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Abstract: Direct catalytic valorization of bioethanol to 1-butanol over different alumina 

supported catalysts was studied. Thirteen (13) heterogeneous catalysts were screened in 

search for the optimal material composition for direct one-pot conversion of ethanol to  

1-butanol. For the most promising catalyst, a 25% ethanol conversion with 80% selectivity 

(among liquid carbon products) to 1-butanol could be reached at 250 °C. Additionally, the 

reaction kinetics and mechanisms were further investigated upon use of the most suitable 

catalyst candidate. 
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1. Introduction 

Ethanol is currently the biggest liquid biofuel contributor worldwide. The first generation 

bioethanol production often employs edible food crops as raw materials and thus gives rise to 

increased food prices by competing with human food and animal feed production. In order to 

overcome this problem, the second generation biofuels are increasingly prepared from non-edible raw 

materials, e.g., wood, agricultural waste and other lignocellulosic materials [1–3]. In Nordic countries, 

the biofuel research focuses heavily on the use of woody biomass as a raw material for bioethanol and 

other biofuels. Finland and Sweden have the largest wood resources in Europe per capita, which makes 

wood a natural choice of raw material. However, there are still many problems associated with the use 

of ethanol fuel in internal combustion engines, e.g., its water solubility, corrosivity and the differences 

in its fuel properties compared to modern gasoline. These problems have to be overcome before the 

full potential of bioethanol can be utilized. 

In order to overcome the disadvantages of ethanol as a fuel, catalytic valorization of ethanol to 

higher alcohols, e.g., 1-butanol can be carried out. Compared to ethanol, 1-butanol (or n-butanol) has 

several advantages: it can be burned in the existing gasoline engines without practically any engine or 

car modifications and it has higher energy content and air-to-fuel ratio than ethanol making 1-butanol 

an excellent green replacement for a modern gasoline. In summary, the properties of 1-butanol closely 

resemble the properties of modern gasoline (Table 1).  

Table 1. Chemical and physical properties of gasoline, diesel, 1-butanol and ethanol. Data 

is reproduced from reference [4]. 

Fuel 
Energy density/ 

MJ L−1 
Air-to-fuel ratio

Energy content/ 
Btu/USgallon 

RON a 
Water 

solubility/% 

Gasoline 32 14.6 114,000 81–89 negligible 
Diesel 35.5 14.7 130,000 - negligible 

1-butanol 29.2 11.12 105,000 78 7 
Ethanol 19.6 8.94 84,000 96 100 

a Research octane number. 

Furthermore, another advantage of 1-butanol is the fact that it can be distributed via the existing 

pipelines for gasoline. In the end, it is an advantage if the consumer does not notice a difference when 

using 1-butanol as a fuel instead of modern gasoline in a gasoline driven vehicle.  

1-Butanol is an important chemical feedstock and around 2.9 million tons was utilized by the 

industry in 2005. 1-Butanol can be synthesized by several routes such as the oxo-process [5–10], the 

acetaldehyde method or by fermentation. 

In the open literature, only a few reports describe the direct catalytic dimerisation or conversion of 

ethanol to 1-butanol and other hydrocarbons [11–16]. These described technologies suggest a  

two-phase process where ethanol vapor is passed through a solid catalyst packed in a fixed bed. The 
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reaction temperatures vary from 200 °C up to 450 °C, with a relatively low conversion (10–20%) and 

selectivity approaching 70%. In the recent literature, a novel catalytic process utilizing a  

non-stoichiometric hydroxyapatite was found to be very promising [11,15]. In addition, solid 

bases [15], some zeolites [14], and supported metals (e.g., Ni, Co) [12] have been reported to convert 

ethanol to 1-butanol. To the best of our knowledge, until today no reports exist that describe a  

liquid-phase process for this particular reaction.  

The conversion of biomass to valuable chemicals is a multi-step processes containing both chemical 

and catalytic reaction steps. By applying traditional approach and carrying out these conversions in 

separate reactors followed by subsequent separation, purification and drying steps would become 

complicated and expensive to realize in practice. Furthermore, in such a multi-step process, a lower 

yield of the end product with large amount of waste would be expected. One-pot reactions are capable 

of addressing these issues which involve multiple catalytic reaction steps in a single reactor unit. In 

this work, we demonstrate that conversion of ethanol to 1-butanol in one-pot manner is possible with 

high selectivity and conversion. The reaction was carried out in one pot without additional solvents in 

the absence of any catalyst pretreatments. For the most promising catalyst, a 25% ethanol conversion 

with 80% selectivity (among liquid carbon products) to 1-butanol could be reached. 

