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Abstract: Tetracycline antibiotics are widely used in human medical treatment, control of animal
disease, and agricultural feed because of their broad spectrum of action, high efficiency, and low
cost. The excessive use of antibiotics and arbitrary discharge of antibiotic wastewater have become
increasingly serious problems, and the current sewage-treatment process is not ideal for treating water
contaminated with tetracycline antibiotics, leading to increasingly prominent antibiotic pollution
in water and the imminent need for its removal. In order to understand the necessity of removing
tetracycline antibiotics from the water environment, this paper first expounds on their source, harms,
and pollution status in oceans and in surface water, groundwater, wastewater, and drinking water. It
next introduces the research status of conventional treatment methods such as adsorption methods,
biological methods, and physical and chemical methods, then introduces new treatment methods
such as advanced oxidation methods and comprehensive treatment technology in sewage plants. The
degradation effects, mechanisms of action, and challenges of these methods were summarized. The
advantages and disadvantages of each treatment technology are compared. Finally, potential future
processing technologies are discussed.

Keywords: tetracycline antibiotics; environment; wastewater; pollution; treatment technology

1. Introduction

Antibiotics are chemical substances that can interfere with the growth of other living
cells and inhibit the growth of or kill some pathogenic microorganisms. They are widely
used in human and animal medical treatment and in aquaculture [1]. With the continuous
development of low-income countries, the demand for antibiotics is increasing. From
2000 to 2015, the global human consumption of antibiotics increased by 65% and the rate
of antibiotic consumption increased by 39% [2]. It is reported that tetracycline antibiotics
are the second most widely used antibiotics in the world [3]. Tetracycline antibiotics at
high concentrations can inhibit the synthesis of microbial proteins and kill a variety of
atypical organisms, such as Gram-positive bacteria, Gram-negative bacteria, protozoan
parasites, mycoplasma, chlamydia, Rickettsia, etc. [4]. Aureomycin, oxytetracycline, and
tetracycline, as well as tetracycline’s semi-synthetic derivatives, such as metheomycin,
doxycycline, and minocycline, are common tetracycline antibiotics that are mainly used to
treat acne, trachoma, and other diseases [5,6]. However, only a small amount of antibiotics
can be metabolized or absorbed by organisms, and most antibiotics are discharged into the
water environment through various routes [7]. This discharge has seriously polluted the
environment and destroyed ecological diversity.

Tetracycline antibiotics, although they are a new environmental pollutant, are ubiqui-
tous in oceans and in surface water, groundwater, wastewater, and drinking water because
of their persistence. It is necessary to understand the hazards associated with tetracycline
antibiotics in the water environment and the methods used for their removal. This paper
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expounds on the sources, hazards, and pollution status of tetracycline antibiotics, intro-
duces treatment/removal technologies and their mechanisms of action, and compares and
analyzes the advantages and disadvantages of each treatment technology so as to provide a
reference for the future treatment of tetracycline antibiotics, which may involve combining
technologies or developing new technologies.

2. Harm of Tetracycline Antibiotic Residues in Water

Tetracycline antibiotic residues in water mainly come from two types of sources:
domestic and industrial. Tetracycline-like antibiotics are difficult for organisms (humans
and animals) to completely digest and absorb, and about 50–80% of antibiotics are converted
into more toxic metabolites [3]. These metabolites are mainly excreted through feces and
urine, which inevitably leads to antibiotics existing in urban and rural domestic sewage.
Pharmaceutical wastewater contains more antibiotics than does urban domestic wastewater,
showing that existing sewage treatment plants are not able to effectively remove them [8].
The wastewater produced in the pharmaceutical manufacturing process and tetracycline
antibiotics that are not used by organisms enter sewage treatment plants and landfills as raw
medicines and incomplete metabolites, thus polluting the water and soil and destroying the
ecological balance. To understand the hazards posed by tetracycline antibiotic residues in
the water environment, ECOSAR software (Ecosar.v.2.2-application) was used to predict the
acute and chronic toxicity of tetracycline antibiotics and their metabolites and degradation
products in the water environment, as shown in Table 1, where P1–P4 are typical photolysis
products [9] and P5–P11 are typical degradation products [10].

