catalysts MoPY

Article
Modification by SiO; of Alumina Support for Light
Alkane Dehydrogenation Catalysts

Giyjaz E. Bekmukhamedov *, Alya N. Mukhamed’yarova, Svetlana R. Egorova and
Alexander A. Lamberov

A. Butlerov Institute of Chemistry, Kazan Federal University, Kazan 420008, Russia; anm03@list.ru (A.N.M.);
svetlana.egorova@kpfu.ru (S.R.E.); alexanderlamberov@kpfu.ru (A.A.L.)
* Correspondence: gbekmouk@kpfu.ru; Tel.: +7-843-231-5346

Academic Editor: Keith Hohn
Received: 2 September 2016; Accepted: 13 October 2016; Published: 20 October 2016

Abstract: Due to the continuously rising demand for C3—Cs olefins it is important to improve the
performance of catalysts for dehydrogenation of light alkanes. In this work the effect of modification
by SiO, on the properties of the alumina support and the chromia-alumina catalyst was studied. SiO,
was introduced by impregnation of the support with a silica sol. To characterize the supports and the
catalysts the following techniques were used: low-temperature nitrogen adsorption; IR-spectroscopy;
magic angle spinning 2’Si nuclear magnetic resonance; temperature programmed desorption and
reduction; UV-Vis-, Raman- and electron paramagnetic resonance (EPR)-spectroscopy. It was shown
that the modifier in amounts of 2.5-7.5 wt % distributed on the support surface in the form
of SiOy-islands diminishes the interaction between the alumina support and the chromate ions
(precursor of the active component). As a result, polychromates are the compounds predominantly
stabilized on the surface of the modified support; under thermal activation of the catalyst and are
reduced to the amorphous Cr,Os. This in turn leads to an increase in the activity of the catalyst in the
dehydrogenation of isobutane.

Keywords: alumina support; chromia-alumina catalyst; silica; isobutane dehydrogenation

1. Introduction

Catalysts with surface chromium species as an active component have large practical importance
and are widely used in industrial organic synthesis. Microspherical chromia-alumina catalysts for
alkane dehydrogenation in terms of consumption hold the leading position in the petrochemical
industry of Russia [1]. This process is intended for production of C3—Cs-olefin which is the raw
material for synthesis of rubbers, plastics, synthetic films and filaments, high-octane components of
fuel, etc. [2].

There are two methods of microspherical chromia-alumina catalysts preparation: the mixing of
precursors of the support and active component followed by spray drying of the slurry obtained [3];
and the impregnation of the support by the solutions of the active component and the promoter.
The catalysts obtained by the first method have a low mechanical strength under the conditions of
a fluidized bed and the continuous circulation between the reactor and regenerator [4]. The method
of support impregnation seems the most promising. Earlier a method of a gibbsite transformation
to boehmite (precursor of y-Al,O3) in the volume of the microgranule by a sequential thermal and
hydrothermal treatment was developed [5]. The support obtained that way has a high mechanical
strength, middle porosity, and a low surface acidity.

Continuously rising demand for light olefins [2,6] as well as the increase in the cost of natural
energy resources requires high active and selective catalysts. It is possible to improve the catalyst
performance by introduction of the modifiers. The modifiers of chromia dehydrogenation catalyst
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SiO, [7], ZrO, [8-10], lanthanum [10,11], tin [7,12] and cerium [13] are usually used. Among
these modifiers SiO, is the most accessible and inexpensive; its use is broadly described in the
patent literature [14]. However, the mechanism of its positive effect on the performance of the
dehydrogenation catalyst has not been described in detail. Therefore, in this article we studied the effect
of modification of the structure and properties of the novel alumina support and chromia-alumina
catalyst by SiO;.

2. Results and Discussion
2.1. Alumina Support

2.1.1. Thermal Treatment of Boehmite Precursor

The microspherical support was used as a precursor of alumina (Figure 1). It was obtained
according to the Scheme 1 [5]:

Figure 1. Scanning electron microscopy (SEM) image of the microspherical support.

AI(OH)3 THERMAL TREATMENT Y'AlOOH + X’AIZO3 HYDROTHERMAL TREATMENT Y'AIOOH

Scheme 1. Production of alumina precursor.

According to the X-ray diffraction (Figure 2), the alumina precursor is a well-crystallized boehmite
with crystallite size D) = 44 nm and D(120) = 47 nm. A high degree of boehmite crystallinity causes
its small specific surface area (Sggr) and pore volume (V) = 27 m?.g~1 and 0.07 cm3-g~! respectively
(Table 1).

The choice of the boehmite thermal treatment temperature was made based on changes in the
specific surface area and the number of strong acid sites (with the energy of ammonia desorption
E ges NH, more than 150 kJ-mol~!) obtained in alumina (Table 1). It is known that strong acid sites are
active in hydrocarbon cracking reactions [15,16].