For the catalytic conversion of liquid ethanol to 1-butanol several alumina supported heterogeneous 

catalysts were screened by applying a direct one-pot approach using only ethanol, catalyst and heating 

of the stirred mixture to carry out the reaction. The desired overall reaction scheme is presented in 

Scheme 1. The results from kinetic and mechanistic studies including catalyst characterization results 

will be presented here. Reaction schemes are presented in supplementary material. 

Scheme 1. Dimerisation of ethanol to 1-butanol. 

OH +
ethanol

2 OH H2O

1-butanol water

catalyst

 

2. Results and Discussion 

A large selection of heterogeneous alumina supported catalysts were screened for direct one-pot 

conversion of ethanol to 1-butanol at 250 °C as described in the experimental section. Catalyst 

characterization details are reported in Table 2 and preparation procedures in supplementary material. 

The best catalyst was studied in more detail employing kinetic and mechanistic experiments. 

2.1. Catalyst Screening 

The main products were acetaldehyde, diethyl ether, ethyl acetate, 1-butanol, 1,1-diethoxy ethane, 

1-hexanol and 1-octanol which typically accounted for over 90% of the formed products. Their relative 

amounts varied depending on the choice of the catalyst. Also traces of other hydrocarbons were 

formed during some screening experiments. The higher C-6 and C-8 alcohols could be detected during 

prolonged experiments indicating that the reaction can proceed further from dimers of ethanol as well 

as to tri- and tetramers of ethanol. No odd number (C-3, C-5, C-7) alcohols were detected in the 
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screening experiments (based on GC-MS analysis). This kind of product distribution may be related to 

so called Guerbet reaction which produces branched alcohols from primary ones [15]. The product 

composition varied greatly over various tested catalysts. Mini-reactor experiments were used to find 

out the most selective catalyst (Table 2) for ethanol to 1-butanol production. Typical conversion of 

ethanol (after 3 h of reaction) in the mini-reactor screening experiments was approximately 2–5%. In 

control experiments without a catalyst, the conversion of ethanol remained around 1% and only 

acetaldehyde and diethyl ether were formed.  

Table 2. Summary of the catalyst characterization results. 

 Catalyst Code 

Metal 

dispersion 

(%) a 

Metal particle size 

(nm), H2 

chemisorption a 

Metal particle 

size (nm) b, 

TEM 

Metal particle 

size (nm) c, 

XRD 

Surface 

Area 

(m2/g) d

1 5% Ru/Al2O3 H213B 37.88 3.49 2.5 ± 1.1 n.m. 105 

2 5% Rh/Al2O3 G214RA 54.21 2.03 2.6 ± 1.3 n.m. 308 

3 5% Pd/Al2O3 E213R 17.51 6.40 3.5 ± 1.7 4.2 ± 0.2 127 

4 5% Pt/Al2O3 F214 XSP/D n.m. n.m. 2.5 ± 1.9 2.8 ± 0.2 n.m. 

5 0.8% Au/Al2O3 MINTEK1/BC3 n.m. n.m. n.m. n.m. n.m. 

6 Ni/Al2O3 
Crossfield/ 

HTC-500 
n.m. n.m. 8.2 n.m. n.m. 

7 20% Ni/Al2O3 Self-prepared n.m. n.m. 3.5 ± 0.2 n.m. 289 

8 2% Ag/Al2O3 Self-prepared n.m. n.m. 5.2 ± 2.1 n.m. 289 

9 4% Ag/Al2O3 Self-prepared n.m. n.m. 1-5 and 10-40 n.m. 289 

10 6% Ag/Al2O3 Self-prepared n.m. n.m. n.m. n.m. 289 

11 1% Ru/Al2O3 Self-prepared n.m. n.m. n.m. n.m. 289 

12 2% Ru/Al2O3 Self-prepared n.m. n.m. n.m. n.m. 289 

13 5% Ru/Al2O3 Self-prepared n.m. n.m. 1-7 and 100 n.m. 289 
a From hydrogen chemisorptions; b Based on transmission electron microscopy (TEM); c Based on X-ray diffraction 

(XRD); d Obtained from nitrogen physisorption; n.m. = not measured. 