Table 1. ECOSAR software predicts the acute and chronic toxicity of some tetracycline antibiotics
and their metabolites and degradation products in the water environment (extremely toxic chemicals
are shown in red, poisonous in yellow, harmful in black, and non-poisonous in green.).

Name Formula
Acute Toxicity (mg/L) Chronic Toxicity (mg/L)

Fish
(96 h-LC50)

Daphnia
(48 h-LC50)

Green Alga
(96 h-EC50)

Fish
(ChV)

Daphnia
(ChV)

Green Alga
(ChV)

Aureomycin
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Extremely
toxic Poisonous Harmful Non-poisonous

Tetracycline antibiotics have stable properties and can accumulate in feces, soil, the
water environment, and the atmosphere, where they can persist for a long time. The
concentration level of tetracycline antibiotics in the water environment is mostly measured
in µg·L−1, a level that inhibits the growth of bacteria and the survival of organisms. These
chemicals accumulate in the human body through the food chain and food web, threatening
human health. Tetracycline antibiotics have been detected in most of the foods we eat [11].
In the long run, this exposure will slow down the metabolism of the human body; prevent
the synthesis of proteins in lymphocytes; inhibit the immune system [12]; cause risk of
superinfection [13]; have teratogenic [14], carcinogenic, and mutagenic effects [15]; and
lead to to joint diseases, nephropathy, central nervous system defects, endocrine disorders,
and other diseases [16].
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3. Pollution Status of Tetracycline Antibiotics in Water

The use of antibiotics in China accounts for about half of the antibiotic use in the
world [17]. Tetracycline antibiotics are widely used because of their broad spectrum of
action, high efficiency, and low cost. Because of the abuse of antibiotics by human beings,
antibiotics are discharged into the environment in the form of medicines and metabolites.
Tetracycline antibiotics are ubiquitous in the water environment because of their strong
hydrophilicity and low steam pressure, and they are easily soluble in water. Figure 1 shows
the sources of tetracycline antibiotics in the water environment.
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In recent years, with increasing awareness of environmental protection, more and more
attention has been paid to the problem of antibiotic residues in the water environment. A
large number of studies at home and abroad have reported antibiotic residues in the water
environment (oceans, surface water, groundwater, wastewater, drinking water). Table 2 lists
the reports on the mass concentrations of tetracycline antibiotics in the water environment.

Table 2. Mass concentrations of tetracycline antibiotics in water environments.

Antibiotic Source Region Mass Concentration 1) Reference

Ocean
Bohai Gulf 16 ng·L−1 TC, 93 ng·L−1 OTC [18]

Iran Persian Gulf 4.0~71 ng·L−1 TET [19]
Costa Rica 74~73,722 ng·L−1 DOX [20]

Surface water

Jiangxi Jinjiang ND~86.1 ng·L−1 OTC, ND~5.92 ng·L−1 DOC,
ND~5.92 ng·L−1 TC [21]

Nanjing ND~160 ng·L−1 DOX [22]

Tianjin 0~9.74 ng·L−1 TET, 0~34.5 ng·L−1 OTC
0~3.74 ng·L−1 DOX CTC [23]

Huangpu River 15.07~113.89 ng·L−1 TC [24]

Underground water Jiangxi Jinjiang ND~4.18 ng·L−1 CTC, ND~2.65 ng·L−1 OTC,
ND~1.56 ng·L−1 DOC [21]

Harbin 0.35~3.91 ng·L−1 DOX [25]

waste water Jiangxi Jinjiang ND~58.6 ng·L−1 CTC, 54.0~2.72 × 103

ng·L−1 OTC, 10.9~49.3 ng·L−1 DOC, ND~27.4 ng·L−1 TC [21]

Drinking Water Huaihe river basin
(wet season)

Mengxian 3.38 ng·L−1 TCs, Yingdong 4.73 ng·L−1 TCs,
Yongqiao 5.99 ng·L−1 TCs, Lingbi 8.60 ng·L−1 TCs,
Shouxian 2.02 ng·L−1 TCs, Hexian 3.28 ng·L−1 TCs

[26]

Note: 1) ND stands for not detected.

