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Abstract: Ionic liquids (ILs) are a convenient and inexpensive source of N-heterocyclic 

carbenes (NHCs). In this study, dialkyl imidazolium-based ILs are used as carbene 

precursors in a four-component synthesis of oxo triphenylhexanoates (OTHOs), where it was 

found that IL outperformed commonly used NHC precatalysts in terms of reaction 

efficiency. The reaction is highly stereoselective, delivering the anti-diastereomer (20:1 dr), 

and the OTHOs can be obtained in high-to-excellent yields. By virtue of the four-component 

reaction-setup, facile construction of the OTHO scaffold with a diverse set of functional 

groups (21 examples) can be achieved. In the context of sustainability, the IL can be recovered 

and reused several times without affecting selectivity or yield. Moreover, most  

compounds can be isolated by precipitation and filtration, mitigating the use of  

solvent-demanding chromatography. 

Keywords: ionic liquid; NHC; OTHO; multicomponent reaction; carbene; organocatalysis; 

organogel; MCR; 1,6-ketoester 

 
  

OPEN ACCESS



Catalysts 2015, 5 2053 

 

 

1. Introduction 

The separation, recovery, and reuse of a catalyst are major obstacles within homogeneous catalysis. 

In this respect, ionic liquids (ILs) have been shown to be an ideal medium for covalent and non-covalent 

catalyst immobilization and regeneration, due to their low vapor pressure [1–6]. Moreover, ILs 

themselves can also be used as catalysts [7,8]. This has been exemplified in several syntheses of 

heterocycles [9], cycloadditions [10], and acetylations of alcohols [11,12]. Rate enhancements seen in 

these reactions have been attributed to a range of activation modes such as hydrogen bonding [10,13], 

and Lewis acid [11] and base [12] catalysis. Other activation strategies can be invoked by deprotonation 

of dialkyl imidazolium-based ILs with a base, thus generating an N-heterocyclic carbene (NHC) (Figure 1a). 

In synthesis, NHCs derived from solid thiazolium, imidazolium and triazolium salts (Figure 1b) have 

proven to be efficient metal-free catalysts for a vast number of chemical transformations [14–21]. 

Although dialkyl imidazolium salts constitute the basis for a large number of commercial ILs, the use of 

such as NHC precatalysts in synthesis is underutilized compared to their solid counterpart [22–35]. 

 

Figure 1. (a) Deprotonation of EMIMAc yields the corresponding NHC; (b) Common  

NHC precatalysts. 

Solvents account for the majority of waste in chemical industry. For example, in fine chemical 

production, solvents comprise more than 80% of the mass utilization, consume about 60% of the overall 

energy used, and are responsible for 50% of the post-treatment greenhouse gas emissions [36–38]. A novel 

strategy to reduce solvent usage is to employ multicomponent reactions (MCRs) rather than multistep 

synthesis, hence omitting the use of several solvent-intensive purification steps [39]. Consequently, an 

MCR approach is less laborious and results in less waste per bond-forming step. Aside from the 

substantial sustainability benefits, MCRs enable the construction of complex molecules from simple 

starting materials in a single step. 

Recently, we reported the use of EMIMAc as a precatalyst in the formal Michael addition of  

α,β-unsaturated aldehydes to chalcones in the synthesis of oxo triphenylhexanoates (OTHOs) [40,41]. 

In this study it was also shown that one of the OTHOs was a potent low-molecular-weight gelator in 

hydrocarbon-based solvents. In order to further evaluate the OTHOs as gelators, a rapid and straightforward 

method of obtaining a library of compounds was required. For these purposes a multicomponent reaction 

would be ideal. Retrosynthetically, only three disconnections of the OTHO scaffold were required to enable 

the use of inexpensive and commercially available acetophenones, benzaldehydes, unsaturated 

aldehydes, and alcohols (Scheme 1) as starting materials for a multicomponent OTHO assembly. 

However, multiple challenges associated with side reactions such as benzaldehyde dimerization (benzoin 
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condensation), α,β-unsaturated aldehyde cross-reactivity, and accumulation of water in the reaction 

mixtures were expected with the MCR strategy. 

 

Scheme 1. Retrosynthesis of OTHOs. 

2. Results and Discussion 

The reaction between acetophenone, benzaldehyde, cinnamaldehyde, and methanol was chosen as a 

model reaction to investigate multicomponent OTHO synthesis. Initial experiments highlighted that 

sequencing the addition of reagents in an appropriate order could circumvent many of the expected 

problems (see Table 1 for a condensed optimization). A base screen indicated that strong bases such as 

tBuOK and NaOMe (Table 1, entry 1 and 2) were favored in the initial Claisen-Schmidt reaction and 

gave 10, however, in low yields. The 1H NMR investigations displayed close to quantitative formation 

of the chalcone, indicating that the losses occur in the later steps of the MCR. Medium-strong bases such 

as TBD and Cs2CO3 (Table 1, entry 3 and 6) proved to be better suited and gave the product in  

moderate-to-good yields, but with elongated reaction times (up to 72 h). The previous base of choice, 

DBU, failed to initiate the reaction (Table 1, entry 8). A range of trials with reduced amounts of solvents 

were performed in an attempt to speed up the reaction with the medium-strong bases. Gratifyingly, the 

strategy proved effective and full conversion could be achieved within 5 h when using the alcohol 

component of the reaction (in this case methanol) as the sole solvent in the first part of the MCR. Under 

these conditions TBD proved the most effective, yielding 10 in 66% yield (Table 1, entry 4). 

