the pores as uncoordinated complexes.
Ni@meso-CTF, Ni@microCTF, and Ni@IL-PON, respectively, achieved an intrinsic catalytic
activity of 75.3, 63, and 92.5 molethylene converted mol−1

Ni h−1, with respective butene selec-
tivity of 59%, 54%, and 58% in the conditions of 50 ◦C, 15 bar of ethylene, heptane solvent,
and Et3Al cocatalyst.

Li et al. [59] reported two covalent organic frameworks (COFs), MABD-COF and
MAPA-COF, used in ethylene oligomerization. The specific surface area and the pore
volume of MAPA-COF with p-phthalaldehyde as a sub-constructing unit were far larger
than those of MABD-COF with butanedione as a sub-constructing unit. Ni@MAPA-COF
and Ni@MABD-COF were obtained by metallization with nickel dichloride. The Ni-
loaded COFs were evaluated for ethylene oligomerization using MAO as a cocatalyst
(Al/Ni = 500 to 700), and the best activity was found in toluene as a solvent at 25 ◦C
with a productivity of 8.31 × 104 g mol−1

Ni h−1 and 1-butene selectivity of 59% using
Ni@MABD-COF and a productivity of 15.68 × 104 g mol−1

Ni h−1 and 1-butene selectiv-
ity of 51% using Ni@MAPA-COF. Recently, another group [60] reported another nickel-
coordinated imine-linked covalent organic frameworks material (COF-PD-Ni) for ethylene
oligomerization with a productivity of 1.98 × 105 g mol−1

Ni h−1. In the condition with the
highest activity, the selectivity of the product C4 can reach 82%, and the remaining product
is C6–C10.

2.2.3. Molecular Sieve Materials

Molecular sieves, as a kind of important catalyst carrier, are different from MOFs and
COFs. Not only can they introduce active metal sites by ion-exchange or graft modification
but they also have their own Brønsted acid sites. Acid sites are responsible not only for
isomerization reactions but also for the dimerization of the primary products. Molecular
sieve catalysts are able to catalyze ethylene oligomerization at high temperatures without
the need for other cocatalysts to initiate the reaction. The activity (ethylene conversion)
of these heterogeneous catalysts is determined by the number of accessible nickel sites,
whereas the stability of the oligomerization, the carbon number distribution, and the
structure of the product are determined by the concentration of Brønsted acid sites and
the porosity.

Hulea et al. [61] synthesized the nickel ion-exchanged NiMCM-22 (Si/Al = 14) and
NiMCM-36 (Si/Al = 26) for ethylene oligomerization reactions. The NiMCM-36 catalyst
with a large mesoporous structure and mild acidity showed good activity (46 g/(gcat·h) of
oligomer) and selectivity (100% of olefins with an even number of carbon atoms) for the
oligomerization of ethylene, whereas the NiMCM-22 catalyst with a microporous structure
and a high concentration of acid sites showed lower catalytic activity and selectivity. The
balance between acid and nickel ion sites, as well as the textural properties of catalysts,
played a significant role in determining their activity and selectivity. In 2014 [62], Ni-AlSBA-
15 was prepared by the post-synthesis alumination reaction of SBA-15 by sodium aluminate
followed by exchanging with nickel ions. The catalyst activity of 175 g/(gcat·h) and dimer-
ization selectivity of 77% can be achieved at 150 ◦C and 35 bar. This catalyst maintains
a high and stable conversion rate over eighty hours in a fixed bed reactor at 150 ◦C, pressure
3.0 MPa, and WHSV10 h−1. This is attributed to the interlinked mesoporous network,
which is large enough to allow free diffusion of the product. Shin et al. [63] reported
a series of bpy-SBA-15, with different molar amounts of bipyridyl (bpy) sites metalated
with NiCl2·H2O. Bpy-SBA-15 with 0.21 wt% of Ni achieved 4422 mololigomers·mol−1

Ni·h−1

and a selectivity in butene of 77%, with 700 equivalents of Et2AlCl. The heterogeneous
catalyst can be recycled many times without a significant reduction in catalytic activity due
to the stability of the SBA-15 support and the appropriate Ni loading density that reduces
the possibility of further reaction of the dimer into polymeric oligomers and polymers.
Lacarriere et al. [64] prepared Ni-MCM-41 (Si/Al = 9) by the ion exchange of AlMCM-
41 precursors. The catalytic activity of Ni-AlMCM-41 reached 180 g/(gcat·h) with a TOF
of 16,920 h−1, which was far superior to similar Ni-loaded catalysts and comparable to
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homogeneous Ni coordination catalysts. Moreover, other molecular sieve catalysts have
been used in ethylene oligomerization reactions, like ZSM-5 [65,66], Ni-H-Beta [67,68], and
Ni/SIRAL-30 [69], but they did not show desirable linear α-olefins selectivity.

Table 1. A comprehensive contrast of MOFs for olefin oligomerization.

Catalyst Temperature
(◦C)

Pressure
(bar)

Reaction
Time

(h)

Co-
Catalyst
(Al:Ni)

Solvent Activity or TOF C4
(1-C4) C6 C8 C8+ Ref.

Ni-UMOFNS-190 1 25 10 1 Et2AlCl
(500) toluene 5536 h−1 75.6 0.4 22 2 [70]

CPO-27(Ni) 1 21 10 1 Et2AlCl
(17) toluene 1 g/(mol·h) 100

[71]DUT-8(Ni)-rigid 1 21 20 1 Et2AlCl
(17) toluene 182 g/(mol·h) 76 24

[Ni(bdc)(dabaco)0.5]n 1 21 10 1 Et2AlCl
(17) toluene 41 g/(mol·h) 56 44

[Ni(bdc)(dabaco)n]n 1 21 10 1 Et2AlCl
(17) toluene 41 g/(mol·h) 49 51

1D-Ni-MIL-77 1 30 10 0.5 Et2AlCl
(100) toluene 5544 h−1 98 (93.3) 0.14 1.84 [72]

3D-Ni-MIL-77 1 30 15 0.5 Et2AlCl
(180) toluene 2226 h−1 99.6 (90) 0.22 0.17

Ni-ZIF-8 (0.4 wt%) 1 35 30 0.17 MAO
(4640) toluene 1,116,000 h−1 97 (87.7) [53]

15Ni-ZIF-L 1 40 30 0.17 MAO toluene 342,030 h−1 96.9 (94.7) [73]

Ni(1%)-MFU-4l 2 25 50 1 MAO
(500) toluene 41,500 h−1 97.4 (94.5) 2.6 [74]

Ni(7.5%)-CFA-1 2 22 50 1
MMAO-

12
(2000)

toluene 37,100 h−1 95.5 (91.2) [75]

20Ni-MOF5 (5.32 wt%) 2 35 50 0.17 MAO toluene 352,000 h−1 96.3 (84.2) [76]
Ni-AIM-NU-1000 3 45 2 10 Et2AlCl 1080 h−1 42 8 46 [77]

Ni-Facac-AIM-NU-1000
3 45 2 10 Et2AlCl 12.6 h−1 100 (78) [49]

Ni-acac-AIM-NU-1000 3 45 2 10 Et2AlCl 15.84 h−1 100 (82)

(30)Ni@(Fe)MIL-101 4 10 15 1 Et2AlCl
(70) heptane 3215 h−1 94 5.5 0.5 [78]

MixMOFs-Ni-a 4 20 20 0.5 Et2AlCl
(100) toluene 2071 h−1 71.3 6.9 0 21.8

[79]MixMOFs-Ni-b 4 40 20 0.5 Et2AlCl
(100) toluene 16,428 h−1 92.7 6.1 0 1.2

MixMOFs-Ni-c 4 20 20 0.5 Et2AlCl
(100) toluene 2000 h−1 79.5 7.2 0 14.3

IRMOF-3-Ni-a 4 20 20 0.5 Et2AlCl
(100) toluene 2246 h−1 35 9.3 0 55.7

MIL-125(Ti)-NH2(Ni) 4 50 10 0.5 MAO
(800) cyclohexane 6464 h−1 19.6

(87.2)
76.7

(92.5) 1.5 2.2 [54]

NU-1000-bpy-NiCl2
4 21 15 1 Et2AlCl

(70) heptane 1560 h−1 82 18 [80]

[Al]-Ni-bpydc(MOF) 4 5 15 1 Et2AlCl
(70) heptane 20 g/(g·h) 89.1 (26.3) 8.9 2.1 [81]

[Ni]-Ni-bpydc(MOF)4 5 15 1 Et2AlCl
(70) heptane 20 g/(g·h) 92.7 (71.3) 7.3

Zr6O4(OH)4
(bpydc)0.84(bpdc)5.16

(NiBr2)0.84
4

55 59 1 Et2AlCl
(70) cyclohexane 370 g/(g/h) [82]

NiCl@DUT-133 4 40 35 1 Et2AlCl
(51)

1,2-
dichlorobenzene

42
mol/(mol·h) 81 19 [83]

1 Self-assembly. 2 Cation Exchange. 3 Atomic Deposition. 4 Ligand Metalation. 1-olefin is relative to the total
amount of oligomer products of that carbon number.