Thermal treatment of the precursor at 750 °C leads to the formation of mesopores (Figure 3), an
increase in the specific surface area up to 92 m?.g~! and in the pore volume up to 0.27 cm3-g~! as
a result of dehydration and the phase transition of boehmite to y-Al,O3 (Figure 2). An increase of
treatment temperature to 850 °C resulted in the decrease of the specific surface area to 62 m?-g~! due
to pore enlargement (Table 1).
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Figure 2. X-ray diffraction patterns of precursor of alumina and alumina support, obtained at 800 °C.

Table 1. Integral parameters of the porous system and the acidity of alumina supports.

Temperature Crystalline Brunauer-Emmett-Teller Pore Total Number of Number of Acid Sites
Sample of ri”hase (BET) Surface Area Volume Acid Sites with Eges Ng, >150
Treatment (m2.g~ 1) (em®.g~1) (umol-g—1) kJ-mol~! (umol-g~!)
Precursor of
Alumina - v-AIOOH 27 0.07 - -
Alumina 750 92 0.27 125.8 16.2
- 800 v-AlL, O3 83 0.26 102.3 10.0
PP 850 62 0.26 91.8 8.5
0.05
| Precursor
I — — ALD;-750°C
0047 | ——— ALD;-850°C
0.03 1

0.02 1

0.01 1

dV/dD Pore Volume (cnf-g-l-nm-l)

0.00

T T ———
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Figure 3. Pore size distribution for precursor of alumina and alumina supports, obtained at 750 °C and
850 °C.
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It is also accompanied by a decrease in the number of strong acid sites due to the reduction
of the support surface, its dehydroxylation, as well as the transformation of the crystal structure of
the support.

We believe the optimal temperature of boehmite precursor treatment is 800 °C. y-Al,O3 support
obtained under those conditions has a low concentration of strong acid sites (10.0 pmol-g’l) and a
medium surface area (Sper = 83 m?-g!). A decrease of the temperature to 750 °C is accompanied by
a 1.6-fold increase in the concentration of strong acid sites (up to 16.2 umol-g~—!) and an increase of
surface area by only 9 m?-g~! (up to 92 m?-g—!). An increase of the temperature to 850 °C leads to a
decrease in the specific surface area by 21 m?-g~! and a decrease in the concentration of strong acid
sites by just 1.5 umol-g~! (Table 1).

2.1.2. S5iO,-Modification of the Support

5i0,-modification of the support was carried out by its impregnation with an aqueous SiO;-sol
and subsequent thermal treatment at 800 °C. Introduction of silica in an amount of 2.5-7.5 wt % does
not affect the phase composition of the support. In the X-ray diffraction patterns of all the samples
(not shown in the current paper) the characteristic peaks of only y-Al,O3 were identified. The absence
of changes in the crystalline structure of the supports leads to the conclusion that the SiO; is localized
on the support’s surface. In the IR-spectrum of the SiO,-modified support the absorption band of
Si-OH at 3741 cm ™! [17,18] appears with a decrease of the intensity of the bands at 3751 and 3771 cm ™!
(Al-OH bond vibrations [19,20]) (Figure 4). This also indicates that the SiO, is distributed on the
support surface.
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e
—
1

SiO2

0.0 T T T
3600 3650 3700 3750 3800

Wavenumber (cm'l)

Figure 4. IR spectra of initial alumina support and a support containing 4.5 wt % SiO;.

On the surface of the modified supports silica is distributed in the form of SiO,-fragments
Si(06Si)30 and Si(OSi)4. This is indicated by the occurrence of the signals at —101 and —125 ppm on
the 2%Si Magic Angle Spinning Nuclear Magnetic Resonance (MAS NMR) spectra (Figure 5) [18,21-24].

The distribution of the modifier on the surface leads to changes in the porous system of the
supports. The volume of the pores with diameter less than 10 nm decreases from 0.08 to 0.06 cm3.g~1.
SiOy-islands form additional porosity in the range of diameters 10-30 nm; the volume of these pores
increases from 0.13 to 0.16 cm>-g~! (Figure 6). At the same time the specific surface area does not
change significantly (Table 2).
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Figure 5. 2°Si Magic Angle Spinning Nuclear Magnetic Resonance (MAS NMR) spectra of
SiO,-modified supports.
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Figure 6. Pore size distribution for initial and SiOp-modified supports.

Table 2. Porous system parameters of supports.