4. Research Status of Treatment Technology Used for the Removal of Tetracycline
Antibiotics from Water Environments

Tetracycline antibiotics migrate and transform in the environment and eventually
affect the atmosphere, water, and soil. With people paying more and more attention to the
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ecological environment, research on tetracycline antibiotics is growing at home and abroad.
The epimers and dehydrated bodies of tetracycline antibiotics may appear at pH 3.0–6.5,
and the epimerization may occur at pH 6.5–9.0 [27]. To remove pollutants more effectively,
it is very important to understand both the methods currently used for removal and their
mechanisms of action.

In the water environment, the treatment technologies used to remove tetracycline
antibiotics include adsorption; biological, physical and chemical methods; advanced oxida-
tion; and the comprehensive treatment technologies used in sewage plants.

4.1. Adsorption Method

Adsorption removes tetracycline antibiotics by transferring them to the adsorbent by
π-interactions [28], electrostatic interactions [29], and hydrogen bonding [30]. The adsor-
bent surface forms a zone with low potential energy and high molecular density near the
surface [31,32]. There are four steps in the adsorption of tetracycline antibiotics: transport
through the stagnant membrane near the adsorbent, diffusion across the membrane, dif-
fusion through the pores, and adsorption [33,34]. The mechanism by which adsorption
removes tetracycline antibiotics is shown in Figure 2.
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Nanoparticles produced by microorganisms in sewage treatment plants are natural
adsorption materials that can be combined with tetracycline antibiotics in the water en-
vironment. Yu et al. [35] used asymmetric flow field-flow separation and multi-angle
static light scattering to separate nanoparticles with different particle sizes produced by
microorganisms from sewage treatment plant wastewater. These nanoparticles have a
strong capacity for adsorption of tetracycline. If the adsorbate of nanoparticles and an-
tibiotics is not properly treated, the adsorbate will further migrate and transform in the
water environment, posing a great threat. Carbon materials [36], biochar [37], mineral
materials [38], metal skeleton materials [39], nano-materials [40], and other new materials
can be used as adsorption materials. Qiao et al. [41] developed Mn (II)-coated mesoporous
silica nanoparticles to effectively remove tetracycline from an aqueous solution. It was
found that Mn–O complexation was the dominant mechanism of tetracycline absorption.
Electrostatic attraction and cation–π interactions also contributed to the absorption of tetra-
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cycline. Liang et al. [42] used poly-dopamine-polystyrene nanofibers to adsorb tetracycline
antibiotics in water. The adsorption of this material reached equilibrium within 5 min,
and the removal rate was greater than 85%. This method does not require pretreatment
of water samples, but the adsorption process is most efficient at high concentrations and
the residual concentration in water environment is low, so it has certain limitations. In
evaluating adsorption, we should also consider whether the adsorption material can be
easily separated from the water body to avoid secondary pollution. Wang et al. [43] used
magnetic ion exchange resin (MIEX) to remove tetracycline from water. With this approach,
the separation speed of tetracycline is fast, the reusability is high, and the capacity and rate
of adsorption are high.

Adsorption collects pollutants, but it only changes their form and cannot remove them
completely. Some adsorbents with small particle sizes are difficult to separate from water
bodies, and it is easy for subsequent treatment to cause secondary pollution. At present,
there is little research on the toxicity of adsorption materials. Therefore, the development
of low-toxicity adsorption materials with high specific surface area and high adsorption
capacity represents the future of tetracycline antibiotic removal by adsorption.

4.2. Biological Method

The biological method is the mainstream technology used to remove tetracycline
antibiotics and mainly includes the microbial method and the plant method.