2.2.4. Other Materials

Additionally, multiwalled carbon nanotubes (MWCNTs) [84], Ionic Liquid Phase (SILP) [85],
clays [86], bispyridine-based porous organic polymers [87], and metal oxides [88,89] have
all been studied as carriers of ethylene oligomerization catalysts. These provide new perspec-
tives for the development of new heterogeneous catalysts for ethylene oligomerization.

3. Iron-Based Catalysts
3.1. Iron-Based Homogeneous Catalysts

Since M. Brookhart [51,90] and V. C. Gibson [91] discovered that iron- and cobalt-based
catalysts with bis(imino)pyridine as the ligand have high activity in ethylene oligomer-
ization reaction in 1998, more and more researchers have been attracted to iron-based
catalysts. Usually, the activity of iron catalysts is about one order of magnitude higher
than that of cobalt catalysts [92]. At the same time, iron has the advantages of large re-
serves, cheapness, and environmental friendliness, which makes iron catalysts have broad
application prospects [93]. In recent years, research on iron-based catalysts for ethylene
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oligomerization has mainly focused on ligands [94–96], which could be classified into
NNN, NN, NNOO, NNO, and NNNNOO by the element attached to Fe in the ligand. The
ligands of iron catalysts are highly modifiable [97–99], and some researchers are devoted to
obtaining better catalytic effects by changing the spatial resistances [97,100], substituent
groups [101–103], and functional groups [104,105] of the ligands.

3.1.1. NNN Ligand

Newly developed ligands and their complexes with iron are not yet comparable
to the bis(imino)pyridine system. The latter is still the most promising iron catalyst for
industrialization due to its high catalytic activity, high linear selectivity of products, and
mild reaction conditions [106,107]. The catalytic activity of the bis(imino)pyridine iron
catalyst is even higher than metallocene catalysts, reaching up to 108 g·mol−1·h−1. As
shown in Figure 6, the catalyst ligand exhibits a pseudo-tetragonal planar conical geometric
configuration, where R1–R4 are substituent groups. The two adjacent groups of the benzene
ring perpendicular to the metal plane are located, respectively, above and below the
plane [108]. The molecular weight of the product can be regulated by modifying the ligand
skeleton [109,110] or changing the structure of the benzene ring substituent groups [111].
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In addition to the symmetric complexes mentioned above, Xie et al. [112] synthesized
a series of 2,6-bis(imino)pyridine Fe(II) asymmetric complexes with alkyl and halogen
substituents on different aromatic rings. Compared with symmetric alkyl or halogen
substituted complexes, due to their spatial and electronic effects, the proportion of C6-
C16 in oligomers can significantly increase. Claudio Bianchini et al. [113] changed one of
the aryliminos in the main chain of bis(imino)pyridine to alkylimino, demonstrating that
the presence of two aryl imines in the complex is not a necessary condition for catalytic
reactions. The new complexes are effective and selective for the ethylene oligomerization
reaction, and the spatial size of alkyl groups can control the catalyst productivity and
Schulz–Flory parameters.

Most NNN ligands have good catalytic activity as well as product selectivity. The
spatial site resistance of the benzene ring neighboring substituent groups has an effect on
the β-H elimination reaction at the catalyst active center. As the steric hindrance decreases,
the β-H elimination reaction intensifies, and the molecular weight of the product will
significantly decrease. The product is a series of linear α-olefins when the ortho position of
the ligand’s aniline group is substituted with a single alkyl group, such as methyl [114].

3.1.2. NN Ligand

For NN ligands, Zhang et al. [115] synthesized a novel star iminopyridyl iron com-
plex using 1.0 G star macromolecule, pyridine-2-carboxaldehyde, and FeCl2·4H2O as raw
materials. After activation by MAO, this complex exhibits high ethylene oligomerization
activity (7.5 × 104 g·mol−1

Fe·h−1) while achieving a selectivity of 70.69% for butene. Higher
catalytic activity can be obtained by increasing the ethylene pressure and Al/Fe molar ratio.
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3.1.3. NNOO Ligand

Zhang et al. [116] synthesized a series of novel hyperbranched salicylaldimine Fe(II)
complexes. The catalytic activity and product selectivity of ethylene oligomerization,
which uses MAO as co-catalyst and toluene as solvent, can be modified by changing
reaction temperature, ethylene pressure, and Al/Fe molar ratio. Under optimal conditions
([Fe] = 7 mmol, 298 K, Al/Fe = 500, 0.5 MPa ethylene), the catalytic activity can reach
6.91 × 104 g·mol−1

Fe·h−1, and the selectivity for higher-carbon-number olefins (C10+) is
20.48%. Li et al. [117] synthesized iron complexes based on hyperbranched salicylaldimine
ligands for ethylene oligomerization reaction. After activation with MAO, the activity of
the catalyst reached 13.5 × 104 g·mol−1

Fe·h−1, and the proportion of C4 in the product
reached 52.1%, while the proportion of C8 reached 32.63%.

3.1.4. NNO Ligand

George S. Nyamato et al. [118] synthesized (Pyrazolyl)-(phosphinoyl)pyridine iron(II)
complex for ethylene oligomerization. Figure 7 shows the molecular structures and synthe-
sis of (pyrazolyl)-(phosphinoyl)pyridine Fe(II), Co(II), and Ni(II) complexes. Compounds
2–7 in Figure 7 were activated with EtAlCl2, MAO, or AlMe3 as co-catalysts, and α-C4
was obtained as the main product in the ethylene oligomerization reaction using hexane,
chlorobenzene, or toluene as solvents. The catalytic activity and product selectivity depend
largely on the nature of the alkylaluminium co-catalyst, the nature of the solvent, and the
complex structure. Despite the low activity of this catalyst, it has the advantage of high
selectivity for α-linear olefins.
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and Ni(II) complexes. Reprinted from Journal of Organometallic Chemistry, 783, Nyamato et al.,
(Pyrazolyl)-(phosphinoyl)pyridine iron(II), cobalt(II) and nickel(II) complexes: Synthesis, charac-
terization and ethylene oligomerization studies, pp. 64–72. Copyright (2015), with permission
from Elsevier [118].

3.1.5. NNNNOO Ligand

Makhosonke Ngcobo et al. [93] synthesized Fe(II) complex of bidentate and triden-
tate (imino)phenol ligands bearing quinoline motifs (Figure 8). Using chlorobenzene as
solvent, complex 8 undergoes ethylene oligomerization reaction under the activation of
EtAlCl2. Under the optimal reaction conditions, the catalytic activity reached 6.84 × 105

g·mol−1
cat·h−1. The selectivity of C4 (α-C4) and C6 (α-C6) in the oligomers is 65% (93%)

and 35% (19%), respectively.
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3.2. Iron-Based Heterogeneous Catalyst

Fe-based homogeneous catalysts exhibit high activity and good selectivity in ethylene
oligomerization. Although a better catalytic effect can be achieved by changing the spatial
site resistance, substituent group, and functional group of the ligand for the complexes,
their industrial application is limited owing to the difficulty of separating the catalyst
from the products [119,120] and the large amount of heat released during the reaction
process [121,122]. Moreover, the products of most catalytic systems are C4 or C6. In
recent years, there has been an increasing number of studies on the immobilization of
homogeneous catalysts on inorganic supports, such as zeolites [120], silica [123–125], and
organic polymers [126,127].