The following qualitative conclusions can be drawn for the formed liquid hydrocarbon products 

from the catalyst screening experiments which give valuable guidelines for the future 

catalyst development: 

Ru: Commercial 5% Ru on alumina and self-prepared 1-, 2- and 5% Ru on alumina were tested 

(Table 3). 1-butanol selectivity was 30% when the commercial catalyst was evaluated. The  

self-prepared Ru-catalysts showed lower selectivity towards 1-butanol when compared to the 

commercial one but the conversion was much higher. One possible explanation might be the formation 

of gaseous products over the self-prepared catalysts. A reduced catalyst promoted the formation of 

diethyl ether. The same catalyst reduction effect was observed for Ni on alumina catalyst as well. For 

all catalyst screening experiments, the commercial supported metal catalysts were used as received in 

unreduced state. TEM and XRD were measured over the self-prepared 5% Ru on alumina 

catalyst (Figure 1). 
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Table 3. Results obtained with alumina supported Ru catalysts. 

Manufactured Catalyst 
Product 

code 

Conversion 

(%) 

Selectivity (%) 

acetaldehyde
diethyl 

ether 

ethyl 

acetate 
1-butanol 

1,1-diethoxy 

ethane 

Degussa 5% Ru/Al2O3 H213 B/D 2 8 1 0 30 19 

La Roche 1% Ru/Al2O3 A 201 

(self-prep.) 

8 50 18 0 0 33 

La Roche 2% Ru/Al2O3 A 201 

(self-prep.) 

11 54 8 0 4 33 

La Roche 5% Ru/Al2O3 A 201 

(self-prep.) 

12 54 3 2 9 31 

Figure 1. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) images of 

self-prepared 5 wt% Ru/Al2O3 catalyst. XRD shows the existence of RuO2 and the particle 

size distribution varies between 1–7 nm. In addition, particles up to 100 nm were also found. 
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Rh: Commercial 5% Rh on alumina was tested (Table 4). Rh on alumina produced diethyl ether  

(S = 30%) and 1-butanol (S = 35%). In comparison to ruthenium (Degussa H 213 B/D), rhodium might 

have a promoting effect on alumina leading to an increase in the catalyst acidity and, thus, higher 

diethyl ether formation.  

Table 4. Results obtained with alumina supported Rh catalyst. 

Manufactured Catalyst 
Product 

code 

Conversion 

(%) 

Selectivity (%) 

acetaldehyde 
diethyl

ether 

ethyl 

acetate 
1-butanol 

1,1-diethoxy 

ethane 

Degussa 5% Rh/Al2O G214 RA/D 5 4 41 0 35 4 

Pd: Commercial Pd on alumina was screened (Table 5) and the results (Sbutanol = 21%) follow 

almost similar behavior with the rhodium, promoting the formation of diethyl ether. 

Table 5. Results obtained with alumina supported Pd catalyst. 

Manufactured Catalyst 
Product 

code 

Conversion 

(%) 

Selectivity (%) 

acetaldehyde
diethyl 

ether 

ethyl 

acetate 
1-butanol 

1,1-diethoxy 

ethane 

Degussa 5% Pd/Al2O3 E213 R/D 9 3 64 1 21 2 
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Pt: Commercial Pt catalyst was found to contain a positive impact (Sbutanol = 37%) on the desired 

product (Table 6) and, furthermore, the selectivity towards diethyl ether was much lower in 

comparison to Pd and Rh. 

Table 6. Results obtained with alumina supported Pt catalyst. 

Manufactured Catalyst 
Product 

code 

Conversion 

(%) 

Selectivity (%) 

acetaldehyde
diethyl 

ether 

ethyl 

acetate 
1-butanol 

1,1-diethoxy

ethane 

Degussa 5% Pt/Al2O3 F 214 XSP/D 3 9 10 9 37 8 

Ag: The self-prepared silver catalysts were rather inactive towards 1-butanol giving selectivities 

between 13–20%. However, also a rather high selectivity to acetaldehyde and 1,1-diethoxy ethane 

were observed (Table 7). TEM and XRD were measured over the self-prepared 4% Ag on alumina 

catalyst (Figure 2).  