In the microbial method, tetracycline antibiotics are decomposed into small molecular
substances via the action of microorganisms [44]. The activated-sludge method is a represen-
tative example of a method involving the microbial degradation of tetracycline antibiotics.
It uses microorganisms, mainly bacterial micelles, to adsorb and degrade antibiotics, and
this method is characterized by high adsorption and low degradation [45]. Liu et al. [46]
used a method that involved adding exogenous surfactant and in-situ biosurfactant to
cultivate microorganisms that could be used to remove tetracycline antibiotics. The method
converts antibiotics instead of absorbing them and thus significantly reduces the toxicity
of antibiotics. M.de Cazes et al. [47] successfully removed tetracycline antibiotics in an
aqueous solution by immobilizing laccase at room temperature, with results showing good
reactivity and stability. The use of a membrane bioreactor improves the reaction rate of
activated sludge, reduces the amount of excess sludge, and results in good treatment of
tetracycline antibiotic wastewater. However, membrane pollution and high energy con-
sumption have always been the aspects of membrane bioreactors that need to be improved.
Microbial degradation is the most widely used method for the removal of antibiotics, but
the molecular mechanism of microbial decomposition and transformation of tetracycline
antibiotics under different nutritional conditions is still unclear [48–50]. Shao et al. [51]
proposed one route for the biotransformation of tetracycline (removal of methyl, carbonyl,
and amine groups). Qi [52] proposed that the degradation paths of oxytetracycline are
hydrolysis and biodegradation, respectively. Through dehydration, demethylation, decar-
bonylation, esterification, deamination, enol ketone isomerization, and enzymatic activity,
oxytetracycline is degraded; the degradation process is shown in Figure 3.

The plant method uses a combination of plants and microorganisms to achieve pollu-
tion control and has the advantages of low treatment cost and environmental friendliness.
Gujarathi et al. [53] used sunflower cultures to treat tetracycline and oxytetracycline, and
the treatment effect decreased as the antibiotic concentration increased. Chen et al. [54]
cultivated Dapiao and Eichhornia crassipes by hydroponics, with a good effect on the
removal rate of tetracycline hydrochloride. Plant degradation involves high environmen-
tal requirements, and at present, there are few studies on how antibiotics enter plants
and the mode of transportation, so it is still necessary to further research the plant-based
degradation of tetracycline antibiotics.
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4.3. Physical and Chemical Method

Water contaminated with tetracycline antibiotics is difficult to treat directly by bio-
logical methods because of the antibiotics’ high biological toxicity. Physical and chemical
methods are usually used as pretreatment, with advanced treatment methods mainly
including coagulation, sedimentation, air flotation, reverse osmosis, ultrafiltration, and
membrane filtration. Wojnárovits et al. [55] found that radiation therapy can make these
non-biodegradable antibiotic-containing matrices biodegradable, reducing their toxicity
and eliminating their antimicrobial activity, and found that the reduction of the techni-
cal parameters (COD, TOC) demonstrates the applicability of radiation technology for
the degradation of recalcitrant compounds even in highly complex aqueous matrices.
Zhang et al. [56] used reverse osmosis and ultrafiltration to treat tetracycline production-
waste liquid, with remarkable effectiveness. Gholam Hossein Safari et al. [57] showed that
RSM was a suitable method by which to optimize the operating conditions for maximum
TC degradation. Under optimum conditions, the TC degradation, COD and TOC removal
were 95.01%, 72.8%, and 59.7%, respectively. The US/S2O8

2− process was found to be a
feasible technology for TC degradation in aqueous solution. Saitoh et al. [58] used the
coagulation–flotation method to quickly remove tetracycline antibiotics from water. In the
presence of Al(III) ions, tetracycline in water was collected in the coagulum as hydropho-
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bic ion pairs (m/z = 736) between Al(III) chelate and dodecyl sulfate ions. Tetracycline
was completely removed from the water within 5 min. Liang et al. [59] used integrated
membrane-filtration technology, including ultrafiltration and two-stage reverse osmosis, to
treat pig wastewater and found that these methods could remove bacteria and 99.79% of
antibiotic-resistance genes. This method is effective for the removal of antibiotics, but both
water quality and membrane properties will affect the effectiveness. Membrane fouling
and the existence of high concentration retentate after treatment are the main problems in
the application of this technology.

The physicochemical method is simple and easy to implement and can be used as both
pretreatment and advanced treatment. In the future, the physicochemical method will be
used to develop a treatment method for water contaminated with tetracycline antibiotics
with reduced operation complexity and operation costs, high development efficiency, and
environmentally friendly qualities.