In the study of heterogeneous ethylene oligomerization, the key aspect of effective
catalyst design involves the isolated active metal sites within mesoporous support materi-
als. Metal–organic frameworks (MOFs) are materials possessing a large surface area and
a highly ordered porous structure, which can be used as effective catalysts for ethylene
oligomerization reaction. The products of ethylene oligomerization catalyzed by iron
catalysts generally have low carbon numbers. However, Yang Han et al. [128] synthesized
MIL-100(Fe) via a hydrothermal method, which can catalyze ethylene tetramerization to
produce C8 liquid products under mild reaction conditions. The proportion of C8 liquid
products is over 70%, but the proportion of α-olefins is very low, only at 3%. Three con-
ditions affect the catalytic activity of MIL-100(Fe): the surface area, the Fe2+/Fe3+ ratio,
and the vacuum activation temperature. Temperature changes the Fe2+/Fe3+ ratio in the
catalyst, and the relationship between temperature and catalytic activity is volcanic. Mean-
while, different co-catalysts affect the product distribution. The C8 product selectivity was
75% when Et2AlCl or MAO were used as co-catalysts. However, when Et3Al was used as
a co-catalyst, the C8 product selectivity in the product was only 43.73%.

One way to synthesize loaded catalysts is to immobilize homogeneous catalysts di-
rectly onto the support. In 2002, Franz A. R. Kaul et al. [129] immobilized
bis(imino)pyridyliron(II) complexes on silica. In recent years, Arumugam Jayamani
et al. [125] immobilized Fe(II) catalysts chelated by (phenoxy)imine ligand on MCM-41.
The series of catalysts demonstrated high ethylene oligomerization activity with EtAlCl2 as
a co-catalyst and toluene as a solvent. The catalytic activity of the homogeneous catalyst
was 1.84 × 105 g·mol−1

cat·h−1. Meanwhile, the heterogeneous catalyst using MCM-41 to
immobilize the complex presented catalytic activity of 0.97 × 105 g·mol−1

cat·h−1 under
the same reaction conditions. The catalytic activity of the catalyst is relatively low after
immobilization due to the large spatial site resistance, which limits the binding between
ethylene and the metal active centers. In the two cycling experiments, there was almost
no decrease in catalytic activity, and the product distribution remained unchanged, so the
nature of the active species in the catalyst did not change during the cycling experiments.
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Makhosonke Ngcobo et al. [130] synthesized loaded catalysts after the phenol ((tri-
ethoxysilyl)propylimino) ligand was immobilized onto SBA-15 or MCM-41 and reacted
with FeCl2. The ethylene oligomerization reaction catalyzed by the materials with EtAlCl2
as a co-catalyst provided mainly C6 oligomers (92% selectivity using Fe-SBA-15 catalyst).
Because the ethylene oligomerization reaction occurs in the pores of the support and the
pore size of SBA-15 is larger than that of MCM-41, and large pore size reduces the mass
transfer resistance, Fe-SBA-15 was more active than Fe-MCM-41 in the reaction. The
catalytic activity of Fe-SBA-15 decreased by 30% after two cycling experiments, and the
selectivity for the product C6 was maintained at 92%. The authors attribute the decrease in
activity to the loss of active metal atoms and structural changes in the support. It is inter-
esting that this research group previously immobilized homogeneous catalysts onto Fe3O4
magnetic nanoparticles to obtain recyclable catalysts [131]. Utilizing the ferromagnetism of
the support, the catalyst can be easily separated from the reaction mixture via an external
magnet and reused.

Another way to prepare loaded catalysts is to immobilize homogeneous catalysts onto
a support that was pretreated by MAO or aluminum alkyls. Guo et al. [107] immobilized
bis(imino)pyridine iron complexes on mesoporous molecular sieves (MCM-41 and SBA-15).
Prior to this, the mesoporous molecular sieves need to be dried under vacuum at 393 K
to constant weight and then refluxed with MAO overnight. During pretreatment, MAO
chemically binds to the silanol groups on the inner walls of MCM-41 or SBA-15, so there is
no need to add MAO as a co-catalyst during the ethylene oligomerization. The activators
and monomer molecules are required to approach metal active sites in the reaction, and
pores limit the process. After immobilization, the incidences of chain termination and
transfer also increase. So, the loaded catalysts can lead to lower activity and lower carbon
number products. Due to the smaller pore size of MCM-41 compared to SBA-15, this
phenomenon is more pronounced in the former. Temperature also affects the product
distribution of the reaction, and the increase in temperature accelerates the β-H elimination
reaction, resulting in a higher proportion of products with low molecular weight. The
group also used mesoporous molecular sieves modified with MAO as a support, loaded
with iron-based diimine complexes, to catalyze the ethylene oligomerization to produce
low-carbon-number α-olefins [124]. Under the same conditions, the catalytic activity of
the complex reached 6.06 × 106 g·mol−1

Fe·h−1, while that of the loaded type was only
4.35 × 106 g·mol−1

Fe·h−1.

4. Cobalt-Based Catalysts
4.1. Cobalt-Based Homogeneous Catalysts

Late transition metal cobalt, nickel, and iron are generally used in the oligomerization
or dimerization of ethylene. These metals have more d electrons, larger ionic radii, and
easier access to ligands, resulting in the formation of catalysts with a strong tendency for
β-H elimination. Nickel- and iron-based catalysts are discussed, and then this section will
introduce the cobalt-based catalysts employed for ethylene oligomerization over the past
decade, which are summarized in terms of the denticity (tri-dentate, bi-dentate, and other
types) of the ligands.

4.1.1. Tri-Dentate Cobalt Complex

The tri-dentate-coordinated cobalt catalysts showed good catalytic activity in this
reaction, and there has been much progress in this area in recent years.

Sun et al. [132] investigated cobalt complexes 9–12 (Figure 9) bearing 2-(1-(arylimino)
ethyl)-7-arylimino-6,6-dimethylcyclopentapyridine for ethylene oligomerization. The
molecular structures indicate that 2,7-bis(aryl)cyclopentapyridines is a tridentate ligand;
however, one of the Co-N coordination bonds is weak due to the spatial separation
of the nitrogen atom. Upon activation by MAO or MMAO, all the cobalt complexes
exhibited catalytic activity toward ethylene oligomerization. Under the activation of
MMAO, the oligomerization process was highly selective for α-olefins, and the result-
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ing oligomers fully complied with the Schulz–Flory rule. Later, this group success-
fully synthesized cobalt(II) chloride complexes 13–18 (Figure 10) by a one-pot reaction
of 2-benzoimidazolyl-5,6,7-trihydroquinolin-8-one with the corresponding aniline in the
presence of cobalt dichloride [133]. Upon activation by MAO, all the complexes were effec-
tive in catalyzing the dimerization of ethylene, and especially the activity of compound
16 reached 1.23 × 105 g·mol−1

Co·h−1, producing products dominated by 1-butene. In con-
trast, with MMAO as the co-catalyst, the trimerization process of this system was superior,
with selectivity for 1-hexene up to 49% (with complexes 15 and 17). Ortho-benzhydryl-
substituted 2-imino-1,10-phenanthroline cobalt complexes 19–26 were also synthesized
and characterized by this group (Figure 11) [134]. In the presence of methylaluminoxane
(MMAO), all the cobalt complexes showed good ethylene dimerization activity (up to
3.25 × 105 g·mol−1

Co·h−1 at 50 ◦C), and the selectivity of C4 was distributed from 92% to
100%, in which the selectivity of 2-butene ranged from 55 to 84.4%. The reason may be that
the steric hindrance environment around the cobalt atom is less, which is favorable for the
cis–trans conformational rearrangement of C–H.
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Konstantin P. Bryliakov and co-workers [135] prepared a series of novel cobalt(II)
bis(imino) pyridine complexes bearing one or several electron-withdrawing substituents at
the aniline moieties (Figure 12). Activated by MAO, the ethylene oligomerization activity
of these complexes reached 1.8 × 107 gproducts·mol−1

Co·h−1·bar−1. Cobalt complexes 29,
31, 32, and 34 with electron-withdrawing substituents (Cl or CF3) showed higher catalytic
activity (Table 2). Depending on the nature and number of electron-withdrawing groups,
the process presents the selectivity ranges from dimerization (up to 98% for 1-butene)
to oligomerization (C4–C12+) and is accompanied by the formation of strictly linear low-
molecular-weight polyethylene.
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Figure 12. Cobalt(II) bis(imino) pyridine complexes bearing one or several electron-withdrawing
substituents at the aniline moieties. Reprinted from Journal of Organometallic Chemistry, 884,
Antonov et al., Catalytic ethylene oligomerization on cobalt(II) bis(imino)pyridine complexes bearing
electron-withdrawing groups, pp. 55–58. Copyright (2019), with permission from Elsevier [135].