Regarding solvent selection, dichloromethane and acetonitrile proved the most suitable, whereas  

1,4-dioxane and methanol were inferior in terms of yield (Table 1, entry 4, 5, 9, and 10). Acetonitrile was 

selected as the solvent of choice, given that it is considered to be more environmentally benign than 

dichloromethane. Three other ILs proved successful, namely BMIMCl, EMIMCl, and EMIMLactate, 

giving the product in 52%–59% yields; however, EMIMAc remained the IL of choice (Table 1,  

entry 11–13). These results indicate that the anion has a noticeable effect on the reaction outcome.  

A plausible explanation could be that the basicity of the anion is important, either by deprotonation of 

the NHC precursor [42] or by hindering protonation of the homoenolate [43], which would result in less 

side product formation. Notably, other commonly used non-IL precatalysts failed to promote the reaction 

(Table 1, entry 14–16). Moreover, in the case of EMIMLactate, the chiral anion did not induce any 

asymmetry in the reaction under our conditions. 
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Table 1. Optimization of the IL-mediated four-component reaction of OTHOs a. 

 
Entry Solvent Base NHC Precatalyst Yield (%) b 

1 acetonitrile NaOMe EMIMAc 35 
2 acetonitrile tBuOK EMIMAc 38 
3 acetonitrile TBD EMIMAc 54 

4 c acetonitrile TBD EMIMAc 66 
5 c dichloromethane TBD EMIMAc 65 
6 acetonitrile Cs2CO3 EMIMAc 45 

7 d acetonitrile NaOH EMIMAc 43 
8 acetonitrile DBU EMIMAc 0 

9 c 1,4-dioxane TBD EMIMAc 20 
10 c methanol TBD EMIMAc 31 
11 c acetonitrile TBD BMIMCl 56 
12 c acetonitrile TBD EMIMLactate 59 
13 c acetonitrile TBD EMIMCl 52 
14 c acetonitrile TBD 3 0 
15 c acetonitrile TBD 4 0 
16 c acetonitrile TBD 5 0 

 
a: acetophenone (0.25 mmol), benzaldehyde (1.1 eq.), base (0.5 eq.), methanol (10 eq.), cinnamaldehyde (3 eq.), 

NHC precatalyst (2.5 eq.), solvent (3 mL) at room temperature; b: Yields determined by 1H NMR using  

1,2,4,5-tetramethylbenzene as internal standard, 20:1 dr; c: Reduced amount of solvent; d: Reduced amount of 

solvent, 10 eq. of NaOH used. 

Next, the scope of the reaction was systematically investigated in terms of the individual components 

(acetophenone, benzaldehyde, α,β-unsaturated aldehyde, and alcohol) and the results are presented in 

Schemes 2 and 3. It was shown that the reaction is general and the acetophenone component could be 

varied to a high extent. For example, 1-(thiophen-2-yl)ethan-1-one performed well and the 

corresponding ketoester 13 was isolated in 83% yield (Scheme 2). Halogen-substituted OTHOs, which 

are potentially important handles for traceless cross-coupling modifications, could be swiftly accessed 

in high yield (Scheme 2, entry 11 and 12). Both electron-rich and electron-deficient benzaldehydes can 

beneficially be used in the four-component assembly, providing compounds 16–22 in high yields (Scheme 

2). Heteroaromatic components such as furfural are also tolerated and compound 23 can be isolated in 

52% yield. Interestingly, it was found that cinnamaldehyde could replace benzaldehyde generating 

ketoester 24 in 55% yield, resulting in the unprecedented introduction of a double bond to the OTHO 

scaffold. Furthermore, the α,β-unsaturated aldehyde can also be altered with aromatic electron-donating 

and electron-withdrawing substituents (Scheme 3, entries 25–28). For example, 4-fluoro-cinnamaldehyde 
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gave the corresponding fluoro compound 28 in 72% yield. The fourth component, the alcohol, can also 

be changed with ethanol and benzyl alcohol, providing their corresponding ketoesters in 73% and 59% 

yield, respectively. Notably, with an MCR approach the bond-forming efficiency of the OTHO synthesis 

was improved. As an example of this, compound 21 could be generated in 88% yield, which accounts 

for a yield of >95% per bond-forming step (three bonds formed). The method proved especially valuable 

in the synthesis of 20, 23, and 24, by eliminating time-consuming and waste-producing workup of the 

corresponding chalcone. 

Scheme 2. Scope of acetophenone and benzaldehyde. 
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Scheme 3. Scope of unsaturated aldehyde and alcohol. 

 

Significant efforts were made to recycle the IL by utilizing its low vapor pressure to further improve 

the sustainability of the reaction. Initial investigations showed that the original workup procedure was 

inappropriate with total deactivation of the IL occurring after two runs (Figure 2). The issue was 

identified as the usage of a methanol/water wash in the purification. When water is present the EMIMAc 

mixture needed to be dried at a higher temperature for a longer period of time, and this was suspected to 

be detrimental for the activity. By simply removing the water from the washing step, it was possible to 

recover and reuse the EMIMAc five consecutive times without reduced activity or selectivity. Efforts 

were made to elucidate the deactivation mechanism in the initial attempt. When mixtures of 

EMIMAc/water, EMIMAc/water/TBD, and pure EMIMAc were subjected to these conditions, no 

degradation or deactivation could be detected: hence, another deactivation route must be active. The 1H 

and 13C NMR investigations of the deactivated EMIMAc mixture showed the presence of several 

imidazolium species. Imidazolium-based ILs are known to degrade via several pathways, including 

dealkylation, hydrolysis, and rearrangements, all of which are highly influenced by other reaction 

additives [44,45]. Although the deactivation pathways remain elusive, it can be circumvented by using 

the pure methanol workup. 
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Figure 2. The results of the recycling experiments. 