Table 7. Results obtained with alumina supported Ag catalysts. 

Manufactured Catalyst 
Product 

code 

Conversion 

(%) 

Selectivity (%) 

acetaldehyde
diethyl 

ether 

ethyl 

acetate 
1-butanol 

1,1-diethoxy 

ethane 

La Roche 2% Ag/Al2O3

A 201 

(self-prep.) 
1 48 12 4 16 20 

La Roche 4% Ag/Al2O3

A 201 

(self-prep.) 
1 49 13 4 13 20 

La Roche 6% Ag/Al2O3

A 201 

(self-prep.) 
2 45 11 6 20 16 

Figure 2. TEM and XRD pictures of self-prepared 4 wt% Ag/Al2O3 catalyst. XRD reveals 

metallic silver with an average crystal size of ~13 nm. The particle size analysis based on 

TEM measurements shows a bimodal size distribution with ranges of 1–5 nm and 10–40 nm. 
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Ni: Two types of nickel catalysts were tested (Table 8). Overall, the commercial HTC-500 (20.7% 

Ni on alumina) was the best catalyst within the whole series of catalysts screened in terms of 

selectivity (62%). Also self-prepared 20% Ni on alumina (La Roche) showed moderate selectivity 

(37%) towards 1-butanol but the conversion was almost four times higher in comparison to the  
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HTC-500, producing a significant amount of acetaldehyde. Both nickel catalysts were characterized by 

means of XRD and TEM (Figures 3 and 4). Interestingly, the self-prepared catalyst shows a 

considerably smaller particle size distribution and it does not contain any aggregates which are 

presumed to be inactive parts.  

Table 8. Results obtained with alumina supported Ni catalysts. 

Manufactured Catalyst 
Product 

code 

Conversion 

(%) 

Selectivity (%) 

acetaldehyde
diethyl

ether 

ethyl 

acetate 
1-butanol 

1,1-diethoxy

ethane 

Crossfield 20% Ni/Al2O3 HTC-500 5 5 7 4 62 3 

La Roche 20% Ni/Al2O3 Self-prepared 18 43 5 4 37 11 

Figure 3. TEM and XRD pictures of self-prepared Ni/Al2O3 catalyst. Based on the results 

it can be seen that both Ni and NiO are found with average particle sizes of ~4 nm for 

both phases. 
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Figure 4. TEM and XRD images of the commercial model catalyst 20.7 wt% Ni/Al2O3 

HTC-500. The average particle size was found to be about twice as much as for the  

self-made Ni-catalyst and showed considerably broad size dispersion. 

  

Au: The commercial gold catalyst showed an interesting behavior by producing a moderate 

selectivity to 1-butanol (35%) and also some amounts of acetaldehyde, ethyl acetate and diethyl  
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acetate (Table 9). This might be due to the ability of gold to promote different and simultaneous 

reaction pathways.  

Table 9. Results obtained with alumina supported Au catalyst. 

Manufactured Catalyst 
Product 

code 

Conversion 

(%) 

Selectivity (%) 

acetaldehyde
diethyl 

ether 

ethyl 

acetate 
1-butanol 

1,1-diethoxy 

ethane 

Mintek 0.8% Au/Al2O3 BC3 6 18 31 15 35 0 

2.2. Validation of the Bomb Reactor Screening Experiments 

The reproducibility of the experiments was controlled by repeating experiments with same catalyst at 

least twice. For each and every test batch of eight (8) mini-bomb reactors, a reference catalyst was used 

to control the experimental reproducibility. When the product distribution obtained in mini-bomb 

reactors was compared with the products obtained in the Parr autoclave, under similar conditions and 

with the same catalyst, it was evident that analogous results were obtained, i.e., the process is scaleable. 

Out of all screened catalysts, the catalyst HTC-500 (20.7% Ni on alumina) was clearly the best one 

giving a good conversion (X = 5%) and highest selectivity (Sbutanol = 62%) in the whole series. 

Nevertheless, it is expected that after optimizing catalyst properties and reaction conditions, the 

selectivity, activity and ethanol conversion could be notably improved.  

