Catalysts 2012, 2(3), 400-411; doi:10.3390/catal2030400
Microstructural and Kinetic Evolution of Fe Doped MgH2 during H2 Cycling
Technical Unit for Material Technologies (UTTMAT), Research Centre of Casaccia, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Via Anguillarese 301, 00123 Rome, Italy
*
Author to whom correspondence should be addressed.
Received: 30 July 2012 / Revised: 3 September 2012 / Accepted: 7 September 2012 / Published: 24 September 2012
(This article belongs to the Special Issue Bimetallic Catalysts—Application in Hydrogen Storage)
Abstract
The effect of extended H2 sorption cycles on the structure and on the hydrogen storage performances of MgH2 powders with 5 wt% of Fe particle catalyst is reported. MgH2 powders with and without Fe have been ball milled under Argon, the doped MgH2 nanocomposite has been cycled under hydrogen pressure up to a maximum of 47 desorption and absorption cycles at 300 °C. After acceleration during the first 10 cycles, the kinetics behavior of doped MgH2 is constant after extended cycling, in terms of maximum storage capacity and rate of sorption. The major effect of cycling on particle morphology is the progressive extraction of Mg from the MgO shell surrounding the powder particles. The Mg extraction from the MgO shell leaves the catalyst particles inside the hydride particles. Many empty MgO shells are observed in the pure ball milled MgH2 upon cycling at higher temperature, suggesting that this enhancement of the extraction efficiency is related to the higher operating temperature which favors Mg diffusivity with respect to the H ion one. View Full-TextKeywords:
hydrogen storage; MgH2; cycling; magnesium; nanocomposites; ball milling; scanning electron microscopy (SEM)
▼
Figures
This is an open access article distributed under the Creative Commons Attribution License (CC BY 3.0).
Share & Cite This Article
MDPI and ACS Style
Montone, A.; Aurora, A.; Gattia, D.M.; Antisari, M.V. Microstructural and Kinetic Evolution of Fe Doped MgH2 during H2 Cycling. Catalysts 2012, 2, 400-411.
Related Articles
Article Metrics
Comments
[Return to top]
Catalysts
EISSN 2073-4344
Published by MDPI AG, Basel, Switzerland
RSS
E-Mail Table of Contents Alert