Mechanistically, deprotonation of EMIMAc yields the catalytically active carbene I which adds 

reversibly to cinnamaldehyde, forming Breslow intermediate II (Scheme 4). The Breslow intermediate 

then undergoes a formal Michael addition to the chalcone, formed in a base-catalyzed Claisen-Schmidt 

condensation between benzaldehyde and acetophenone, to give acyl azolium III. A nucleophilic attack 

by methanol delivers product 10 and regenerates the active carbene. 

 

Scheme 4. The proposed mechanism for the four-component synthesis of OTHOs, R = Me, Et. 

3. Experimental Section 

3.1. General Information 

Column chromatography was performed on automated column chromatography Biotage Isolera™ 

Spektra One with Biotage SNAP®-10g KP-sil columns. Thin layer chromatography (TLC) was 

performed on Merck TLC plates pre-coated with silica gel 60 F254 (Art 5715, 0.25 mm) and visualized 

with UV light (254 nm). The 1H NMR (400 MHz), 13C NMR (101 MHz) and 19F NMR (376 MHz) were 

recorded on a Varian 400. The chemical shifts are reported in parts per million δ (ppm) relative to the 

residual solvent peak CDCl3; 1H NMR at δ 7.26 ppm and 13C NMR at δ 77.2 ppm. Coupling constants 

(J) are reported in Hertz (Hz) and multiplicities are indicated by: s (singlet), dd (doublet of doublets),  
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t (triplet), q (quartet), m (multiplet). Infrared (IR) spectra were recorded on a Perkin Elmer series FT-IR 

Spectrometer and are reported in wavenumber (cm−1) as follows: vs (very strong), s (strong), m 

(medium), w (weak), br (broad). Melting points were recorded on a Büchi Melting Point B-545. The  

1-Ethyl-3-methylimidazolium acetate (EMIMAc) was purchased from Sigma-Aldrich (Sweden AB, 

Stockholm, Sweden), produced by BASF ≥95% and dried in vacuo with heating prior to use. All other 

solvents and reagents were purchased from commercial sources and used without further treatments. 

NMR Spectras can be viewed in the supporting material (Figure S1–S45). 

3.2. Representative Procedure for the One-Pot Four-Component Synthesis of OTHOs 

To a 10 mL round bottom flask equipped with a magnet was added: 1,5,7-triazabicyclo[4.4.0]dec-5-ene 

(45.9 mg, 0.33 mmol), methanol (211 mg, 6.6 mmol), benzaldehyde (77.8 mg, 0.73 mmol), and 

acetophenone (79.7 mg, 0.66 mmol). The mixture was stirred at room temperature. If a precipitation was 

formed, a small amount of acetonitrile was added to dissolve the chalcone. When 1H NMR indicated full 

consumption of acetophenone, a mixture of 1-ethyl-3-methylimidazolium acetate (282.2 mg, 1.7 mmol) 

and cinnamaldehyde (262.4 mg, 2.0 mmol) in acetonitrile (7 mL) was added. The mixture was stirred at 

room temperature. After 3 h, 1H NMR indicated full consumption of chalcone and the volatiles were 

removed under reduced pressure. To the solids a methanol/water (3:1, 7 mL) mixture was added and the 

mixture was stirred violently for 30 min. The heterogeneous mixture was filtered on a frit and washed 

first with water, then cold methanol/water (3:1) mixture, and lastly cold methanol. The solids were dried and 

the product was obtained as white powder (214.0 mg, 0.57 mmol, 87% yield). 

3.3. Procedure for Recycling of EMIMAc 

To a 25 mL round bottom flask equipped with a magnet was added: 1,5,7-triazabicyclo[4.4.0]dec-5-ene 

(48.7 mg, 0.35 mmol), methanol (223.1 mg, 7.0 mmol), benzaldehyde (81.7 mg, 0.77 mmol), and 

acetophenone (84.7 mg, 0.70 mmol). The mixture was stirred at room temperature. After 2 h, 

cinnamaldehyde (277.4 mg, 2.1 mmol), acetonitrile (7 mL), and 1-ethyl-3-methylimidazolium acetate 

(297.9 mg, 1.8 mmol) were added to the stirring mixture. The mixture was stirred at room temperature. 

After 3 h, 1H NMR indicated full consumption of chalcone and the volatiles were removed under reduced 

pressure. Methanol (7 mL) was added to the remaining solids and the mixture was stirred violently for 

30 min. The heterogeneous mixture was filtered on a frit and washed with cold methanol. The solids 

were dried and the product was obtained as white powder (198.7 mg, 0.53 mmol, 76% yield). The 

methanolic mixture obtained from the filtration was collected and the volatiles were removed under 

reduced pressure, yielding an orange oil. The oil was re-used without further purification. The procedure 

was repeated for a total of five times. 

Methyl-6-oxo-3,4,6-triphenylhexanoate (10) [40]: Synthesized from benzaldehyde, acetophenone, 

cinnamaldehyde and methanol according to the representative procedure. Obtained as a white solid 

(214.0 mg, 0.57 mmol, 87% yield, 20:1 dr). 1H NMR (400 MHz, CDCl3) δ 7.66–7.61 (m, 2H),  

7.47–7.41 (m, 1H), 7.36–7.26 (m, 10H), 7.25–7.15 (m, 2H), 3.65–3.56 (m, 1H), 3.48–3.40 (m, 1H) 3.37 

(s, 3H), 3.28 (dd, J = 16.6, 10.2 Hz, 1H), 2.90–2.87 (m, 1H), 2.52–2.37 (m, 2H). 13C NMR (101 MHz, 
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CDCl3) δ 198.7, 172.7, 142.5, 142.3, 137.2, 132.9, 128.9, 128.8 128.5, 128.4, 128.0, 127.3, 127.0, 51.5, 

48.0, 47.0, 43.9, 40.0. mp: 161.3–164.4 °C. 