2.3. Kinetics and Mechanistic Studies with HTC-500 (20.7% Ni on Alumina) 

Based on the results from the screening experiments (Tables 3–9) commercial Ni/Al2O3 (HTC-500) 

was chosen for further studies in batch reactor. 

The reaction kinetics was investigated in the 300 mL Parr autoclave using the identical  

catalyst-to-ethanol ratio as in the miniature bomb reactors. Commercial (Crosfield HTC-500, 20.7% Ni 

on alumina) catalyst was used in the experiments. The temperature profile in the larger batch reactor 

during the reaction was similar consisting of 15–20 min heating period after which an isothermal 

reaction was carried out at 250 °C. Analysis of samples taken at time zero and at the time when the 

desired reaction temperature was reach revealed that negligible ethanol conversion took place during 

the short (15–20 min) reactor heating step. A representative kinetic plot is illustrated in Figure 5 which 

shows the conversion of ethanol and the selectivity of 1-butanol among liquid carbon products as a 

function of time. Moreover, the behavior of side products concentration evolvement is illustrated in 

Figures 6 and 7, respectively. Interestingly, the behavior of acetaldehyde and 1,1-diethoxy ethane 

follow a different pattern than that of ethyl acetate, butyraldehyde, diethyl ether and 1-hexanol. 

Concentrations of the later mentioned by-products illustrate a stable upward trend whereas 

acetaldehyde and 1,1-diethoxy ethane concentrations seem to peak in early stages of the reaction 

followed by a sharp decrease. It might be that acetaldehyde and 1,1-diethoxy ethane have a remarkable 

effect on the reaction in question. The larger scale (300 mL instead of 2 mL) autoclave allowed 

sampling of the liquid-phase during the course of the reaction under controlled temperature and 

pressure. The gas-phase composition could be analyzed by MS after the reaction. When the 
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experiments were repeated over the same catalyst it was observed that the reproducibility of the results 

was within 1%. 

Figure 5. Valorization kinetics of ethanol to 1-butanol over a Ni catalyst (HTC-500) in the 

batch reactor. Reaction conditions: 250 °C, 70 bar. Selectivity calculated among liquid 

carbon products. 

 

Figure 6. Ethyl acetate, 1-hexanol, diethyl ether and butyraldehyde concentrations as a 

function of time. 
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Figure 7. Acetaldehyde and 1,1-diethoxy ethane concentrations plotted as the function of time. 

 

2.3.1. Gas-Phase Analysis after the Reaction 

After heating the reactor to 250 °C, the pressure started gradually to increase from 76 bar to about 

83 bar after which pressure remained virtually constant. The gas-phase analysis was conducted after 

the reactor was cooled down to room temperature (RT). At RT, the residual gas-phase was analyzed by 

a mass spectrometer (the gas-phase composition was similar in all carried experiments over the  

HTC-500). It was found that the gas composition was roughly 2/3 of hydrogen and 1/3 of methane. 

Only traces of carbon monoxide and carbon dioxide were found.  

During the course of the reaction, gaseous hydrogen (Phydrogen = 4 bar) that might promote 

hydrogenation of the intermediate products, was formed in the reactor. The chosen Ni/alumina catalyst 

is a known good catalyst for C=O and C=C bond hydrogenations. Moreover, it is also suggested that 

nickel might promote C–C-bond breaking of the ethanol molecule. Thus, this would lead to the 

emergence of hydrogen and methane [17]. Consequently, the previously proposed reaction sequence 

starting from dehydration of ethanol to acetaldehyde followed by aldol condensation and subsequent 

hydrogenation to 1-butanol sounds logical. However, in mechanistic studies when various amounts of 

acetaldehyde was present, the “promoting effect” could not be detected. Presence of acetaldehyde 

produced a lot of by-products (a total of 50–80 products) which could not be properly separated  

or identified.  

The role of hydrogen was investigated in more detail by inserting known amounts of hydrogen in 

the reactor. Based on experiments at different initial hydrogen pressures, it could be concluded that the 

reaction rate decreased with increasing initial hydrogen pressure. Another point, which is related to the 

formation of gaseous hydrogen during the reaction, is that in the kinetic experiments the ethanol 

conversion vs. time curve and the hydrogen pressure vs. time curve follow an identical trend. It would 

be a plausible explanation that the in-situ formed hydrogen is inhibiting the ethanol dimerization 

reaction which proceeds well over an oxidized catalyst. The effect of initial hydrogen pressure to  

1-butanol formation is presented in Figure 8 as a function of time. 
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Figure 8. The effect of different initial hydrogen pressures to the forming amounts of 1-butanol. 