SiO; Content BET Surface Pore Volume Distribution of Pore Volume (cm3-g~!) over Pore Diameters
2 o1 3.1
(wt %) Area (m™-g™") (em®-g™) <10 nm 10-30 nm >30 nm
0 83 0.26 0.08 0.13 0.05
25 80 0.27 0.06 0.15 0.06
4.5 82 0.27 0.06 0.15 0.06
7.5 87 0.28 0.06 0.16 0.06

SiO;-modification of the support causes changes in the surface acidity (Figure 7, Table 3).
It increases from 102.3 to 109.0-125.3 meoLg_1 due to the formation of weak (Eges nH, < 100 kJ-mol~1)
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and medium (Eges NH, = 100-150 kJ-mol~1) acid sites (Table 3). This is indicated by the growth of the
NH;3-TPD (temperature programmed desorption) profiles in the range 160-350 °C (Figure 7). Along
with the formation of an additional amount of the weak and medium sites the concentration of strong
acid sites (with Eges Np,; > 150 kJ-mol~1!) decreases (Table 3). This is indicated by the decrease in
intensity of the high temperature component (400-500 °C) of the NH3-TPD profile. The maximal
temperature of ammonia desorption shifts to lower values (Figure 7) indicating a decrease in strength
of the acid sites.

|
| Egenns <150 kJ-mol”
|
|
|
|

0 wt% SiO;

"0
5

g 2.5 wt% SiO,
=
S
e
o
2
o

; 4.5 wt% SiO,
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0 500 600

Temperature (°C)

Figure 7. NH3-TPD (temperature programmed desorption) patterns of initial and SiO,-modified
supports.

Table 3. Results from NH;-TPD (temperature programmed desorption) measurement of supports.

. . . . . 71
Gi0y Content T Numberof - Disrbutionof Acid Sts umol s )
(Wt %) Acid Sites 8y
(umol-g~1) <100kJ-mol~1  100-150 kJ-mol~!  >150 kJ-mol !
0 102.3 25.6 66.7 10.0
2.5 115.2 29.0 81.8 45
45 119.4 37.5 78.7 3.1
75 125.3 45.0 78.0 2.4

It is likely that the acid sites formed are hydroxyl groups bonded to the silicon atoms and the
Lewis acid sites of various structures [21,24]. For example, lengo et al. [21] suggested, that the new
acid sites are formed at the border of the SiOy-islands, where aluminum and silicon are arranged
relative to each other in such a way, that the aluminum atoms are positively charged and partially
neutralized by the negative charges of the silicates. The decrease in number of the strong acid sites
upon modification is probably due to them being covered by SiO,-islands.
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2.2. Chromia-Alumina Catalyst

2.2.1. Composition, Crystal and Pore Structure, Acidity of Catalysts

On the basis of the initial alumina support it was established that surface concentration 10
atoms-nm 2 provides both high activity and the absence of crystalline «-Cr,O3 in the catalyst (Figure 8),
which accelerate catalyst sintering and decreases its thermal stability (Table 4).

Y 4.5 wt% Cr

" 6.5 wt% Cr

Intensity (a.u.)

7 8.5 wt% Cr|
%k (1-C1’203 Y

20 30 40 50 60 70 80
20 (degrees)

Figure 8. X-ray diffraction patterns of catalysts.

Table 4. The composition of catalysts and their performance in isobutane dehydrogenation.

Dehydrogenation Rate

Chromium Potassium Surface Concentration of (umolc, g ~gca¢’1<s’1) Crac_kmg' Rat7e1' 1
Content (wt %)  Content (wt %) Chromium (atoms-nm~2) = (umollCy-Csl-geat ™5™
Initial After Treatment at 1000 °C Initial
4.5 0.6 6.5 2.7 24 0.32
6.5 0 10.0 2.8 - 0.47
6.5 0.8 10.0 3.0 3.1 0.29
8.5 1.1 13.5 3.1 2.5 0.27

In the synthesized catalysts an optimum mass ratio of chromium to potassium was used
(Cr/K = 8) which was established by Kataev [25] for alumina supports obtained by the sequential
thermal-hydrothermal treatment of gibbsite. Potassium as a promoter performs several functions
in chromia-alumina catalysts. It neutralizes the strong acid sites [15] and thus decreases the activity
of the catalyst in hydrocarbon cracking reactions (Table 4). Potassium in catalyst forms potassium
chromates at the expense of the low-active crystalline Cr,O3 phase. These chromates are reduced to
catalytically active Cr(III) phase in dehydrogenation conditions [15,26]. However, an excessive amount
of potassium poisons the catalyst due to the coverage of the active Cr(III) sites [26] and neutralization
of the weak and medium acid sites which adsorb alkane molecules [15]. Optimal potassium content
depends not only on the surface area and acidity of the support but also on the concentration of
chromium because potassium as aluminate and chromates is distributed both on the open areas of
alumina and on the Cr,O3 particles [26].
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2

The chromia-alumina catalysts with a surface concentration of chromium 10 atoms-nm ™ were

synthesized on the S5iO,-modified supports (Table 5).