Methyl-6-(4-chlorophenyl)-6-oxo-3,4-diphenylhexanoate (11) [40]: Synthesized from benzaldehyde, 

4-chloroacetophenone, cinnamaldehyde and methanol according to the representative procedure. 

Obtained as a white solid (225.3 mg, 0.55 mmol, 78% yield, 20:1 dr). 1H NMR (400 MHz, CDCl3)  

δ 7.58–7.51 (m, 2H), 7.39–7.26 (m, 10H), 7.26–7.15 (m, 2H), 3.61–3.53 (m, 1H), 3.47–3.39 (m, 1H), 

3.37 (s, 3H), 3.21 (dd, J = 16.5, 10.1 Hz, 1H), 2.87 (dd, J = 16.5, 3.4 Hz, 1H), 2.52–2.37 (m, 2H).  
13C NMR (101 MHz, CDCl3) δ 197.6, 172.6, 142.2, 139.3, 135.5, 129.4, 128.9, 128.8, 128.8, 128.4, 

128.3, 127.3, 127.1, 51.5, 48.0, 47.1, 43.9, 40.0. mp: 165.0–166.0 °C. 

Methyl-6-(4-bromophenyl)-6-oxo-3,4-diphenylhexanoate (12) [40]: Synthesized from benzaldehyde, 

4-bromoacetophenone, cinnamaldehyde and methanol according to the representative procedure. 

Obtained as a white solid (247.6 mg, 0.55 mmol, 73% yield, 20:1 dr). 1H NMR (400 MHz, CDCl3)  

δ 7.58–7.51 (m, 2H), 7.39–7.26 (m, 10H), 7.26–7.15 (m, 2H), 3.61–3.53 (m, 1H), 3.47–3.39 (m, 1H), 

3.37 (s, 3H), 3.21 (dd, J = 16.5, 10.1 Hz, 1H), 2.87 (dd, J = 16.5, 3.4 Hz, 1H), 2.52–2.37 (m, 2H).  
13C NMR (101 MHz, CDCl3) δ 198.1, 172.9, 142.6, 142.5, 136.2, 132.1, 129.8, 129.2, 129.2, 128.7, 

128.7, 128.3, 127.6, 127.5, 51.8, 48.3, 47.5, 44.2, 40.3. mp: 169.9–171.3 °C. 

Methyl-6-oxo-3,4-diphenyl-6-(thiophen-2-yl)hexanoate (13): Synthesized from benzaldehyde,  

2-acetylthiophene, cinnamaldehyde and methanol according to the representative procedure but purified 

by column chromatography (with petroleum ether (40–60 °C)/EtOAc mixture, 25 mL/min, petroleum 

ether 100%→6%→8%→50% EtOAc in petroleum ether). Obtained as a white solid (103.3 mg,  

0.27 mmol, 83% yield, 20:1 dr). 1H NMR (400 MHz, CDCl3) δ 7.50–7.47 (m, 1H), 7.42–7.37 (m, 1H),  

7.36–7.26 (m, 8H), 7.25–7.15 (m, 2H), 6.99–6.95 (m, 1H), 3.63–3.53 (m, 1H), 3.47–3.39 (m, 1H), 3.37 

(s, 3H), 3.17 (dd, J = 16.1, 10.4 Hz, 1H), 2.83 (dd, J = 16.1, 3.5 Hz, 1H), 2.52–2.36 (m, 2H). 13C NMR  

(101 MHz, CDCl3) δ 191.4, 172.6, 144.5, 142.2, 142.1, 133.5, 131.7, 128.9, 128.8, 128.4, 128.4, 127.9, 

127.3, 127.1, 51.5, 47.9, 47.3, 44.7, 40.0. IR (KBr) νmax/cm−1: 3940 (br, w), 3082 (w), 3026 (w), 2916 

(w), 1730 (vs), 1654 (vs), 1418 (s), 1376 (w), 1240 (s), 1156 (s), 1072 (w), 782 (w), 702 (m), 556 (m). 

mp: 192.7–193.4 °C. 

Methyl-6-(3,4-dimethoxyphenyl)-6-oxo-3,4-diphenylhexanoate (14): Synthesized from benzaldehyde, 

3,4-dimethoxyacetophenone, cinnamaldehyde and methanol according to the representative procedure. 

Obtained as a white solid (208.3 mg, 0.48 mmol, 68% yield, 20:1 dr). 1H NMR (400 MHz, CDCl3)  

δ 7.39–7.27 (m, 8H), 7.26–7.15 (m, 4H), 6.77–6.72 (m, 1H), 3.88 (s, 3H), 3.81 (s, 3H). 3.63–3.54  

(m, 1H), 3.48–3.39 (m, 1H), 3.37 (s, 3H), 3.22 (dd, J = 16.4, 10.7 Hz, 1H), 2.86 (dd, J = 16.4, 3.4 Hz, 

1H), 2.51–2.37 (m, 2H). 13C NMR (101 MHz, CDCl3) δ 197.3, 172.7, 153.1, 148.9, 142.5, 142.4, 130.4, 

128.8, 128.8, 128.5, 128.3, 127.2, 127.0, 122.6, 110.2, 109.9, 56.1, 56.0, 51.5, 48.0, 47.3, 43.4, 40.1.  

IR (KBr) νmax/cm−1: 3062 (w), 2940 (m), 2846 (w), 1730 (vs), 1666 (vs), 1590 (vs), 1514 (m), 1458 (s),  

1420 (s), 1376 (m), 1346 (m), 1274 (vs), 1226 (vs), 1150 (vs), 1024 (s), 766 (m), 700 (s), 556 (m).  

mp: 147.0–149.0 °C. 