 

2.3.2. Catalyst Pretreatment 

HTC-500 catalyst was reduced at 400 °C (maximum temperature for the reactor setup) under 

hydrogen for 3 h or used as received. The influence of added oxygen (3 bar) was also tested. The 

catalyst activity was independent on the pretreatments employed here. Selectivity towards diethyl ether 

was notably increased by a reductive pretreatment, simultaneously lowering the selectivity towards  

1-butanol (Figure 9). The added oxygen had no detectable influence on the reaction. It seems that the 

Ni/alumina catalyst gives the highest selectivity when used without any reduction in the oxidized state. 

Figure 9. Effect of catalyst pretreatment on diethyl ether formation over a Ni catalyst 

(HTC-500) in the bath reactor. Reaction conditions: 250 °C, 70 bar. 
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2.3.3. By-Product Formation 

Formation of by-products, i.e., acetaldehyde, diethyl ether, ethyl acetate and 1,1-diethoxyethane, 

can be explained by commonly known organic reactions [18] taking place under reaction conditions 

applied in the present work. Acetaldehyde is expected to emerge from the dehydrogenation of ethanol 

according to Scheme 2. At the same time, it also results in the formation of hydrogen that was 

experimentally observed as the major gaseous product. Diethyl ether is formed via a reaction of 

ethanol to ether and water (Scheme 3). In addition, ethyl acetate was formed over Au catalyst. In 

accordance to the Scheme 4, it is evident that the formation of an ester requires the formation of a 

carboxylic acid via oxidation of the alcohol. Au is a good oxidation catalyst which might explain the 

prominent ethyl acetate formation. Acetic acid was not detected in the GC analysis. However, it is 

possible that under our experimental conditions acetic acid immediately reacted to the corresponding 

ester. Finally, 1,1-diethoxyethane was formed via the acid catalyzed acetalisation of acetaldehyde and 

ethanol (Scheme 5). Most of these side reactions (excluding dehydrogenation of ethanol) formed water 

as a by-product. Still, also the target reaction forms 1-butanol and water. Therefore, it was of interest to 

study water removal during reaction. This will be discussed next. 

Scheme 2. Dehydrogenation of ethanol. 

OH O + H2

ethanol acetaldehyde hydrogen
 

Scheme 3. Formation of diethyl ether from ethanol. 
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Scheme 4. Two step reaction sequence forming ethyl acetate from ethanol. 
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Scheme 5. Acetalisation of acetaldehyde and ethanol. 

OH

ethanol

+ H2O

water

H

O

+ 2

acetaldehyde

O

O

1,1-diethoxyethane

acid catalyst

 

2.3.4. Water Removal from the Reaction Mixture 

In a typical reaction sequence (Figure 6), we can clearly see that the ethanol conversion under 

studied conditions stabilized at a level around 20% (batch reactor experiments). In principle, the 

reactant conversion can be limited by catalyst deactivation or equilibrium limitations emerging, e.g., 

by the presence of formed water. A third aspect of water is the steam reforming of ethanol to hydrogen 

over nickel metal catalysts [19]. In the presence of water, ethanol and a Ni catalyst, hydrogen is 

formed. Therefore, the formation of hydrogen (via steam reforming reaction) might be a plausible 

explanation for the promoting role of water removal. The net reaction is dimerization of two ethanol 

molecules to 1-butanol and water (Scheme 1). Therefore, the removal of water was of interest. The 

reaction was carried out with pre-dried ethanol using 3 Å molecular sieves. The same molecular sieves 

were also added into the reactor to enable water removal during the reaction. The water removal 

procedure resulted in significant improvement of the ethanol conversion from 20% to 30%. This would 

indicate that the reactant conversion can be enhanced by water removal.  