Table 5. Composition, Cr(VI) content, specific surface area and pore volume of the initial and
SiO,-modified catalysts.

Chromium Potassium SiO, Content  Cr(VI) Content BET Surface Pore Volume
Content (wt %) Content (wt %) (wt %) T (wt %) Area (m? gfl) (cm® -gfl)
6.5 0.8 0 2.5 77 0.22
6.5 0.8 2.5 1.9 73 0.22
6.5 0.8 45 1.6 74 0.22
6.5 0.8 7.5 1.4 70 0.22

1 Cr(VI) was calculated as CrO;.

As a result of the chromium and potassium distribution in the pores of initial and SiO,-modified
support (Figure 9), specific surface area and pore volume decrease slightly-by 6-17 m?-g~! and
0.04-0.06 cm>.g~! respectively (Tables 1 and 5).

0.03

4.5 wt% SiOy
4.5 wt% SiO2 +6.5 wt% Cr

0.02 4

0.01 4

0.00 J T T T T T

0 10 20 30 40 50 60
Pore Diameter (nm)

dV/dD Pore Volume (cr%rg'lmm'l)

Figure 9. Pore size distribution for support with 4.5 wt % SiO, and for catalyst based on it.

Introduction of 6.5 wt % chromium and 0.8 wt % potassium to supports decreases the number
of acid sites by 15.7-29.9 umol-g~! (Tables 3 and 6). SiO; affects the acidity of the catalysts similar to
those of the supports: introduction of 2.5-7.5 wt % SiO; increases the total acidity of catalyst due to
the formation of an additional weak and medium acid sites; it also decreases the number of strong

acid sites.
Table 6. Results from NH;-TPD measurement of catalysts.
Total Number of Distribution of Acid Sites (umol-g~1)
SiO; Content Acid Sites on the Energy of Ammonia Desorption
(wt %) (umol-g~1) <100 kJ-mol-!  100-150 kJ-mol-!  >150 kj-mol 1
0 724 9.3 53.4 9.7
2.5 93.7 12.9 78.0 2.8
45 102.8 15.7 85.5 1.6

7.5 109.6 13.8 95.6 0.2
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2.2.2. Active Component of Catalysts

Formation on the support surface of SiOy-islands results in changes in the distribution of the
active component. Modification of the support by 2.5-7.5 wt % SiO; leads to a decrease of Cr(VI)
content in the catalysts based on it.

By diffuse reflectance UV-Vis spectroscopy it was found that chromium deposition on the
SiOp-modified supports results in an increase of Cr(Il) content in comparison to the initial support.
It can be seen by the increase in intensity of the signal at ~17,000 cm ™! (Figure 10) which corresponds
to an electronic transition 4A2g—>4T2g in the Cr(Ill)oct ion [26,27]. Increasing the Cr(IIl) content
is consistent with the data of the iodometric titration, showing that the concentration of Cr(VI)
(calculated as CrOs3) decreases from 2.5 to 1.4 wt % with an increase of SiO, content from 0 to 7.5 wt %
(Table 5). UV-Vis spectra also demonstrate a shift of the Cr(VI) signal at ~27,000 cm~! [26,28,29]
to the short-wavelength region and an increase in intensity of the complex Cr(III)-Cr(VI) signal at
~22,000 cm~! [26-29] (Figure 10). In combination these indicate a decrease in symmetry of surface
chromates due to oligomerization of Cr(VI) compounds [26].

27030

0 wt% SiO;

2.5 wt% SiO,

KM

4.5 wt% SiO,

7.5 wt% SiO2

10000 20000 30000 40000

Wavenumber (cm")

Figure 10. Diffuse reflectance UV-Vis-spectra of catalysts (6.5 wt % Cr; 0.8 wt % K).

The increase in Cr(III) content observed by UV-Vis spectroscopy and the oligomerization of surface
Cr(VI) compounds are consistent with the Raman-spectroscopy data. Here, the increase in SiO, content
results in the growth in intensity of the signal at ~550 cm~!, corresponding to the vibrations of the
Cr(IlI)oct—O bond [26,30,31]; the intensity of hydrated dichromate signals at 906 and 948 cm 1 [28,30]
decreases; the typical signals of dehydrated polychromates at 850-900 and 1000 cm ! [28,30-32] also
appear (Figure 11).