Methyl-6-(naphthalen-2-yl)-6-oxo-3,4-diphenylhexanoate (15): Synthesized from benzaldehyde, 

2′-acetonapthone, cinnamaldehyde and methanol according to the representative procedure. Obtained as 

a white solid (195.2 mg, 0.46 mmol, 65% yield, 20:1 dr). 1H NMR (400 MHz, CDCl3) δ 8.09 (s, 1H), 
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7.88–7.66 (m, 4H), 7.58–7.47 (m, 2H), 7.41–7.28 (m, 7H), 7.28–7.26 (m, 1H), 7.26–7.22 (m, 1H),  

7.21–7.15 (m, 1H), 3.69–3.60 (m, 1H), 3.53–345 (m, 1H), 3.42–3.31 (m, 4H), 3.06 (dd, J = 16.2, 3.3 Hz, 

1H), 2.54–2.38 (m, 2H). 13C NMR (101 MHz, CDCl3) δ 198.8, 172.7, 142.4, 142.4, 135.5, 134.5, 132.5, 

129.6, 129.6, 128.9, 128.8, 128.5, 128.4, 128.3, 127.8, 127.3, 127.1, 126.8, 123.9, 51.5, 48.0, 47.4, 44.1, 

40.1. IR (KBr) νmax/cm−1: 3060 (m), 3030 (m), 2948 (w), 2846 (w), 1730 (vs), 1676 (vs), 1498 (m),  

1438 (m), 1378 (m), 1280 (m), 1232 (s), 1154 (s), 998 (w), 948 (w), 860 (w), 820 (w), 774 (m), 700 (s),  

564 (m), 474 (m). mp: 198.7–200.0 °C. 

Methyl-6-oxo-3,6-diphenyl-4-(p-tolyl)hexanoate (16) [40]: Synthesized from p-tolualdehyde, 

acetophenone, cinnamaldehyde and methanol according to the representative procedure. Obtained as a 

white solid (204.6 mg, 0.53 mmol, 78% yield, 20:1 dr). 1H NMR (400 MHz, CDCl3) δ 7.65–7.60  

(m, 2H), 7.47–7.41 (m, 1H), 7.37–7.28 (m, 6H), 7.25–7.17 (m, 3H), 7.26–7.12 (m, 2H), 3.59–3.51  

(m, 1H), 3.44–3.40 (m, 1H) 3.37 (s, 3H), 3.24 (dd, J = 16.8, 10.4 Hz, 1H), 2.88 (dd, J = 16.8, 3.3 Hz, 

1H), 2.50–2.38 (m, 2H) 2.28 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 198.2, 172.8, 142.4, 139.4, 137.2, 

136.6, 132.8, 129.8, 128.9, 128.5, 128.4, 128.3, 128.0, 127.2, 51.4, 48.1, 46.6, 44.0, 40.1, 21.2.  

mp: 156.7–157.9 °C. 

Methyl-6-oxo-3,6-diphenyl-4-(m-tolyl)hexanoate (17) [40]: Synthesized from m-tolualdehyde, 

acetophenone, cinnamaldehyde and methanol according to the representative procedure. Obtained as a 

white solid (181.6 mg, 0.47 mmol, 66% yield, 20:1 dr). 1H NMR (400 MHz, CDCl3) δ 7.66–7.59  

(m, 2H), 7.47–7.41 (m, 1H), 7.36–7.27 (m, 6H), 7.24–7.06 (m, 4H), 6.99 (m, 1H), 3.59–3.51 (m, 1H),  

3.44–3.38 (m, 1H), 3.37 (s, 3H), 3.26 (dd, J = 16.7, 10.1 Hz, 1H), 2.89 (dd, J = 16.7, 3.3 Hz, 1H),  

2.51–2.37 (m, 2H), 2.32 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 198.8, 172.8, 142.5, 142.3, 138.3, 137.2, 

132.8, 129.2, 128.8, 128.6, 128.4, 128.4, 128.0, 127.8, 127.2, 125.4, 51.4, 48.0, 46.9, 43.9, 40.1, 21.7. 

mp: 172.2–173.0 °C. 

Methyl-6-oxo-3,6-diphenyl-4-(o-tolyl)hexanoate (18) [40]: Synthesized from o-tolualdehyde, 

acetophenone, cinnamaldehyde and methanol according to the representative procedure. Obtained as a 

white solid (208.6 mg, 0.54 mmol, 76% yield, 20:1 dr). 1H NMR (400 MHz, CDCl3) δ 7.65–7.59  

(m, 2H), 7.46–7.41 (m, 1H), 7.37–7.27 (m, 7H), 7.25–7.20 (m, 1H), 7.14–7.11 (m, 2H), 7.09–7.04 

 (m, 1H), 3.97–3.87 (m, 1H), 3.44–3.28 (m, 5H), 2.91 (dd, J = 16.7, 3.5 Hz, 1H), 2.55–2.49 (m, 1H) 2.46 

(s, 3H), 2.36 (dd, J = 15.4, 4.3 Hz, 1H). 13C NMR (101 MHz, CDCl3) δ 198.9, 172.6, 142.4, 141.1, 137.5, 

137.2, 132.8, 130.6, 128.9, 128.5, 128.4, 128.0, 127.2, 126.7, 126.6, 125.9, 51.5, 49.1, 44.1, 40.9, 39.1, 

20.3. mp: 134.0–139.8 °C. 