2.3.5. Thermodynamic Calculations 

In order to distinguish if the obtained maximum ethanol conversions levels (20–30%) are due to 

catalyst deactivation by the in situ formed hydrogen or due to equilibrium limitations, the equilibrium 

composition for the main reaction was calculated. Based on the calculations under our reaction 

conditions at 250 °C and 70 bar, the theoretical maximum conversion of ethanol to 1-butanol was 

found to be 98.5%. Therefore, we suggest that the reason for the attained 30% ethanol conversion is 

catalyst deactivation under reactions conditions (due to in situ formed hydrogen) rather than 

equilibrium limitations. 

2.3.6. Other Alcohols as Reactants 

The performance of the catalytic system was evaluated in mini-bomb screening reactors using 

methanol, ethanol, 1-propanol and 1-butanol as reactants over the HTC-500 catalyst. Interestingly, 

under studied conditions (250 °C), only ethanol seems to produce n-alcohol dimerisation products. The 

inactivity of methanol might be due to the difficult methanol dehydration (water removal) when 

compared to longer chain alcohols. The mechanism accounting for the dimerisation of ethanol to  

1-butanol should be able to explain the specificity of the reaction to ethanol but not, e.g., 1-propanol 

and 1-butanol as reactants. One such mechanistic proposal was proposed by Suchida et al. [14] where 

the Guerbet alcohols formed predominantly from ethanol yield linear alcohol products (1-butanol) 
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whereas reactions involving longer alcohols (C3, C4, ...) result in the formation of branched  

Guerbet alcohols. 

2.3.7. The Effect of Sub- vs. Super-Critical Conditions 

For the next step, we studied whether super-critical conditions could be advantageous in the 

investigated reaction. The tests were performed by means of the above mentioned mini-reactors at the 

temperatures below and over 240 °C which is approximately the triple point of ethanol. The test 

method was exactly the same as previously mentioned while the only difference was the temperature. 

However, the results indicated, that at least in our case, we could not find any beneficial effects related 

to super-critical conditions. The product distribution was the similar under sub- and super-critical 

conditions. Furthermore, several authors’ calculations indicate [20–22] that ethanol hydrogen bonding 

properties change significantly under super-critical conditions. 

3. Experimental Section 

3.1. Catalyst Screening 

Catalyst screening was carried out in small, 2 mL isobaric mini-reactors equipped with magnetic 

stirring (Figure 10). The reactors were made of stainless steel and could be used for the reaction 

carried out at pressures up to 100 bar and temperature up to 250 °C (maximum for the Teflon coated 

stirrer magnet). The catalyst testing procedure was as follows: the reactor was loaded with the catalyst 

(10 or 50 mg) and ethanol (Etax Aa, 99.5%, 1.5 mL) under inert atmosphere (He) in a glove bag. The 

reactors were closed and placed in the heating unit allowing 8 reactors to be run simultaneously. The 

reactors were heated to 250 °C with a heating rate of 20 °C/min. The reaction was allowed to proceed 

for 3 h. After reaction, the reactors were rapidly quenched (cooled down) in a water bath and the liquid 

contents were analyzed by gas chromatography (GC). While opening the reactors, it was noted that in 

many cases notable gas formation had taken place during the experiment (sealed reactors). The  

gas-phase composition could not be analyzed in the catalyst screening mode; however, it could be 

done during the kinetic experiments carried out in the standard high pressure Parr autoclave.  

Figure 10. Reactors used for catalyst screening (Vreactor = 2 mL). 
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3.2. Kinetic Experiments 

Proper kinetic experiments were carried out in a 300 mL high pressure Parr autoclave equipped 

with a mechanical Rushton turbine type of a stirrer. The reactor was loaded with the catalyst (typically  

3.3 g) and flushed with inert gas (He). In some experiments, catalyst reduction under flowing 

hydrogen, at 400 °C for 3 h, was carried out. The catalyst-to-reactant molar ratio was identical as in the 

case of catalyst screening experiments in small mini-autoclaves. The ethanol reactant (100 mL) was 

degassed for 10 min with inert gas before injection to the reactor. The reactor was heated rapidly to 

250 °C and the reaction was monitored by taking small liquid samples (0.5 mL). The gas-phase 

composition was analyzed at the end of the reaction after cooling the reactor back to room temperature 

(RT). Gas chromatographic analysis (Agilent, DB-Petro 100 m column) was calibrated with 

commercial standards. The initial compound identification was based in GC-MS identification of the 

peaks using the same column. The semi-quantitative gas phase analysis was based on a quadrupole 

mass spectrometer (Balzers). The stirring rate applied throughout the the matrix of catalytic 

experiments was 1500 rpm thus ensuring that we resided in the kinetic regime. Due to the fact that 

only liquid reactants (ethanol) were used and that the reaction rates were rather low, the danger of 

external mass transfer limitations can be regarded as negligible. 