Table 2. The types of R1–R5 substituents of Cobalt(II) bis(imino) pyridine complexes in Figure 12.

Complex R1 R2 R3 R4 R5

27 H H F H H
28 H H Br H H
29 Cl H F H H
30 F H H H H
31 H Cl H Cl H
32 CF3 H H H H
33 H F H F H
34 CF3 H F H H
35 H CF3 F H H
36 F H F H F
37 Cl H H H Cl
38 H Cl H H H
39 Br H H H H
40 Me H H H Me
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4.1.2. Bi-Dentate Cobalt Complex

Bi-dentate ligand cobalt catalysts tend to exhibit relatively low ethylene reactivity
compared to tri-dentate ligand cobalt catalysts. Such low activity is probably due to the
formation of unstable active species. The metal sites possess greater open spaces and
tend to be more prone to coordinate with other species present in the system (leading
to deactivation).

NˆN bi-dentate ligand cobalt complexes were found to exhibit high activity and
selectivity for dimerization. Katia et al. [136] investigated three cobalt-β-diimine complexes
41–43 (Figure 13) for ethylene oligomerization. At 10 bar, 30 ◦C, using EASC as a co-catalyst
and toluene as a solvent, complex 42 exhibited the highest activity (TOF = 34 s−1), while
the TOF of complex 43 was only 0.8 s−1. More charge on the center metal leads to higher
catalytic activity, so complex 42 with two electron-donating methoxy groups possesses
the highest activity. The selectivity of complexes 42 and 43 remained the same, with
about 70% selectivity for C4. Wang et al. [137] synthesized N,N-bidentate iron, nickel, and
cobalt complexes bearing (6E,7E)-N1,N4-bis((pyridin-2-yl)methylene)benzene-1,4-diamine
ligands and investigated their ethylene oligomerization potential. The selectivity toward
1-hexene for cobalt complex 44 was usually higher than that of the iron or nickel complexes
at 40 bar pressure. The authors inferred that the N–M–N bite angle had an effect on the
catalytic selectivity, and the small N–M–N bite angle produced high-carbon olefins. Another
group [115], in 2022, synthesized a novel star iminopyridyl cobalt with 1.0 generation
(1.0 G) star macromolecule and pyridine-2-carboxaldehyde as the raw materials. In the
presence of methylalumoxane (MAO), cobalt complex 45 demonstrated higher ethylene
oligomerization activity (up to 4.28 × 105 g·mol−1

Co·h−1), affording C4 as the major
product as well as C6, C8, and C10–18 oligomers. Sun et al. [138] reported dinuclear pyridyl-
imine Co-based complexes 46 and 47 prepared through the one-pot synthesis method.
Complexes 46 and 47, activated by MMAO, were capable of producing ethylene oligomers
with moderate activity (up to 5.1 × 105 g·mol−1

Co·h−1 for complex 47) in which α-C8 was
the major product.
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Jiang and co-workers [139] reported a series of cobalt complexes featuring a monomeric
structure with the silicon-bridged diphosphine ligand to the cobalt center (Figure 14). Tran-
sition metals supported with diphosphine ligands can exhibit good catalytic performance
due to their singly and weakly coordinating moieties that can readily dissociate to create
a vacant site for coordination, thereby enhancing the catalytic activity [140,141]. Changing
the N-substituent from the larger 2,6-diisopropylphenyl to the smaller cyclopentyl and iso-
propyl moieties resulted in a decrease in the selectivity of 1-butene from 79.5% to 32.4 and
27.4%, respectively. Under optimal conditions, complex 48 exhibited the highest ethylene
dimerization activity (2.3 × 105 g·mol−1

Co·h−1), providing 100% selectivity toward C4 and
78.6% selectivity toward 1-butene.
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Wang and co-workers [25] explored a series of cobalt complexes as catalyst precursors
and reported their performance in the ethylene oligomerization with MAO as an activator
(Figure 14). Under the optimum conditions (n (catalyst) = 7 µmol, T = 50 ◦C, P (ethylene
pressure) = 2.0 MPa, n(Al)/n(M) = 300, toluene as solvent), complex 55 produced the
selectivity of 34.44% to C8 and activity of 3.38 × 105 g·mol−1

Co·h). In this system, the
catalytic performance of the cobalt complex is better than that of the nickel complex.

4.1.3. Other Types of Cobalt Complex

Salicylaldimine ligands, a kind of Schiff base, have the ability to coordinate to met-
als via hard nitrogen and oxygen donor atoms, which results in metal complexes with
better anti-reductive stability and unusual thermal stability. Wang et al. [142] synthesized
two cobalt complexes based on dendritic PAMAM-bridged salicylaldimine ligands (Figure 15).
After EASC activation at 1.0 MPa, 25 ◦C, and an Al/Co molar ratio of 1500, the highest catalytic
activity and selectivity of complex 50 for C10–C20 were 3.44 × 106 g·mol−1

Co·h−1 and 76.53%,
respectively; and the highest catalytic activity and selectivity of complex 57 for C10–C20
were 3.42 × 106 g·mol−1

Co·h−1 and 84.50%. Another group [143], in 2016, explored three
cobalt complexes (58–60) bearing hyperbranched salicylaldimine ligands with tetradecyl,
hexadecyl, or octadecyl as cores (Figure 16). Under the same reaction conditions, it is
obvious that the catalytic activity decreases (58 > 59 > 60) with the increase in the length of
the alkyl chain in the skeleton, but it has little effect on the selectivity of the products. The
main reason for the decrease in activity is that the bulkier ligand hinders the coordination of
ethylene to the active metal center, resulting in a lower insertion rate of ethylene. Later, the
group synthesized a series of 1.0 G hyperbranched macromolecules bridged salicylaldimine
cobalt complexes using 1.0 G hyperbranched macromolecules, salicylaldehyde, and cobalt
chloride hexahydrate as raw materials (Figure 17) [144]. To summarize the three types
of cobalt complexes of salicylaldimine ligands mentioned above, the backbone structure
affects the activity and product selectivity of ethylene oligomerization.
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Figure 15. Structure of cobalt complexes 56 (n = 1) and 57 (n = 2). Cobalt complexes based on dendritic
PAMAM bridged salicylaldimine ligands: Synthesis, characterization and performance in ethylene
oligomerization, [142] Journal of Macromolecular Science, Part A: Pure and Applied Chemistry,
29 September 2016, reprinted by permission of the publisher (Taylor & Francis Ltd., accessed on
12 March 2024, http://www.tandfonline.com).
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Figure 17. Structure of cobalt complexes 61 (m = 0), 62 (m = 1), 63 (m = 2), and 64 (m = 3).Hyper-
branched macromolecules bridged salicylaldimine cobalt complexes: synthesis, characterization and
ethylene oligomerization studies, Zhang et al., Chem. Pap, 71:1037–1046, Springer Nature, 2017,
reproduced with permission from SNCSC [144].

Stephen O. Ojwach et al. [145] reported Co(II) complexes of 2-[(ethylimino) methyl]
phenol ligands as potential catalysts for ethylene oligomerization reactions (Figure 18). The
authors established multiple coordination modes of Co(II) complexes that are dependent
on the NˆO ligand. The ligands of these mono- and dinuclear complexes employ tri/di-
dentate coordination. Under MAO activation, these cobalt complexes produce mainly C4
(up to 96%), while C6 is the main product under EtAlCl2 activation. The Co(II) complex
of bidentate and tridentate (imino)phenol ligands bearing pyridine and quinoline motifs

http://www.tandfonline.com
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was also successfully synthesized by this group [93]. The activation of the Co(II) complex
by EtAlCl2 co-catalysts makes it active in ethylene oligomerization reactions to produce
mainly C4 and C6 oligomers.
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Sergey V. Zubkevich et al. [146] designed a novel tetradentate NNNO-heteroscorpionate lig-
and with an 8-methoxyquinoline pendant arm and synthesized monomeric molecular complex
Co(II) halides with it. The complex was inactive under organoaluminum compounds (such as
MAO, EtAl3, etc.) activation, while, under Et2AlCl or Et3Al2Cl3 activation, the cobalt complexes
have a moderate activity of 60~130 kgolgomer ·mol−1

Co·h−1·atm−1 in solvent of toluene and
form a mixture of butene and hexene with an α-olefin percentage (1-butene and 1-hexene) of
more than 70%. The higher activity (140 to 200 kgoligomer·mol−1

Co
·h−1·atm−1) of the catalyst in

chlorobenzene is mainly due to the better solubility of the cobalt complex in polar solvents.