Methyl-4-(4-methoxyphenyl)-6-oxo-3,6-diphenylhexanoate (19) [40]: Synthesized from  

p-methoxybenzaldehyde, acetophenone, cinnamaldehyde and methanol according to the representative 

procedure. Obtained as a white solid (205.9 mg, 0.51 mmol, 75% yield, 20:1 dr). 1H NMR (400 MHz, 

CDCl3) δ 7.65–7.60 (m, 2H), 7.47–7.42 (m, 1H), 7.36–7.28 (m, 6H), 7.25–7.19 (m, 3H), 6.85–6.79  

(m, 2H), 3.76 (s, 3H), 3.58–3.50 (m, 1H), 3.43–3.34 (m, 4H), 3.22 (dd, J = 16.6, 10.4 Hz, 1H), 2.87  

(dd, J = 16.6, 3.4 Hz, 1H), 2.49–2.39 (m, 2H).13C NMR (101 MHz, CDCl3) δ 198.9, 172.8, 158.5, 142.4, 

137.2, 134.4, 132.9, 129.4, 128.9, 128.5, 128.3 128.0, 127.2, 114.2, 55.3, 51.5, 48.2, 46.3, 44.0, 40.0.  

mp: 143.4–145.7 °C. 
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Methyl-4-(2-methoxyphenyl)-6-oxo-3,6-diphenylhexanoate (20): Synthesized from  

o-methoxybenzaldehyde, acetophenone, cinnamaldehyde and methanol according to the representative 

procedure. Obtained as a white solid (198.1 mg, 0.49 mmol, 70% yield, 20:1 dr). 1H NMR (400 MHz, 

CDCl3) δ 7.64–7.58 (m, 2H), 7.46–7.40 (m, 1H), 7.38–7.28 (m, 6H), 7.25–7.13 (m, 3H), 6.92–6.80  

(m, 2H), 4.00–3.92 (m, 1H), 3.82 (s, 3H), 3.63–3.52 (m, 1H), 3.43–3.37 (m, 1H), 3.35 (s, 3H), 2.88  

(dd, J = 16.6, 3.4 Hz, 1H), 2.57–2.36 (m, 2H). 13C NMR (101 MHz, CDCl3) δ 199.3, 172.9, 157.9, 142.9, 

137.3, 132.6, 130.2, 129.5, 128.7, 128.5, 128.3, 128.0, 127.1, 120.9, 111.1, 55.6, 51.3, 46.9, 42.4, 39.9. 

IR (KBr) νmax/cm−1: 3060 (w), 3026 (w), 2946 (m), 1738 (vs), 1684 (vs), 1596 (w), 1494 (m), 1454 (m), 1378 

(w), 1344 (w), 1242 (vs), 1156 (s), 1078 (w), 752 (s), 696 (s), 584 (w). mp: 110.8–112.4 °C. 

Methyl-4-(4-chlorophenyl)-6-oxo-3,6-diphenylhexanoate (21): Synthesized from  

p-chlorobenzaldehyde, acetophenone, cinnamaldehyde and methanol according to the representative 

procedure. Obtained as a white solid (304.1 mg, 0.75 mmol, 88% yield, 20:1 dr). 1H NMR (400 MHz, 

CDCl3) δ 7.66–7.61 (m, 2H), 7.49–7.44 (m, 1H), 7.38–7.27 (m, 8H), 7.25–7.14 (m, 3H), 3.64–3.52  

(m, 1H), 3.46–3.35 (m, 4H), 3.23 (dd, J = 16.9, 10.4 Hz, 1H) 2.9 (dd, J = 17.0, 3.4 Hz, 1H), 2.51–2.36 

(m, 2H). 13C NMR (101 MHz, CDCl3) δ 198.4, 172.5, 141.94, 141.1, 137.0, 133.1, 132.7, 129.9, 129.0, 

128.9, 128.6, 128.3, 128.0, 127.4, 51.5, 47.8, 46.3, 43.7, 39.9. IR (KBr) νmax/cm−1: 3060 (w), 3026 (w), 

2946 (w), 1734 (vs), 1676 (vs), 1494 (m), 1438 (m), 1380 (m), 1336 (w), 1276 (m), 1236 (s), 1166 (s), 

1096 (w), 1002 (m), 832 (m), 754 (m), 696 (m), 554 (m). mp: 179.1–180.2 °C. 

Methyl-4-(4-bromophenyl)-6-oxo-3,6-diphenylhexanoate (22) [40]: Synthesized from  

p-bromobenzaldehyde, acetophenone, cinnamaldehyde and methanol according to the representative 

procedure. Obtained as a white solid (242.0 mg, 0.54 mmol, 74% yield, 20:1 dr). 1H NMR (400 MHz, 

CDCl3) δ 7.66–7.62 (m, 2H), 7.49–7.39 (m, 3H), 7.36–7.28 (m, 6H), 7.25–7.17 (m, 3H), 3.63–3.52  

(m, 1H), 3.44–3.36 (m, 4H), 3.23 (dd, J = 16.9, 10.6 Hz, 1H) 2.9 (dd, J = 16.9, 3.1 Hz, 1H), 2.51–2.35 

(m, 2H) 13C NMR (101 MHz, CDCl3) δ 198.2, 172.3, 141.7, 141.4, 136.8, 132.9, 131.7, 130.1, 128.8, 

128.4, 128.1, 127.8, 127.2, 120.6, 51.4, 47.6, 46.1, 43.5, 39.7. mp: 170.2–172.0 °C. 