Decreasing Cr(VI) content and the simultaneous oligomerization of chromates indicates a decrease
of stabilization of the chromates by the support surface through X—O-Cr (X = Al, Si) bonds. This is also
supported by the temperature-programmed reduction of catalysts. All H-TPR profiles are decomposed
into 34 Gaussian components which correspond to the chromates with different degrees of binding to
the surface. The higher the temperature of chromate reduction the greater is the number of X-O-Cr
bonds per one chromium atom [26,33]. Therefore, the low-temperature components (at 300-450 °C
and 400-450 °C) most likely correspond to polychromates, and the high-temperature components
(at450-600 °C and 500-650 °C) correspond to mono- and dichromates. The introduction of 2.5-7.5 wt %
SiO; leads to the redistribution of the hydrogen consumption temperature: the low temperature
component of the Hp-TPR profile (in the region 300—400 °C) increases and the high temperature
component (in the range 500-600 °C) decreases. The Gaussian component of the Hy-TPR profile
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in the region 550-600 °C, corresponding to monochromates with the highest degree of interaction
with the support surface, disappears. The maximum on the H,-TPR profiles sequentially shifts from

436 to 419 °C (Figure 12).
0 Wt% SiO,
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945
379 564
hrvmsaee”™™ N
2.5 wt% SiO,
550 855 o4
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g
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885 946
349 616
T T T
300 500 700 900 1100

Raman shift (cm'l)

Figure 11. Raman-spectra of catalysts.
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Figure 12. Hy-temperature programmed reduction (TPR) profiles of catalysts.
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The decrease in interaction between the support and the active component is due to the changes
in hydroxyl cover of the support. The isoelectronic point (IEP) of alumina is 7.2-8.6, and the IEP of
silica is 2.0-3.9 [34-36]. This is caused by the predominance of the following reactions on the surface of
the hydrated supports [34,36]:

-Al-OH + H* «+ -AlOH," 1)

-Si-OH < -SiO~ + H* @)

Due to a larger number of basic sites on the alumina surface during deposition of the active
component from an aqueous solution of chromic acid and subsequent heat treatment, a greater
interaction of chromate ions with Al,Oj3 rather than with SiO, and SiO,—-Al,O3 is observed [37].
The interaction of chromate ions with the alumina surface is complex [35] and consists of:

(1) acid-base reaction between the neutral surface hydroxyl groups and chromate anions (Scheme 2):

O\\ //O

/Cr\ O O

0 O %
—_— Cr + 20H-
-— /7N

OH OH o o

l I l l

O-AI-O-AI-O O-AI-O-AI-O

Scheme 2. Reaction between chromate ion and surface hydroxyl groups.

(2) electrostatic attraction (Scheme 3) between the chromate ions and the positive-charged surface
sites (in the inner Helmholtz plane of the electrical double layer) which is formed by protonation
of the surface hydroxyl groups (Reaction (1)) [35]:

O\\ //O
Cr

F
_O O_
H*, H,*
O O

I |

O-AlI-O-AlI-O

Scheme 3. Electrostatic interaction between chromate ion and positive-charged surface sites of alumina.

Therefore, on the surface of alumina predominantly mono- and dichromate anions are stabilized
(Scheme 4).

As is shown the formation of SiOy-islands on the alumina surface leads to diminution in
interaction between Cr(VI) compounds and the support. It may occur due to the following reasons:

—  decrease in the number of surface basic hydroxyls capable of acid-base reaction (Scheme 2) with
chromate ions;

- Si0O; introduction results in a drop of the pH of the electrical double layer. This in turn leads
to a shift of the equilibrium of Reactions (3)—(5) to the right, towards formation of polynuclear
chromate ions [31].

2CrO4%~ + 2H* +» Cr,O,2~ + H,O (3)
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3Cr,0,2~ + 2H* » 2Cr3040>~ + H,O 4)
4Cr3019%~ + 2H' +» 3Crs013°~ + H,O (5)

- according to Reaction (2) the part of the inner Helmholtz plane becomes negatively charged which
results in the electrostatic attraction between support surface and chromate ions diminishing.

A decrease in the number of Cr-O-X (X = Al, Si) bonds leads to the stabilization of the
polychromate ions and polynuclear [-Cr(III)-O-Cr(III)-], ions (also called amorphous Cr,O3 [26] or
CrOs-clusters [28]) (Scheme 4) by the SiO,-modified support surface after thermal activation of the
catalyst. A similar effect of SiO; has also been reported by Weckhuysen et al. [29]; at the transition
from Al,Oj3 to aluminosilicate (with 40 wt % SiO,) the chromate/dichromate band intensity ratio on
the UV-Vis spectra of the samples calcined at 550 °C decreased from co to 2.18. Weckhuysen et al. [38]
reported that in S5iO; with 0.2 wt % Cr calcined at 720 °C, Cr(Ill) ions were identified by UV-Vis
spectroscopy, whereas for the same amount of chromium on alumina, Cr(III) ions were not observed.