4.4. Advanced Oxidation Processes

The advanced oxidation method is being widely studied by researchers because of its
advanced technology [60]. There are two main common features of advanced oxidation
methods. First, the hydroxyl radicals generated by the reaction will effectively decompose
the toxic organic pollutants that are difficult to degrade until they are completely converted
into harmless inorganic substances, such as CO2, N2, SO2

4−, PO3
4−, O2, H2O, etc., without

secondary pollution, which is difficult to achieve by other oxidation methods. Second,
the reaction time is short, the reaction speed is fast, and the process is controllable and
non-selective and can thus degrade all kinds of organic pollutants. According to the
different reaction conditions used, it can be divided into ozone oxidation, Fenton oxidation,
photocatalysis, electrocatalysis, and so on.

4.4.1. Ozone Oxidation Method

The ozonation method produces strong oxidizing free radicals (such as ·OH, etc.)
through indirect oxidation reactions between ozone molecules and antibiotics or via de-
composition reactions in water that can be used to mineralize them [61,62]. O3 has a strong
oxidizing ability and can form carboxylic acids with tetracycline antibiotics, thus improving
the biodegradability of wastewater [63]. The mechanism by which ozone oxidation can be
used to degrade tetracycline antibiotics is shown in Figure 4.
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Ozone is highly oxidizing and has a good effect on the degradation of organic mat-
ter. The treatment effect of ozone oxidation alone is not impressive, and catalytic ozone
oxidation is often used. Luu et al. [64] used O3, H2O2, and ultraviolet (UV) to degrade
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tetracycline. After 5 days of treatment, the biodegradability of wastewater was improved.
Li et al. [65] used the combined process of denitrification biofilter + ozone + biological aera-
tion filtration to produce reclaimed water. The combination process shows good removal
performance of conventional pollutants, which meets the local discharge standards and the
purpose of water reuse. The ozone method has the characteristics of quick reaction, simple
process, and environmental friendliness. Developing catalysts with good catalytic effects
and low cost represents the future of research on ozone oxidation.

4.4.2. Fenton Oxidation Method

Tetracycline antibiotics have strong biological toxicity, and the biodegradability of
wastewater is low. Free radicals and other active oxygen substances produced by the Fenton
oxidation process are effective in treatment. Hydrogen peroxide and Fe2+ generate OH at
pH 2–5 and gradually produce other reactive oxygen species and reaction intermediates,
thus contributing to the degradation of tetracycline antibiotics [66]. The reaction mechanism
is as follows [67]:

Fe2+ + H2O2 → Fe3+ + OH− + · OH (1)

Fe3+ + H2O2 → Fe2+ + H+ + HO2 · (2)

Fe2+ + · OH → Fe3+ + OH− (3)

Fe3+ + HO2 · → Fe2+ + H+ + O2 (4)

H2O2 + · OH → H2O + HO2 · (5)

Fe2+ + HO2 · → Fe3+ + HO2− (6)

RH + · OH → R·+ H2O (7)

R·+ Fe3+ → · R+ + Fe2+ (8)

R·+ H2O2 → OH + · OH (9)

Fenton oxidation can be used as a pretreatment process and advanced treatment
process. Bai [68] used the Fenton oxidation method to treat antibiotic wastewater in the
pharmaceutical industry and achieved a good removal effect. Wu et al. [66] treated SBR
effluent by the Fenton oxidation method, and the removal rate of COD reached 77.8%.
Shao et al. [69] introduced nitrogen vacancies and potassium atoms into g-C3N4, and
these molecules were then combined with FeOCl to fabricate the Z-type heterojunction
catalyst FeOCl/NvCN, which was used to remove 95.74% of tetracycline (TC) within
60 min. The Fenton oxidation process can significantly improve the biodegradability of
tetracycline antibiotic wastewater in the practice of systematic treatment. The Fenton
oxidation process can significantly improve the biodegradability of tetracycline antibiotic
wastewater in the practice of systematic treatment. However, the amount of Fe2+ and H2O2
used in the treatment process is large, and a large amount of acid and alkali are used in
the pH-adjustment process, which undoubtedly increases the cost of wastewater treatment.
Making catalysts with high effectiveness and low cost, exploring the best amounts to use,
improving the methods, and treating large-scale wastewater are the future directions of
research involving Fenton oxidation.