Methyl-4-(furan-2-yl)-6-oxo-3,6-diphenylhexanoate (23) [40]: Synthesized form furfural, 

acetophenone, cinnamaldehyde and methanol according to the representative procedure. Obtained as a 

brown solid (135.8 mg, 0.37 mmol, 52% yield, 20:1 dr). 1H NMR (400 MHz, CDCl3) δ 7.74–7.69  

(m, 2H), 7.51–7.45 (m, 1H), 7.39–7.26 (m, 7H), 7.24–7.19 (m, 1H), 6.26–6.21 (m, 1H), 6.15–6.11 (m, 1H),  

3.79–3.71 (m, 1H), 3.57–3.47 (m, 1 H), 3.44 (s, 3H), 3.42–3.34 (m, 1H), 2.82 (dd, J = 16.7, 3.5 Hz, 1H), 

2.61–2.48 (m, 2H). 13C NMR (101 MHz, CDCl3) δ 198.4, 172.4, 155.0, 141.9, 141.7, 137.0, 133.0, 

128.9, 128.5, 128.2, 128.1, 127.3, 110.3, 107.9, 51.6, 46.2, 41.1, 40.4, 39.7. mp: 142.7–143.4 °C. 

Methyl (E)-4-(2-oxo-2-phenylethyl)-3,6-diphenylhex-5-enoate (24): Synthesized from 

acetophenone, cinnamaldehyde and methanol according to the representative procedure. Obtained as a 

white solid (152.3 mg, 0.38 mmol, 55% yield, 20:1 dr). 1H NMR (400 MHz, CDCl3) δ 7.66–7.61 (m, 2H), 

7.47–7.41 (m, 1H), 7.36–7.26 (m, 10H), 7.25–7.15 (m, 2H), 3.65–3.56 (m, 1H), 6.46 (d, J = 15.8 Hz, 1H), 

6.04 (dd, J = 15.8, 9.3 Hz, 1H) 3.48–3.40 (m, 1H) 3.37 (s, 3H), 3.28 (dd, J = 16.6, 10.2 Hz, 1H),  

2.90–2.87 (m, 1H), 2.52–2.37 (m, 2H). 13C NMR (101 MHz, CDCl3) δ199.0, 172.9, 142.4, 137.3, 137.0, 

132.9, 131.0, 128.9, 128.6, 128.3, 128.1, 127.5, 127.2, 126.4, 77.2, 51.6, 46.4, 45.6, 42.5, 40.2. IR (KBr) 
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νmax/cm−1: 3450 (br, w), 3060 (w), 3026 (w), 2948 (w), 2890 (w), 1732 (vs), 1678 (vs), 1596 (w), 1494 (w), 

1440 (m), 1376 (m), 1272 (m), 1272 (s), 1166 (s), 968 (m), 752 (s), 696 (s). mp: 137.0–138.4 °C. 

Methyl-6-oxo-4,6-diphenyl-3-(p-tolyl)hexanoate (25) [40]: Synthesized from benzaldehyde, 

acetophenone, 4-methylcinnamaldehyde and methanol according to the representative procedure but 

purified by column chromatography (with petroleum ether (40–60 °C)/EtOAc mixture, 25 mL/min, 

petroleum ether 100%→6%→8%→50% EtOAc in petroleum ether). Obtained as a white solid (112.1 mg, 

0.29 mmol, 84% yield, 20:1 dr). ). 1H NMR (400 MHz, CDCl3) δ 7.69–7.59 (m, 2H), 7.47–7.42 (m, 1H), 

7.34–7.26 (m, 6H), 7.24–7.11 (m, 5H), 3.62–3.51 (m, 1H), 3.44–3.35 (m, 4H), 3.27 (dd, J = 16.7, 10.5 Hz, 

1H), 2.92 (dd, J = 16.7, 3.5 Hz, 1H), 2.50–2.36 (m, 2H), 2.31 (s, 3H). 13C NMR (101 MHz, CDCl3)  

δ 198.8, 172.7, 142.7, 139.1, 137.2, 136.7, 132.8, 129.5, 128.7, 128.4, 128.4, 128.2, 128.0, 126.9, 51.4, 

47.6, 47.0, 44.0, 40.1, 21.2. mp: 163.2–164.5 °C. 

Methyl-3-(4-methoxyphenyl)-6-oxo-4,6-diphenylhexanoate (26) [40]: Synthesized from 

benzaldehyde, acetophenone, 4-methoxycinnamaldehyde and methanol according to the representative 

procedure. Obtained as a white solid (199.7 mg, 0.50 mmol, 71% yield, 20:1 dr). 1H NMR (400 MHz, 

CDCl3) δ 7.67–7.61 (m, 2H), 7.48–7.42 (m, 1H), 7.36–7.28 (m, 6H), 7.25–7.15 (m, 3H), 6.88–6.83  

(m, 2H), 3.78 (s, 3H), 3.60–3.52 (m, 1H), 3.42–3.33 (m, 4H), 3.25 (dd, J = 16.5, 10.0 Hz, 1H), 2.93  

(dd, J = 16.5, 3.4 Hz, 1H), 2.47–2.34 (m, 2H). 13C NMR (101 MHz, CDCl3) δ 198.8, 172.8, 158.7, 142.7, 

137.2, 134.1, 132.9, 129.3, 128.8, 128.4, 128.4, 128.0, 127.0, 114.2, 55.3, 51.5, 47.2, 47.2, 44.0, 40.2. 

mp: 160.8–161.7 °C. 