4.2. Cobalt-Based Heterogeneous Catalysts

Compared to homogeneous cobalt catalysts, heterogeneous cobalt catalysts have
progressed very slowly regarding the ethylene oligomerization reaction. One important
reason is that the catalytic activity of heterogeneous cobalt catalysts is lower than that of
heterogeneous nickel catalysts.

In recent years, the chemical functionalization of carbon nanotubes (CNTs) with metal
complexes has become one of the promising directions for materials development in various
fields. Norah Alhokbany [84] reported the preparation of pyridylimine cobalt complex-
functionalized multiwalled carbon nanotubes [Pyr-Co(II) MWCNTs] and their catalytic
activity for ethylene oligomerization after activation by methylaluminoxane (MAO). The
activity and selectivity of this catalyst was found to be sensitive to pressure and the Al/Co
ratio. When the amount of co-catalyst is low, it exhibits moderate catalytic activity as well
as a predominant selectivity to C10–C12.

Heterogeneous carbon-supported cobalt catalysts have become an important branch
of the ethylene oligomerization reaction. Xu et al. [147] demonstrated that (CoOx/N-C), in
a continuous-flow reactor at 80 ◦C, produced octene with linearity of 77.6% in the ethylene
oligomerization reaction, but 1-octene was only 5.2% at 20% conversion. Xu et al. [148]
further claimed that incorporation of Cr into the cobalt oxide on a carbon catalyst (Cr-
CoOx/N-C) improved the catalytic activity and stability in the ethylene oligomerization
reaction at 80 ◦C. Alvin Jonathan et al. [149] reported that cobalt oxide on a carbon catalyst
is more stable at higher temperatures (~200 ◦C), likely due to the reduction of Co3O4
to CoO, while rapid deactivation is observed at lower temperatures (e.g., 80–140 ◦C).
At a reaction temperature of 200 ◦C, the catalyst was highly selective for linear olefins,
including linear α-olefins. At 48.3% ethylene conversion, the product linearity can reach
more than 90%; at low conversion of 20%, the product linearity can reach 60%. Another
group [150] demonstrated that increasing the catalyst pretreatment temperature from
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230 ◦C to 560 ◦C in an argon atmosphere reduces cobalt oxide to cobalt metal and increases
activity. However, the Co metal on the carbon catalyst was deactivated owing to the
formation of polyethylene on the catalyst (the spent catalyst contained approximately
50 wt% polyethylene after 24 h of reaction). The catalyst support has an effect on the cobalt
catalyst for ethylene oligomerization to generate linear olefins [151]. The high-temperature-
treated carbon-supported cobalt oxide catalyst (CoOx/MRX-HTTC) was almost twice as
active as the acid-washed carbon-supported cobalt oxide catalyst (CoOx/MRX-AWC), with
more linear alpha olefins. Acid wash treatment oxidizes the surface functional groups
and increases the oxygen content of the carbon support, leading to the isomerization of
linear α-olefins into linear internal olefins. Zhong et al. [152] investigated the structure-
performance evolution of the Co/NAC catalyst for ethylene oligomerization in detail. The
initial ethylene conversion was as high as 64%, but it was quickly deactivated and the
conversion dropped to 4% after 30 h of reaction. Butene dominated the product, and its
selectivity gradually increased in the first 10 h, and then remained at about 74%.

UiO-66-NH2-grafted pyridinimine ligand [153] was prepared by a post-synthetic
modification method using metal–organic skeletons (MOFs) UIO-66-NH2 and pyridine
2-formaldehyde as raw materials, and then it reacted with CoCl2·6H2O to obtain the
UiO-66-NH2-grafted pyridinimine cobalt catalyst. When cyclohexane was used as the
solvent and methylaluminoxane (MAO) as the co-catalyst, the activity of the catalyst for
the oligomerization of ethylene could reach 1.23 × 105 g·mol−1

Co·h−1, and the selectivity
for butylene was 88.96% at a pressure of 10 bar using the molar ratio [Al/Co] of 1000:1 at
25 ◦C.

Stephen O. Ojwach et al. [125] immobilized 2-phenyl-2-((3(triethoxysilyl)propyl)
imino)ethanol(L1) or 4-nitro-2-((3(triethoxysilyl)propyl)imino)methyl)phenol(L2) on an
MCM-41 support and then reacted with CoCl2. The immobilized catalysts were active
regarding the ethylene oligomerization, while their activity was lower than that of the
homogeneous compounds. There was no significant loss regarding the catalytic activity or
leaching of active substances in three runs.

5. Chromium-Based Catalysts
5.1. Chromium-Based Homogeneous Catalysts

For the catalytic systems mentioned above, it is generally believed that the ethylene
oligomerization processes are in compliance with the ethylene insertion/β-H elimination
mechanism (Cossee chain growth mechanism). Thus, the reaction products are all mixtures
of a range of olefins, consistent with the Schulz–Flory distribution. However, Cr-based
catalysts follow the metallacyclic mechanism and mainly catalyze selective ethylene tri-
/tetramerization reactions. In recent years, there have been many reports of Cr-based
catalysts in the ethylene oligomerization process owing to their high activity [154–156],
high selectivity [157,158], and diversity of ligand structures [159–161].

5.1.1. Ethylene Trimerization

As early as 1967, Manyik [162] found the presence of a small amount of 1-hexene in
the product of ethylene polymerization catalyzed by chromium(III) 2-ethylhexanoate and
partially hydrolyzed triisobutylaluminum. In 1976, Manyik et al. first proposed the metal-
lacyclic mechanism for the selective ethylene trimerization by Cr-based catalysts. Briggs [1]
optimized the chromium(III) 2-ethylhexanoate system using dimethoxyethane in 1989
to promote the trimerization of ethylene to form 1-hexene and verified the metallacyclic
mechanism that forms a seven-membered ring intermediate from chromium atoms and
three ethylene molecules followed by reductive elimination to produce 1-hexene. Chevron
Phillips proposed an efficient catalytic ethylene trimerization using an activator consist-
ing of dichloroethylaluminum or triethylaluminum with chromium(III)2-ethylhexanoate
combined in situ with 2,5-dimethylpyrrole as the ligand in 1996. This catalytic system
can reach an activity value of 3.019 kg·mol−1·h−1) and selectivity of 1-hexene up to 96%
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at a temperature of 388 K and an ethylene pressure of 100 bar. In 2003, Chevron Phillips
achieved industrial production of 1-hexene using this catalytic system.

With the increasing research on the ethylene trimerization reaction catalyzed by
Cr catalysts, researchers have found many types of ligands, such as the PNP [163–165],
SNS [166–168], NNN [169], PNS [170,171], and PN [172] types.

The PNP ligand is one of the most typical and important ligands for ethylene tri-
/tetramerization. In 2002, Wass et al. [156] reported a series of PNP-type Cr complexes that
can efficiently catalyze the ethylene trimerization reaction with commercially attractive
production rates. The chromium complexes with ligands of the type Ar2PN(Me)PAr2
(Ar = ortho-substituted aryl group) were synthesized, which catalyze ethylene trimeriza-
tion after MMAO activation, and the C6 selectivity in the product was 81%, with 1-hexene
accounting for 99.7%. Blann et al. [165] synthesized the PNP-type catalyst, which mainly
produced 1-octene. However, when the H in the ortho position of the phenyl group was
replaced by an ethyl group (Figure 19), the steric hindrance around the metal center caused
by ortho ethyl substituents increased the selectivity of 1-hexene in the product, with the
highest C6 product selectivity reaching 90.7% and 1-hexene accounting for 99.7% in the
C6 product. Similarly, Kuhlmann et al. [173] connected a cyclohexyl group to the N atom
of the PNP ligand. When both the ortho positions of the cyclohexane connected to the N
atom were completely replaced by methyl groups, the product changed from C8-dominant
to a 1:1 mixture of 1-hexene and 1-octene. McGuinness et al. [174] showed that, when
a dicyclohexylphosphine substitution was introduced at the phosphorus atom in the PNP
ligand, the product was predominantly polyethylene (PE), and the catalytic activity was re-
duced. When the dicyclohexylphosphine substituent was replaced with diethylphosphine,
the product was dominated by 1-hexene, with a selectivity of 99.2%.
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Derivative species of PNP-type ligands (including SNS, PCCP, PNCN, etc.) can also
be used in ethylene trimerization reactions. McGuinness et al. [174] researched SNS-type
ligands as shown in Figure 20 for ethylene trimerization. After activation by the co-catalyst
MAO, the SNS ligand also showed excellent ethylene trimerization ability, with TOF up to
263,757 h−1 and 1-hexene selectivity up to 97%. Temple et al. [166] synthesized SNS-type
ligands with a catalytic activity of 1.6 × 105 g·g−1

Cr·h−1 after MAO activation, for which
98.4% C6 (including 99.8% 1-hexene) selectivity was achieved.