4.4.3. Photocatalytic Method

In the photocatalytic method, under specific light conditions, the catalyst generates
electron–hole pairs, which react with H2O and other molecules to generate ·OH, which
oxidizes and decomposes tetracycline antibiotics and mineralizes them [70,71]. The ·OH
acts on the double bond, keto group, amino group, and keto-enol group of tetracycline
antibiotics, and the mechanism is shown in Figure 5.
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The recovery of the catalyst and the study of its stability have always been the focus
of research on the photocatalytic treatment of tetracycline antibiotics. C. Reyes et al. [72]
used a TiO2 aqueous suspension to irradiate a tetracycline solution with three different
light sources (an ultraviolet lamp, a sunbathing device and a UV-A lamp). The results
showed that tetracycline was clearly mineralized under the action of the ultraviolet lamp
and the solarium. Das et al. [73] synthesized semiconducting CdS nanorods using a
hydrothermal procedure with ethylenediamine as a ligand and found higher catalytic
efficiency in the presence of blue-light as compared to white-light irradiation and demon-
strated that the photodegradation process did not require any supplemental oxygen source.
Nagamine et al. [74] successfully synthesized cadmium sulfide semiconductor nanoparti-
cles by a simple coprecipitation method, and these nanoparticles were used to degrade
tetracycline. After exposure for 1 h, the photocatalytic efficiency reached nearly 80% for TC
degradation. Zhang et al. [75] prepared TiC-SOH/g-CN (TiCSOHCN) composite photocat-
alysts by acid etching and sonochemistry, and the removal of TC reached 75.42% within 2 h.
Ma et al. [76] prepared La/Co@TiO2 nanospheres by co-impregnation and increased the
oxygen vacancies on the catalyst surface by photocatalytic activation of molecular oxygen
to accelerate the photogenerated electron-hole separation and charge transfer at the inter-
face. The photocatalytic degradation experiments using 3 wt% La/Co@TiO2 nanospheres
showed that the efficiency of tetracycline (TC) degradation was 100% under visible light.
Tang et al. [77] designed a novel p-n heterostructure visible-light photocatalyst by anchor-
ing p-type Bi2O3 on n-type Ti3+-TiO2 porous material by a simple photodeposition method
with subsequent calcination. Complete removal of tetracycline from various aqueous
matrices under visible light was realized. Li et al. [78] successfully synthesized a novel
direct Z-type SnS2@ZnIn2S4@kaolinite heterostructured photocatalyst by a hydrothermal
method. Under visible-light irradiation, in an experiment carried out in parallel with SnS2
and ZnIn2S4, the as-obtained heterostructure displayed greatly improved photocatalytic
degradation of TCH, with an apparent reaction rate of 0.0231 min−1, which is 20.81 times
and 2.31 times higher than those of SnS2 and ZnIn2S4, respectively. Zong et al. [79] achieved
efficient degradation of tetracycline by combining TiO2 fragmented shells (TFNs) catalysts
with convergent pulsed ultrasound in a customized ultrasonic reactor. TFNs were rapidly
removed from solutions with low concentrations of tetracycline in as little as 6 min at
low power input (21 W). Photocatalysis has the advantages of simple operation and mild
reaction conditions, but the utilization rate of light energy is low, the cost is high, and the
chromaticity of wastewater will also affect the efficiency of treatment of water contaminated
with tetracycline antibiotics by light.
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4.4.4. Electrocatalytic Method