Methyl-3-(4-chlorophenyl)-6-oxo-4,6-diphenylhexanoate (27) [40]: Synthesized from 

benzaldehyde, acetophenone, 4-chlorocinnamaldehyde and methanol according to the representative 

procedure. Obtained as a white solid (187.9 mg, 0.46 mmol, 66% yield, 20:1 dr). 1H NMR (400 MHz, 

CDCl3) δ 7.70–7.61 (m, 2H), 7.50–7.43 (m, 1H), 7.39–7.23 (m, 10H), 7.22–7.16 (m, 1H), 3.64–3.52  

(m, 1H), 3.49–3.44 (m, 1H), 3.40 (s, 3H), 3.28 (dd, J = 16.8, 9.6 Hz, 1H), 2.94–2.85 (m, 1H), 2.50–2.36 

(m, 2H). 3C NMR (101 MHz, CDCl3) δ (s), 172.5, 142.2, 140.8, 137.1, 133.0, 129.7, 129.0, 128.9, 128.5, 

128.4, 127.9, 127.1, 51.6, 47.3, 46.7, 43.7, 39.8. mp: 180.5–181.3 °C. 

Methyl-3-(4-fluorophenyl)-6-oxo-4,6-diphenylhexanoate (28): Synthesized from benzaldehyde, 

acetophenone, 4-fluorocinnamaldehyde and methanol according to the representative procedure but 

purified by column chromatography (with petroleum ether (40–60 °C)/EtOAc mixture, 25 mL/min, 

petroleum ether 100%→6%→8%→50% EtOAc in petroleum ether). Obtained as a white solid (91.8 mg, 

0.24 mmol, 72% yield, 20:1 dr). 1H NMR (400 MHz, CDCl3) δ 7.67–7.61 (m, 2H), 7.49–7.43 (m, 1H), 

7.36–7.26 (m, 8H), 7.22–7.14 (m, 1H), 7.04–6.94 (m, 2H), 3.63–3.54 (m, 1H), 3.52–3.40 (m, 1H), 3.39  

(s, 3H), 3.32–3.22 (m, 1H), 2.95–2.85 (m, 1H), 2.49–2.37 (m, 2H). 13C NMR (101 MHz, CDCl3) δ 198.5, 

172.5, 163.2, 160.7, 142.4, 137.9, 137.1, 133.0, 129.9, 129.8, 128.5, 128.4, 127.9, 127.1, 115.8, 115.6, 

51.5, 47.2, 46.9, 43.8, 40.0. 19F NMR (376 MHz, CDCl3) −115.6. IR (KBr) νmax/cm−1: 3030 (w), 2950 

(w), 2888 (w), 1728 (vs), 1682 (vs), 1600 (w), 1508 (m), 1444 (m), 1374 (m), 1234 (vs), 1158 (s), 1006 

(w), 834 (m), 738 (m), 698 (m), 560 (m). mp: 169.4–174.6 °C. 
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Ethyl-6-oxo-3,4,6-triphenylhexanoate (29) [40]: Synthesized from benzaldehyde, acetophenone, 

cinnamaldehyde and ethanol according to the representative procedure. Obtained as a white solid  

(193.6 mg, 0.50 mmol, 73% yield, 20:1 dr). 1H NMR (400 MHz, CDCl3) δ 7.66–7.60 (m, 2H),  

7.47–7.41 (m, 1H), 7.39–7.27 (m, 9H), 7.25–7.13 (m, 3H), 3.82 (q, J = 7.0 Hz, 2H), 3.64–3.56 (m, 1H), 

3.47–3.36 (m, 1H), 3.28 (dd, J = 16.7, 10.2 Hz, 1H), 2.91 (dd, J = 16.7, 3.2 Hz, 1H), 2.50–2.34 (m, 2H), 

0.97 (t, J = 7.0 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 198.7, 172.3, 142.5, 142.2, 137.2, 132.9, 128.8, 

128.8, 128.5, 128.0, 127.2, 127.0, 60.2, 48.1, 47.1, 43.9, 40.3, 14.1. mp: 172.4–173.4 °C. 

Benzyl-6-oxo-3,4,6-triphenylhexanoate (30) [40]: Synthesized from benzaldehyde, acetophenone, 

cinnamaldehyde and benzyl alcohol according to the representative procedure. Obtained as a white solid 

(180.2 mg, 0.40 mmol, 59% yield, 20:1 dr). 1H NMR (400 MHz, CDCl3) δ 7.66–7.60 (m, 2H),  

7.49–7.42 (m, 1H), 7.38–7.27 (m, 10H), 7.25–7.13 (m, 5H), 7.08–7.00 (m, 2H) 4.83 (m, 2H), 3.65–3.55 

(m, 1H), 3.49–3.41 (m, 1H), 3.28 (dd, J = 16.6, 10.2 Hz, 1H), 2.90 (dd, J = 16.6, 3.4 Hz, 1H), 2.57–2.42 

(m, 2H). 13C NMR (101 MHz, CDCl3) δ 198.7, 172.2, 142.5, 142.1, 137.2, 135.9, 132.9, 128.9, 128.8, 

128.5, 128.5, 128.1, 128.0, 127.3, 127.0, 66.1, 48.1, 47.1, 43.9, 40.2. mp: 178.0–179.2 °C. 

4. Conclusions 

Herein, the first IL-mediated four-component synthesis of OTHOs is presented. The IL serves as a 

precatalyst that, upon deprotonation, generates the active NHC species. Careful base selection and usage 

of an IL-based precatalyst proved important for the success of the reaction, with excellent yields per 

bond-forming step (up to >95%). This one-pot, four-component OTHO synthesis is green in several 

perspectives: firstly, avoiding the pre-formation and isolation of chalcone saves time and resources. 

Secondly, a more environmentally friendly solvent is used compared to the previously reported protocol. 

Thirdly, the IL can be recycled and the reaction can be run up to five times without any negative effect 

on either yield or selectivity. The combination of a commercially available, inexpensive IL, with a large 

catalogue of readily available starting materials, makes the one-pot four-component assembly of OTHOs 

an ideal platform for the synthesis of diverse libraries of functionalized products, when run in a 

combinatorial fashion. 
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