Boelter et al. [175] synthesized a series of PCCP-type ligands as shown in Figure 21
and found that the size of the phosphorus heterocyclopentane substituent affects the selec-
tivity of the catalysts. With larger substituents, the proportion of 1-hexene in the product
increases. Alam et al. [176] researched ethylene trimerization based on chromium(III) sily-
lated diphosphinoamines. When the ligand skeleton in the system was PSiNP, the catalytic
activity reached 43,461 g·g−1

Cr·h−1, with a selectivity of 83% for 1-C8 and only 16% for
1-C6. When the catalyst ligand skeleton was PSiNSiP, the catalytic activity decreased to
456 g·g−1

Cr·h−1, but the selectivity for 1-C6 increased to 91%. The authors believe that
the steric hindrance of the metal active center and the angle of P–Cr–P affect the catalytic
activity and selectivity of the catalyst. Zhang [177] also believes that, as the bond length
becomes shorter, the ligand bite angle becomes smaller, and the catalytic activity increases.
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Sydora et al. [157] synthesized a class of PNCN ligands that exhibit high catalytic activity for
selective ethylene oligomerization. The molar ratio of 1-hexene to 1-octene in the product
could be adjusted from 140 to 1.5 by adjusting the steric hindrance. As the steric hindrance
increased, the catalyst activity decreased from 54,700 kg·g−1

Cr·h−1 to 35,170 kg·g−1
Cr·h−1,

and the selectivity of the C6 product also decreased from 93.6% to 52.2%, with 33.7% C8 and
4% PE present in the product. The rate of α-olefin yield in the oligomers also decreased, and
the proportion of α-C6 decreased from 99% to 45%. Radcliffe et al. [178] synthesized a PCN
ligand that can selectively catalyze ethylene trimerization. By changing the substituents
on the same ligand skeleton, high catalytic activity (Act. = 2799 kg·g−1

Cr·h−1, 1-C6 = 84%)
or high product selectivity (Act. = 797 kg·g−1

Cr·h−1, 1-C6 = 97%) can be achieved. The
ethylene trimerization using PNPN-type ligands to produce 1-hexene will not elaborated
on here; it was discussed in detail by Uwe Rosentha [179] in 2020.
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Figure 21. PCCP-type ligand structures with different substituents (from left to right: complexes
70–73). Reproduced with permission from Ref. [175]. Copyright 2020, American Chemical Society.

In the process of ethylene oligomerization catalyzed by Cr-based catalysts, it is in-
evitable to produce polyethylene, which will block the pipeline. Many research works
suggest that PNP ligands can be induced by alkyl aluminum co-catalysts to form PPN
ligands during catalytic reactions [180], which have high activity for ethylene polymer-
ization reaction. Zhao et al. [181] synthesized PCCP-type ligands containing para-alkyl
substituents with good results in ethylene trimerization and selectivity to PE below 0.1 wt%.
The authors also found that the reactivity will be higher as the σ-donor ability of the ligand
increases. The catalytic activity could reach up to 5243 kg·g−1

Cr·h−1, while the selectivity
for 1-hexene reached 74.9%.
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Temperature and pressure also influence the reaction results. The optimal operat-
ing temperature for the catalysts synthesized by McGuinness [174] was in the range of
80–100 ◦C. At lower temperatures, activity decreases and leads to high polymer content,
while, at higher temperatures, catalyst deactivation is observed and oligomers with higher
carbon numbers form. Zhang et al. [163] synthesized PNP(NR2)2-containing catalysts and
investigated the effects of temperature and pressure. When the pressure was 1 MPa, the
catalytic activity and selectivity became volcanic with the increase in temperature, and the
catalytic activity reached the highest at 318 K and the selectivity for C6 products reached
92.23%, of which the proportion of 1-hexene was 98.87%. An increase in pressure can
increase the reaction activity while reducing the selectivity towards C6. Soheili et al. [167]
prepared SNS ligands in which the products varied greatly under different conditions.
At a pressure of 15 bar, the reactivity reached 6420 g1-C6·g−1

Cr·h−1. However, when the
pressure increased to 27 bar, the product was predominantly PE and the reactivity increased
to 101,282 gPE·g−1

Cr·h−1.
The addition of co-catalysts had a similar effect on the reaction results. Choi et al. [182]

synthesized chromium catalysts in situ with trifluoromethyl-containing ligands. When
all the other conditions were equal, the proportional mixture of DMAO and TIBA as
an activator was more catalytically active, more selective for 1-hexene, and only trace
amounts of PE were produced when DMAO was used alone as an activator. The catalytic
system achieved an activity value of 1248 g·mol−1

Cr·h−1 with a high percentage (98.5 wt%)
of 1-hexene in the product. The catalytic activity of the novel dendritic PNP chromium
complexes synthesized by Wang et al. [183] showed a volcanic shape with the amount of
co-catalyst MAO. The highest catalyst activity was achieved at Al/Cr = 700. Stennett [184]
synthesized a dinuclear PNP-type ligand with higher activity and selectivity using AlMe3
rather than MAO as a co-catalyst. The addition of excess MAO during the catalytic process
leads to the production of a large amount of PE in the product.

Currently, there are also many researchers who have been combining computational
chemistry and experimental science to study and design Cr-based catalyst ligands [185–187].
Fan et al. [185] combined Density Functional Theory (DFT) and Artificial Neural Networks
(ANNs) to aid the design of new PNP ligands and successfully predict their performance.
The authors also proposed that the spatial site resistance property affects the performance
more significantly than the electronic property. Using DFT theory, Zhong et al. [186]
investigated Cr/PCCP-type catalysts and concluded that the semi-instability of methoxy
in the PCCP ligand is important for the selective regulation of ethylene trimerization.
Similarly, Wang et al. [187], using DFT theory to study PCCP ligands, suggested that the
coordination of the oxygen atom of the methoxy to the chromium center may be a key
factor in the highly selective formation of 1-hexene.

In summary, different ligand backbones have significant effects on the reaction per-
formance, and changing the backbone structure may lead to catalyst deactivation. The
electronic effects and spatial site resistance of different substituents linked to the ligand
backbone play a key role in catalyzing the selective oligomerization of ethylene, affecting
both the catalytic activity and selectivity. Meanwhile, temperature, pressure, solvent, and
co-catalysts are also the main factors affecting catalytic performance. In current research
works, more and more researchers are using a combination of computational and experi-
mental methods to study the catalytic reactions, which can help to find suitable catalysts
efficiently and predict the catalytic behavior.

5.1.2. Ethylene Tetramerization

At the same time as the development of ethylene trimerization technology, many
researchers explored the selective tetramerization of ethylene to produce 1-octene through
Cr-based catalysts. Some researchers [188] remain skeptical about this. According to
the metallacycle mechanism, obtaining 1-octene products through ethylene oligomeriza-
tion requires the expansion of metal coordination compound intermediates from a seven-
membered to a nine-membered metallacycle. However, in 2004, Bollmann et al. [189] of
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SAAOL first reported the aluminum-oxide-activated Cr/(R2)2P)2NR1 system, where R1
and R2 are different substituents (Me, Ph, i-pr, etc.). The complex produces 1-octene with
up to 70% selectivity while also producing small amounts of 1-hexene, methylcyclopentane,
and methylene cyclopentane as the main byproducts. The results indicate that changing
the steric hindrance and substituent type of ligands can affect the activity and selectivity
of the catalyst. The catalyst ligands for ethylene tetramerization can be divided into PNP,
PNPO, PNPN, PCP, and other ligands. These above ligands have been discussed in detail
by Hao [13] and will not be repeated here.