In the electrocatalytic method, under the action of an electric field, ·OH radicals
attack the double bonds, phenolic groups, and amine groups of tetracycline antibiotics
and mineralize them [80–82]. There are four ways to treat tetracycline antibiotics by
electrocatalysis, namely, direct oxidation, direct reduction, indirect oxidation, and indirect
reduction. The mechanism is shown in Figure 6.
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Electrocatalysis is a method with a wide application range and simple operation.
Ni et al. [81] used FeNi/NF system to treat aquaculture wastewater discharged into sea-
water, and after 2% NaCl was added, 99.8% tetracycline could be treated in 30 min. The
choice of the electrode is closely related to the effectiveness of antibiotic degradation.
Oturan et al. [84] found that the process with a BDD anode showed excellent oxida-
tion/mineralization ability. Li et al. [85] used electrocatalysis to pretreat antibiotic wastewa-
ter with salt content, and the treatment effect was good. Sun et al. [86] prepared an efficient
Bi-Sn-Sb/γ-Al2O3 particle electrode for the degradation of tetracycline. Lu et al. [87]
utilized a Pd/Ru/MXene/NF electrode for the electrocatalytic treatment of tetracycline
hydrochloride wastewater, achieving a degradation rate exceeding 91% within 60 min.
Shao et al. [88] loaded agarose (AG) onto ITO using the dipping method and deposited Pd
onto the AG/ITO electrode through electrodeposition to prepare a Pd/AG/ITO composite
electrode. The TC degradation efficiency of the AG/ITO composite electrode reached
85.21% within 120 min. It was found that the electrode has excellent electrocatalytic activity.
Although the electrocatalysis method has advantages, there is little research on the treat-
ment of pharmaceutical intermediates produced by antibiotics over different time frames,
and ogoing effort is thus still needed from researchers.

4.5. Comprehensive Treatment Technology of Sewage Plant

Traditional sewage treatment plants cannot completely remove antibiotics from sewage
by biodegradation or adsorption, which leads to environmental pollution and a high risk
associated with the water [89]. Most sewage treatment plants are not designed to remove an-
tibiotics themselves. Because of the limitations of individual water treatment methods, they
cannot completely treat water contaminated with antibiotics. Usually, such water is treated
by a combination of various methods [90,91]. Xu et al. [92] used UVC/persulfate processes
to treat antibiotic wastewater, and TC was removed by hydroxylation, demethylation,
decarbonylation, photochemistry, and dehydration.
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The SWOT method was used to analyze the adsorption method, the biological method,
the physical and chemical methods, the advanced oxidation method, and the comprehen-
sive treatment technology used in sewage plants, as shown in Table 3.

Table 3. SWOT analysis of tetracycline antibiotics treatment technology in water environment.

Technology Treatment Efficiency Cost Advantage Disadvantage

Adsorption method High Low
Multifunctional, low energy

consumption, easy operation and
no by-products

Easily causes secondary pollution

Biological method Low Low Low cost and mature technology Unsafe
Materialization method Low High Simple operation General effect

Advanced oxidation processes High High High degree of mineralization of
pollutants and stable effects Pharmaceutical intermediate

Comprehensive treatment technology used
in sewage plants High Low Mature technology, simple

operation, etc. Sludge treatment is difficult

5. Conclusions and Future Perspectives

Tetracycline antibiotics exist in various water environments (oceans, surface water,
groundwater, wastewater, drinking water) due to the difficultly of their degradation and
thus pose a threat to human health and the ecological environment. At present, the sources
and distribution of tetracycline antibiotics in water resources are still unclear, so it is
necessary to further monitor tetracycline antibiotics in water environments to determine
the extent of this pollution and design treatment approaches.

At present, research on the degradation of tetracycline antibiotics in water environment
has not been widely carried out at home and abroad. Adsorption can only concentrate pollu-
tants, not remove them, and thus may cause secondary pollution in the process of adsorbent
regeneration. The biological method is widely used and has low treatment costs and mature
technology, but it is still necessary to consider the generation of medicines-resistant super-
bacteria in the treatment process; Antibiotics cannot be completely degraded/removed by
a single method, so combined treatment methods are widely used. The physicochemical
method, advanced oxidation technology and the comprehensive treatment technology
used in sewage plants all have their own advantages. The physicochemical method can
be used as a pretreatment technology or as advanced treatment technology. Advanced
oxidation technology is efficient and easy to operate, but the research on the toxicity of
pharmaceutical intermediates and their complex environmental behaviors should also be
strengthened. In the comprehensive treatment of sewage, several technologies are often
used to remove pollutants, with good effectiveness. In summary, in the context of aiming to
improve existing technologies, future developments will involve combining technologies or
developing new technologies to remove tetracycline antibiotics from water environments,
thus protecting human health and helping to maintain a good ecological environment.
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