-Al-OH + H* &= -AlOH,* -Si-OH &-SiO0” + H*

‘ Hydration of the support ‘
surface
+ + + + OH O O o O~ OH
OH, OH, OH, OH, | L | | | L
] ] ] ] [0-Si-O=Si—0-Si—0-Si—-0-Si—0-Si-0 |
Al-O-AI-O-AI-O-Al-0O-AI-O-Al-O-Al-0O-Al-O-Al-O-Al-O-AlI-O-AI-O-AlI-O

‘ Deposition of the active ‘
component precursor
O @] @) O ﬁ ﬂ
N 7 N 7 o=cr 0289260 ~Ci=o
Cr Cr 270 07\ 07\ \
-7 N _ _ 7 N _ -0 (@) @) 0"
O O @) O - - - -
+ + + + OH O O @) O OH
OH, OH, OH, OH, R N S B
I I | [0-Si-0-Si—-0-Si—0-Si—0-Si-0-Si-0

Al-O-AI-O-AlI-O-Al-O-AlI-O-Al-O-Al-O-Al-0O-Al-O-Al-O-Al-O-AlI-O-AI-O

‘ Thermal activation ‘

0 0 0
o Yo Nef o Cr
or Cr 7/ \ \ | 7/ \
SO A TR 3 A
(@) ®) @) 0
? R (0-8-0-8I—0—SI—0—8I—0—Si—0—-5i=0)

Al-O-Al-0O-Al-0O-Al-O-Al-O-Al-O-Al-O-Al-O-Al-O-Al-O-Al-O-Al-O-Al-O

Scheme 4. Hydration of alumina and silica surface, their interaction with chromate ions.

Increasing interaction between Cr(Ill) ions was also confirmed by EPR-spectroscopy. Upon
introduction of SiO, the intensity of the 5-signal component at ¢ = 3.8-4.0, corresponding to isolated
Cr(IlI) ions [39], decreases while the intensity of 3-signal with g = 1.98 and AH = 1400-1600 G,
corresponding to magnetically concentrated Cr(III) ions [28,39], increases (Figure 13).
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Figure 13. Electron paramagnetic resonance (EPR) spectra of catalysts.

2.2.3. Isobutane Dehydrogenation Performance of Catalysts

Chromia-alumina catalysts were tested in isobutane dehydrogenation at 570 °C. The curves of
dehydrogenation and cracking rate versus time on stream are shown on Figure 14a,b, respectively.
All the curves on Figure 14a show the maxima as a function of time on stream. In all the cases
at the initial stage of the dehydrogenation cycle (for the first 30-55 min) an increase of catalyst
dehydrogenation activity by 8%-9.5% is observed (Figure 14a); this is the catalyst development period.
As we know [40,41] during catalyst development the surface stabilized Cr(VI) compounds are reduced
by hydrocarbons to additional catalytically active Cr(Ill) compounds. Decrease of the dehydrogenation
rate at the final stage of the cycle is due to the catalyst coking. The decrease of the cracking rate during
the first 30 min (Figure 14b) is also caused by covering of the acid sites by coke deposits [15].

The increase in the content of amorphous Cr,O3; phase, which is the most active in the
dehydrogenation of light alkanes [26], and the formation of polychromates which also reduce to
amorphous CrpO3, causes an increase in dehydrogenation activity of catalysts based on SiO,-modified
supports (Figure 14a). The average dehydrogenation activity increases by 10%-14%—from 2.9 to
3.2-3.3 umol C4Hjg- gcat’l -s~1. At the same time the catalyst development period diminishes due
to a decrease in the Cr(VI) content. The rise in dehydrogenation activity with the increase in the
polynuclear Cr(III) ions content is consistent with the results of the kinetic studies by Airaksinen et
al. [42] and Carra et al [43]. According to these works the dehydrogenation of one molecule of butane
proceeds at two active sites.

A decrease in the number of strong acid sites upon SiO,-modification of support leads to a
decrease in cracking rate on catalysts with 2.5-7.5 wt % SiO, (Figure 14b). The average cracking rate
decreases by 18%-34%—from 0.29 to 0.19-0.24 pumol (C1-C3)-geat -5~ .
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Figure 14. Dehydrogenation rate (a) and cracking rate (b) versus time on stream.

3. Materials and Methods

3.1. Preparation of Supports and Catalysts

Microspherical (40-200 um) boehmite support prepared by consecutive thermal and hydrothermal
treatment of aluminum trihydroxide (GD00 grade, produced by Bogoslovsk Aluminum Smelter,
Krasnoturyinsk city, Russia) under industrial conditions [11] in an autoclave for 3 h at 195 °C
(Chemical Plant Karpov, Mendeleyevsk city, Russia), was used for the synthesis of alumina supports
and chromia-alumina catalysts. According to thermogravimetry the phase composition of the support
precursor is the following: boehmite—96.0 wt %, gibbsite—3.0 wt%, AlO3—1.0 wt %.
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5iO, was introduced into the support by incipient wetness impregnation with a water silica sol
(“Leiksil” brand produced by “Compas” Scientific and Technical Center, Kazan city, Russia).