3.3. Catalysts 

A total of 13 catalysts were studied in the present work. Both in-house prepared and commercial 

catalyst were used. For commercial catalysts, the available characterization data can be found in  

Table 2, whereas in the case of in-house prepared ones the catalyst preparation is described below and 

the characterization results are reported in Table 2. 

3.4. Analytical Procedure 

The liquid-phase analysis was carried out with an Agilent Technologies, 6890 N gas chromatograph 

(GC) equipped with a DB-Petro (122-10A6, 100 m, i.d. 0.250 mm) column. The products were 

identified by means of an Agilent gas chromatograph coupled to a mass spectrometer (GC-MS) 

equipped with the same column. Calibration of the GC was carried out with commercial standards 

using octane (Fluka > 99%) as internal standard. The calibration was carried out using the following 

commercially available chemicals: ethanol (Altia 99.5%, Aa), butyraldehyde (Lancaster, 99%), diethyl 

ether (Merck, max 0.0075% H2O), ethyl acetate (Fluka, >99.5%), 1-butanol (Acros Organics, 99%), 

1,1-diethoxy ethane (Fluka, ≥95%), 1-hexanol (Fluka, ≥99%), 1-octanol (Riedel-de Haën, ≥99.5%)  

The qualitative gas-phase analysis was carried out with a quadrupole MS. After cooling down the 

reactor contents to room temperature (RT), the remaining gas phase was analyzed with MS. 

3.5. Catalyst Characterization 

Thirteen (13) different catalysts were tested in the screening phase. The catalysts were characterized 

with TEM, XRD, physisorption and chemisorption. To identify crystal phase and size of the catalyst 

(and in some cases of the support) X-ray diffraction analyses were carried out using Cu Kα radiation 

(Siemens D5000 diffractometer equipped with a graphite monochromator to suppress fluorescent and 
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Cu Kβ radiation). The average crystallite size of catalyst particles was estimated using Scherrer’s 

equation from the halfwidths of the most intensive reflections. Transmission electron microscopy 

(LEO 912 OMEGA, energy-filtered TEM, 120 kV) has been used to study microstructure and particle 

size of catalyst samples. Histograms of particle size distribution were obtained by counting typically 

100 particles on the micrographs. 

3.6. Thermodynamic Calculations 

The equilibrium composition for the main reaction, i.e., 2 ethanol = 1-butanol + water was 

calculated in order to check if the conversion would be equilibrium limited. The calculations were 

performed with the software PRO/II (PRO/II 8.3 invensys Systems, Inc.) using the Gibbs reactor 

module. At 250 °C and 70 bar the conversion of ethanol to 1-butanol was found to be 98.5%. 

4. Conclusions  

Several heterogeneous alumina supported metal catalysts were screened in the direct liquid phase 

one-pot conversion of ethanol to 1-butanol. For the most promising catalyst (20.7% Ni/Al2O3,  

HTC-500), a 25% ethanol conversion with 80% selectivity to 1-butanol could be reached. Based on the 

results achieved, the investigated metals can be ranked in terms of the selectivity towards 1-butanol as 

follows: Ni > Pt > Au~Rh > Ru >> Ag. Additionally, the results achieved indicate that the most 

plausible reaction pathway follows the Guerbet route. The reaction was specific to dimerisation of 

ethanol. Linear n-alcohols could not be produced from methanol, 1-propanol, or 1-butanol as the 

reactants. This reaction has a great potential in overcoming disadvantages of bioethanol and serving as 

yet another step toward wider portfolio of sustainable transportation fuels. We will attempt to optimize 

the catalyst characteristics in the quest towards the optimal 1-butanol selectivity. Also, on-going 

experiments with a new continuous operating fixed bed reactor designed at operating in the liquid 

phase conditions will be utilized. 
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