5.1.3. Unselective Ethylene Oligomerization

The main products, 1-hexene or 1-octene, can be obtained using the above chromium
catalysts in the catalytic ethylene oligomerization reaction, and the product distributions
can be altered by changing the spatial site resistance of their active center. There are
also some catalysts that are not capable of selective catalysis. Most Cr complexes with
NNN- [190–192], NNO- [193,194], NO- [195,196], and NN-type [197,198] ligands exhibit
high catalytic activity for ethylene oligomerization and provide a wide distribution of
oligomer products from C4 to C24.

Zhang et al. [190] synthesized NNN-type ligands as shown in Figure 22, after activation by
MMAO, which exhibit high activity in ethylene oligomerization (up to 7.36 × 106 g·mol−1

Cr·h−1),
and the selectivity of C4, C6, and C8

+ in the product is 19.3%, 32.8%, and 47.9%, respec-
tively. Meanwhile, the catalyst also possesses high ethylene polymerization activity (up
to 1.28 × 106 g·mol−1

Cr·h−1). Milani et al. [199] synthesized Cr complexes with bidentate
thioether-imine [N, S] ligands to catalyze ethylene oligomerization. The product range is
very wide, with the highest selectivity of oligomers reaching 98.8%, and the selectivity of
the (C6 and C8) products is 35.9%. However, when the reaction temperature decreased, the
selectivity of the PE in the product reached 68.1%.
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Generally speaking, as the temperature increases, the activity of ethylene oligomer-
ization increases, but the selectivity of α-olefins in the products decreases due to the
accelerated rate of the chain isomerization reaction. However, when the temperature ex-
ceeds a certain range, the activity will decrease, which is due to the decomposition of active
substances leading to catalyst deactivation or a decrease in the solubility of ethylene in
the solvent at high temperatures. Relatively, the proportion of polymerization products
decreases because the β-elimination reaction rate accelerates with increasing temperature.
As the pressure increases, the catalytic activity increases and the proportion of long-chain
products increases. The structures of ligands, co-catalysts [200], substituents [201], and the
chemical environment all have a significant impact on the reaction activity.

5.2. Chromium-Based Heterogeneous Catalysts

Although homogeneous catalysts have high activity and good product selectivity, they
are prone to deactivation. In contrast, heterogeneous catalysts can not only be separated
from the product but also protect the active center of the catalyst. Cr-based heterogeneous
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catalysts, such as immobilizing homogeneous catalysts onto supports [202,203], dispersing
them into ionic liquids [204,205], and Cr-MOFs [206,207], were reported recently.

Lamb et al. [202] immobilized a Cr-based complex on oxides including SiO2, γ-Al2O3,
and mixed SiO2–Al2O3 to obtain supported catalysts, which can perform selective ethylene
trimerization after treatment via an aluminum activator. When using SiO2 or SiO2–Al2O3
as the carrier, high reaction activity and moderate trimerization selectivity can be achieved,
while, when using γ-Al2O3 as the carrier, the reaction activity decreases significantly, and
the product is mainly PE.

Gao et al. [205] introduced organ aluminate-based ionic liquids in the PNP/Cr/MAO
system and above 98% selectivity for (1-hexene and 1-octene) was obtained. The separation
of the catalyst from the product can be achieved by decanting the upper organic phase
containing the product, and the catalyst can be reused by adding a new solvent and
MAO. The catalytic activity gradually decreased in three cycles because small amounts of
impurities were inevitably introduced during the circulation process, but the selectivity for
1-hexene was still above 96%.

Fallahi et al. [203] immobilized SNS ligands onto ionic liquid-functionalized SBA-
15 for ethylene trimerization. Under optimal conditions, the catalytic activity can reach
19,394 g1-C6 g−1

Cr h−1, and the selectivity for 1-hexene can reach 99.7%. Müller et al. [204]
dissolved the homogeneous catalyst Cr-PNP in hydrogenated dibenzyltoluene (H18-DBT)
together with the co-catalyst MAO and then dispersed the solution onto activated carbon
or SiC. This catalyst can be used in continuous gas-phase reactions for up to 220 h. After
40 h of reaction, the selectivity of the product tends to stabilize, with a selectivity of 25.2%
for 1-hexene and 44.6% for 1-octene. However, PE, which is continuously produced during
the reaction, adheres to the catalyst surface affecting the contact between the ethylene and
the active center, leading to deactivation.

Goetjen et al. [206] synthesized Cr-SIM-NU-1000 via solvothermal deposition in MOFs
(SIM), and the ethylene conversion rate can reach 20% at 1 bar of ethylene partial pressure
and ambient temperature. It is worth noting that the amount of cocatalyst used in the
reaction was very low (Al/Cr = 3), and the reaction raw material was a mixture of H2
and C2H4 to suppress the production of polymers. However, the distribution of the
products in this catalytic system was very broad, with C8–C18 accounting for 79%. Liu
et al. [207] selected MIL-100(Cr) for selective ethylene oligomerization because it can
eliminate two water molecules connected to the metal sites after vacuum heating and form
coordinatively unsaturated metal sites for reaction. Different pre-treatment temperatures
can cause a change in the valence state of Cr, which leads to a transition from ethylene
oligomerization to polymerization.

6. Other Metals-Based Heterogeneous Catalysts

In addition to the nickel, iron, cobalt, and chromium metals that have been explored
in the heterogeneous ethylene oligomerization reaction, other metals (such as Ru, Zr,
and Ga) have been successively applied for this reaction in recent years with promising
catalytic performance.

Iker Agirrezabal-Telleria et al. [208] developed a method for tailoring (Ru)HKUST-1 de-
fects via thermal-based protocols. Thermal defect engineering leads to (Ru)HKUST-1, with
the defective nodes exhibiting a well-defined active site for ethylene dimerization. In the ab-
sence of solvents and co-catalysts, the catalysts can achieve activities up to TOF = 200 h−1,
stable catalytic times in excess of 120 h, and selectivity of 99% for 1-butene. At the same
time, the authors demonstrated that the behavior of the active Ru-H sites produced by
an economical and versatile thermal method is the same as that of the active Ru-H sites
prepared by conventional ligand engineering methods.

Nicole J. LiBretto et al. [209] reported that silica-supported single-site catalysts con-
taining fixed main group Zn2+ or Ga3+ ionic sites catalyze the ethylene oligomerization
reaction to reach an equilibrium distribution of linear olefins at rates similar to those of
Ni2+ (Table 3). By varying the spatial velocity of C2H4, at a conversion of 3%, the selectivity
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of Ga/SiO2 for butene was 75.9%, for hexene was 16.8%, and for octene was 6.4% at 1 atm
and 250 ◦C. Moreover, Zn/SiO2 showed 85.5% selectivity for butene, 2% for hexene, and
no 1-octene products. Both catalysts were able to catalyze stably for at least more than 25 h
under the above conditions. At low conversion (3%), Ga/SiO2 is more favorable for the
generation of high-carbon olefins compared to the Zn/SiO2 and Ni/SiO2 catalysts. The
product distribution of Ga/SiO2 does not change significantly, whereas the transfer of the
products of Zn/SiO2 to lower carbon numbers can be achieved at high pressure: 30.6 atm
with high conversions. The authors also demonstrated that the catalytic cycle begins with
the heterodissociation of the vinyl C–H bond of ethylene, and the reaction intermediates
and basic steps were shown to be consistent with the Cossee–Arlman mechanism for Ni2+

transition metal catalysts.

Table 3. Product selectivity and conversion for ethylene oligomerization at 250 ◦C.

Catalyst Pressure
(atm) Conversion(%) 1

Selectivity (%)

Butenes
(C4=)

Hexenes
(C6=)

Octenes
(C8=) C10+

Rate
(mol C4H8

molM−1 s−1) 2

Ni/SiO2
1

3 86.1 11.8 0.4 0 15 × 10−4

Ga/SiO2 3 75.9 16.8 6.4 0 7 × 10−4

Zn/SiO2 3 85.5 2.0 0.0 0 1 × 10−4

Ni/SiO2
30.6

20.7 86.2 11.1 2.9 0 7 × 10−2

Ga/SiO2 20.6 74.2 16.1 4.9 4.2 8 × 10−2

Zn/SiO2 15.2 96.0 0.8 0 0 5 × 10−2

1 Conversion was varied using different space velocities over 1 g of catalyst in a 3/8 in diameter quartz reactor
tube. 2 Rate was calculated by normalizing the mol C4H8/s produced by the total mol of metal on the catalyst
(rate = (mol C4H8)/(mol M ∗ s)).