The catalyst was prepared by incipient wetness impregnation of the support with an aqueous
solution of chromic acid and potassium carbonate, followed by drying under vacuum. Then the
catalyst was activated by thermal treatment in a muffle furnace at 750 °C for 4 h.

3.2. Characterization of Supports and Catalysts

Thermogravimetric analysis was performed with a STA-449C (Netzsch, Selb, Germany) combined
thermogravimetric and differential scanning calorimetric (DSC) analyzer coupled with an Aeolos QMS
403 quadruple mass spectrometer (Netzsch, Selb, Germany) in a temperature range of 30-1000 °C at a
heating rate of 10 °C. min~! in a flow of argon. The concentrations of aluminum hydroxide phases
were calculated from the amount of water released in their dehydration.

Scanning electron microscopy was performed on an EVO 50 XVP (Carl Zeiss, Oberkochen,
Germany) electron microscope.

The elemental composition of the catalysts was determined by X-ray fluorescence spectroscopy
on a Clever C31 instrument (ELERAN, Elektrostal, Russia).

Powder X-ray diffraction measurements were carried out using a DRON-2 diffractometer
(Burevestnik, Saint Petersburg, Russia). The patterns were obtained using CuK« radiation and
graphite monochromator (A = 1.54187 A) at 30 kV and 15 mA. The identification of different crystalline
phases in the samples was performed by comparing the data with the Joint Committee for Powder
Diffraction Standards (JCPDS) files. The crystallite size of the boehmite phase was calculated using the
Selyakov-Scherrer Equation. The error in determining the crystallite size was 10%.

Specific surface (Ssp) and pore volume (V) of samples were determined from the N, physisorption
measurements at 196 °C using an universal Autosorb-iQ analyzer (Quantachrome, Boynton Beach, FL,
USA). Prior to measurement, the sample was outgassed for 1 h at 150 °C (for boehmite precursor) or
for 3 h at 300 °C (for alumina supports and catalysts). Ssp and V, were calculated according to the
Brunauer-Emmett-Teller method. The pore diameter distribution was calculated by the desorption
branch of isotherm using the standard Barrett-Joyner—-Halenda method.

The °Si MAS NMR spectra of supports were recorded at room temperature on an Avance
400 spectrometer (Bruker, Ettlingen, Germany) operating at frequencies of 79.5 MHz with spectral
resolution 48.83 Hz. The sample rotation frequency was 5 kHz.

The IR spectra of supports were measured on a VERTEX 70 (Bruker, Ettlingen, Germany)
instrument fitted with a mercury—cadmium—telluride detector. The measurements were done in
transmission mode using a Harrick high temperature cell. A background spectrum and the spectra
were measured at 480 °C and a residual pressure of less than 10~3 mbar with a resolution of 1 cm~!
and averaged by 128 scans. For the IR analysis, samples were prepared in a tablet-shape of 20 mg;
optical density was 20 mg-cm™2.

Hexavalent chromium concentration in the catalyst was determined by dissolution of Cr(VI) in
sulfuric acid and subsequent volumetric titration with the iodometric method.

UV-Vis diffuse reflectance spectra of the catalysts were recorded using a V-650 spectrophotometer
(Jasco, Tokyo, Japan) equipped with an integrating sphere ISV-722 (Jasco, Tokyo, Japan). A BaSO4 plate
was used as the reference. Spectra were recorded in the wavenumber range 12,500-50,000 cm ™! with
the spectral resolution 2 nm. UV-Vis-spectra were deconvoluted into Gaussian bands to determine the
positions and intensities of the bands” maximums.

Raman spectra of catalysts were recorded using a dispersion Raman-microspectrophotometer
Nicolet Almega XR (Thermo Fisher Scientific, Waltham, MA, USA). The 532 nm line of a Nd-YAG laser
was used as an excitation. The spectra were recorded in the wavenumber range 100-1100 cm ! with
the spectral resolution 2 cm~!. Each spectrum was received by averaging 10 exposures on 10s.

EPR measurements were made at the temperature of —196 °C on a RE-1306 EPR-spectrometer
(Institute of Analytical Instrumentation of Russian Academy of Sciences, Saint Petersburg, Russia)
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with a working frequency 9.37 GHz and 100 kHz magnetic field modulation. Diphenylpicrylhydrazyl
(g =2.0036) was used as reference for g-value determination.

