Supplementary Information

Kinetic model for the reduction of furfural through MPV reaction (Equation (1)–(3)):

$$\frac{dC_{Furfural}}{dt} = -k_1 \cdot C_{Furfural} \tag{1}$$

$$\frac{dC_{Furfuryl \ alcohol}}{dt} = k_1 \cdot C_{Furfural} - k_2 \cdot C_{Furfuryl \ alcohol}$$
(2)

$$\frac{dC_{Furfuryl-iPropyl Ether}}{dt} = k_2 \cdot C_{Furfuryl-iPropyl Ether}$$
(3)

Objective Function—Sum of squares error for each reaction time (t) and for each chemical (c) (Equation (4)).

Figure S1. Evolution of the products distribution with the reaction time as a function of temperature. Dots: experimental data; Lines: model predicted values.

Figure S2. MPV reduction of furfural with *i*-PrOH—Recycling Tests. Reaction Conditions: Catalyst loading: 0.2 g; reaction temperature: 90; furfural to catalyst mass ratio: 1.0; *i*-PrOH to furfural molar ratio: 50; reaction time: 6 h.

Table S1. Pre-exponential factor and apparent activation energy for the kinetic constants

 determined for MPV reduction of furfural

Reactions	$k_{0} (\mathrm{h}^{-1})$	$E_A \left(\mathbf{J} \cdot \mathbf{mol}^{-1} \cdot \mathbf{K}^{-1} \right)$
	33.8	11.7×10^5
	1204.8	$19.9 \times \cdot 10^5$

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).