7. Summary and Outlook

In this article, we summarize the progress of ethylene oligomerization in homoge-
neous and heterogeneous phases using different metals (Ni, Fe, Co, Cr, etc.) as active
sites. In the homogeneous catalytic system, we mainly discuss the effects of the molecular
structure, electronic, and coordination states of complexes on their catalytic activity and
selectivity. In heterogeneous catalytic systems, we mainly concentrate on the influence
of various supports (metal–organic frameworks, covalent organic frameworks, molecu-
lar sieves, etc.) and different ways to introduce active centers regarding the activity in
ethylene oligomerization.

Due to the discovery of the “nickel effect”, nickel, as a post-transition metal, was
first used in the ethylene oligomerization reaction. In recent decades, researchers have
made significant progress in this field. Firstly, the “SHOP” ethylene oligomerization process
derived from the neutral [P, O] ligand catalytic system reached a total olefin production
of 1.3 million tons/year in 2018 [2,210]. Secondly, the invention of α-diimine ligands has
made nickel-based catalysts designable and enabled the study of the influence of spatial
site resistance and electronic effects on catalytic performance [22]. Finally, the development
of single-site MOF catalysts bridges the gap between homogeneous and heterogeneous
catalysis and provides an ideal platform for elucidating structure–activity relationships
using molecular chemistry mechanisms in combination with computational chemistry,
transient spectroscopy, and advanced diffraction techniques. For homogeneous systems,
the choice of the nickel precursor and the design of ligands naturally play tremendous
roles regarding the catalytic effect. In summary, nickel catalysts for the dimerization of
ethylene are monocentric asymmetric complexes of NiII with tridentate ligands containing
two or three nitrogen atoms in the conjugated system. The development of new catalytic
systems continues to be based on a trial-and-error approach. Although high selectivity can
be achieved with homogeneous catalysts, it is poorly recoverable; on the other hand, hetero-
geneous catalysts are robust but lack selectivity. Among the heterogeneous nickel catalysts
mentioned above, metal–organic frameworks are very attractive supports due to their
high porosity and site density, unlimited variety of designs, and possible post-synthesis
modifications. Ni-ZIF-8 (0.4 wt%), Ni(1%)-MFU-4l, and MIL-125(Ti)-NH2(Ni) employ
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Ni as a catalytic active site and present higher activity and selectivity towards 1-butene.
However, some challenges remain for MOFs in olefin oligomerization reactions. On the one
hand, secondary reactions such as isomerization and dimerization hinder the generation
of α-olefins and linear selectivity, which must be avoided using rationally designed MOF
catalysts. On the other hand, the catalyst deactivation due to the accumulation of polymers
on the active sites was addressed by rationally selecting and designing the building blocks
of MOFs, adjusting the pore size of MOFs, introducing flexible substituents around the
active centers, and increasing the percentage of surface active sites.

The discovery of highly active iron and cobalt catalysts is another milestone in the
development of olefin oligomerization catalysts using late transition metals. The linearities
of the oligomerization products obtained using iron and cobalt catalysts in homogeneous
systems are higher compared to nickel-based catalysts. Schiff base ligands exhibit interest-
ing and diverse coordination chemistry and have therefore attracted much attention in the
design of catalysts for ethylene oligomerization [211,212]. This ligand and its derivatives
can form N–metal bonds via the coordination of nitrogen atoms into monodentate or multi-
dentate. In addition, it can act as a donor and acceptor in hydrogen bonding interactions.
Carbocyclic fused N,N,N-iron complexes show real industrial promise with the successful
use of an imino-phe nanthroline–iron complex for the production of α-olefins in a 500-ton
pilot plant managed by Sinopec in China. In homogeneous catalyzed reactions, iron and
cobalt catalysts, although less active than nickel catalysts, have greater selectivity towards
higher-carbon products (1-hexene and 1-octene). In heterogeneous catalytic reactions,
fewer types of iron and cobalt catalysts have been developed, such as MIL-100(Fe) and
carbon-supported cobalt catalysts. Uncontrollable exotherms leading to rapid catalyst
deactivation and low activity are problems that need to be solved for the development of
heterogeneous iron and cobalt catalysts.

Chromium-based catalysts, as pre-transition metals, have highly electron-deficient
properties, are extremely sensitive to water–oxygen, and require large amounts of the
expensive co-catalyst MAO for activation, which have led to their limitation in the pro-
duction of linear α-olefins by ethylene oligomerization. However, these catalysts have
become a hot topic in recent years due to their ability to selectively produce high-carbon
linear olefins. For chromium-based catalysts, the most commonly used ligands for ethylene
trimerization/tetramerization are PNP and the alternative diphosphine ligands PNNP,
PCP, PCCP, and PCNCP [213–216]. When the catalyst contains P- and N-electron-donating
multidentate ligands, it has a high selectivity potential for the production of 1-hexene and
1-octene [170]. The reactivity of chromium catalysts in heterogeneous reactions is still not
comparable to that of post-transition metal catalysts.

In addition, catalysts based on zinc [209], gallium [209], and ruthenium [208] metals
are continuously being developed for the heterogeneous catalytic reaction of ethylene
oligomerization. The exploration of these catalysts not only extends the types of active
metals in the field but also contributes to the understanding of the mechanism of the
oligomerization process.

Although there has been extensive research using various metals-based catalysts for
ethylene oligomerization, there are still some issues to be solved. First, most catalysts use
a large amount of co-catalyst during the catalytic process, but their prices are relatively
expensive and their applied conditions are often harsh (without O2 and H2O). Finding
cheaper and easily operated co-catalysts or modifying the existing co-catalysts has become
an important issue. Second, heterogeneous catalysts have the advantages of being easily
separated from the products and being recyclable. Compared with homogeneous catal-
ysis, heterogeneous catalysis is more promising for industrial applications, but most of
the current heterogeneous catalysts are less active for ethylene oligomerization and less
selective for linear α-olefins than homogeneous catalysts. Except SHOP, other industrial-
ized approaches to ethylene oligomerization based on heterogeneous catalysis have not
yet been realized. There remains a significant need to optimize heterogeneous catalysts
compared to the currently industrialized homogeneous methods, particularly in terms of
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improving product selectivity. Third, the demand for high-performance polymerization
materials prepared using high-carbon α-olefins (1-hexene and 1-octene) is increasing, so the
development of catalysts for the efficient production of high-carbon α-olefins is urgent. In
addition to changing the reaction conditions (pressure, temperature, amount of co-catalyst,
etc.), the development of new metal-based catalysts and new ligands may be a promising
solution. Furthermore, the similarities between homogeneous and heterogeneous catalysis
may be utilized to gain more insight into the selectivity control mechanism. Finally, despite
the general acceptance of the Cossee–Arlman mechanism and metallacyclic mechanism for
ethylene oligomerization, there is a lack of in situ real-time evidence. Finding a completely
new method or technique might break this bottleneck in the study of these mechanisms.
In conclusion, the development of highly selective α-olefin formation processes remains
a major challenge for academia and industry.
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Appendix A

It is necessary to make notes regarding the presentation of the results of the catalytic
tests in the review:

(1) There are two types of catalyst activity calculations; one is [gproduct ×g−1
catalyst ×h−1]

and the other is [gproduct ×mol−1
M ×h−1], expressed as Equations (A1) and (A2), respectively

(M is metal).

[Activity] =
ethylene oligomerization products (g)

catalyst(g)× reaction time (h)
= [gproduct × g−1

catalyst × h−1] (A1)

[Activity] =
ethylene oligomerization products (g)

metal molecular (mol)× reaction time (h)
=

[
gproduct × mol−1

M × h−1
]

(A2)

(2) In the experiments, TOF [molC2H4 × mol−1
M × h−1] is calculated using Equation

(A3) (M is metal):

[TOF] =
Activity

[
g × mol−1

M × h−1
]

MrC2H4

[
g × mol−1

] = [h−1] (A3)
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