NH;3-TPD and H)-TPR measurements were carried out on the ChemBET Pulsar TPR/TPD
(Quantachrome, Boynton Beach, FL, USA). Before NH3-TPD measurement the sample was degassed at
600 °C for 2 h in a helium flow. The adsorption step is carried out in an ammonia flow at 100 °C for
30 min. Then the physically sorbed ammonia was removed with helium at 100 °C for 30 min and the
sample was cooled to a room temperature in the helium flow. Temperature programmed desorption
was performed from room temperature to 700 °C at a heating rate of 10 °C-min~!. The strength
of the acid sites was evaluated by the temperature of ammonia desorption [44]. A temperature of
175 °C corresponds to ammonia desorption energy of 100 kJ-mol~! and a temperature of 380 °C to the
desorption energy 150 kJ-mol~!. Acid sites with ammonia desorption energy lower than 100 kJ-mol !
were attributed to weak ones, while the sites with desorption energies of 100-150 kJ-mol~! and
higher than 150 kJ-mol~! were attributed to medium and strong sites respectively. The number of
weak, medium and strong acid sites was calculated from the area under the NH3-TPD profiles in the
temperature ranges <175 °C, 175-380 °C and >380 °C respectively.

Before H,-TPR measurement the catalyst was heated to 650 °C and held at this temperature for
60 min in a flow of a gas mixture (5 vol% O, + 95 vol% N;). Then the catalyst was cooled down to
room temperature in the helium flow. Temperature programmed reduction was performed from room
temperature to 700 °C at a heating rate of 10 °C-min~!. NH;3-TPD and H,-TPR profiles were Gauss
fitted using the TPRWin software (version 3.52, Quantachrome, Boynton Beach, FL, USA, 2012).

3.3. Catalyst Testing

The catalysts were tested in the reaction of isobutane dehydrogenation in a steel fixed bed reactor
of 10 mm internal diameter under atmospheric pressure. An amount of 2 g of fresh catalyst (sieve
fraction 40-200 pm) was filled into the reactor. The catalyst was heated at 5 °C-min~! to 650 °C
in an air flow (60 mL-min~!) followed by flushing with air for 30 min at the same temperature.
The catalyst was cooled in air to 570 °C and flushed with argon for 15 min at that temperature. Then a
mixture of 30 vol% C4Hjo in Ar was fed at a rate of 60 mL-min~! at the same reaction temperature.
The reaction was run for 130 min followed by catalyst regeneration in an air flow for 60 min at 650 °C.
The regeneration/dehydrogenation cycles were repeated three times.

The hydrocarbon composition of feed and reaction products were analyzed by gas
chromatography on a GH-1000 instrument (Chromos, Dzerzhinsk, Russia) with a flame-ionization
detector and a capillary VP-Alumina/KCl column (VICI Valco, Houston, TX, USA). The concentrations
of Hp, CHy, and CO were determined with the use of a column filled by 13 x molecular sieves on a
GH-1000 apparatus with a thermal conductivity detector.

Based on of the results of chromatographic analysis the rates of i-C4Hj¢ dehydrogenation and
cracking of hydrocarbons were calculated using Equations (6) and (7), respectively.

X(iC4H10) X F
3600 x 100 x mcat

Dehydrogenation Rate = (6)

(CCH4 + CC2H6 + CC2H4 + CC3H3 + CC3H6) . Jyoutlet
22400 - 3600 - 100 - ¢t

Cracking Rate = 7)
where X(iC4Hj) is the isobutane conversion, %; F is the feed rate of isobutane, mole-h™!; my is
the weight of catalyst, g; Ccn,, Cc,H,, Cc,n,, CcHg, CosH, are the concentrations of methane, ethane,
ethylene, propane, propylene respectively in the reaction products, vol%; Vout is the volumetric flow
of the reaction products, mL-h~!.

4. Conclusions

The distribution of SiO, and its effect on the structure and acidity of the alumina support, as well
as the effect of SiO, on the active component and the performance in isobutane dehydrogenation of
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chromia-alumina catalyst were investigated. It was shown that SiO, in an amount of 2.5-7.5 wt %
is distributed on the surface of alumina in the form of Si(OSi); and Si(OSi)3(O-) compounds.
These SiOy-islands on the support produce additional porosity with a pore range 10-30 nm, as well as
additional weak and medium acid sites. At the same time SiO,-modification causes a decrease in the
number of strong acid sites.

Upon introduction of the active component, the SiOx-islands diminish the interaction of chromate
ions with the support surface; as a consequence polychromates are the compounds predominantly
stabilized on the support. During thermal activation of the catalyst these polychromates are reduced
to a phase of amorphous Cr,Os. This results in the increase of the catalyst activity in the isobutane
dehydrogenation. At the same time, the decrease in the number of strong acid sites in SiO,-modified
catalysts leads to a diminution of its activity in hydrocarbon cracking reactions.
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