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Abstract: The aerobic oxidation of hydrocarbon is of great significance from the viewpoints of
both fundamental and industry studies as it can transfer the petrochemical feedstock into valuable
chemicals. In this work, we investigated the aerobic oxidation of cyclohexene over TiZrCo catalysts,
in which 2-cyclohexen-1-one was produced with a high selectivity of 57.6% at a conversion of 92.2%,
which are comparable to the best results reported for the aerobic oxidation of cyclohexene over
heterogeneous catalysts. The influences of kinds of solvent, substrate concentration and reaction
temperature were evaluated. Moreover, the catalytic performance of the TiZrCo catalyst and the
main catalytic active species were also discussed. The results of SEM, XRD and XPS suggested that
the surface CoO and Co3O4 species are the catalytic active species and contribute to the high activity
and selectivity in the present cyclohexene oxidation. The present catalytic system should have wide
applications in the aerobic oxidation of hydrocarbons.
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1. Introduction

The selective oxidation of hydrocarbon is of great importance in the chemical industry, and the
oxidation of alkenes to value-added chemicals has been paid more attention [1–4]. For example,
2-cyclohexen-1-one, which can be produced from oxidation of the C–H bond at the allylic
site of cyclohexene, is one of the important fine chemicals because it is widely used in the
manufacture of perfumes, pharmaceuticals, dyestuff and agrochemicals [5–7]. However, the yield of
2-cyclohexen-1-one produced from cyclohexene oxidation is quite low due to the existence of two
active sites (C–H and C=C bond) on the cyclohexene molecule [8]. Thus, it is still a great challenge
to enhance the selectivity of 2-cyclohexen-1-one by designing an efficient catalyst. For oxidation of
cyclohexene, the traditional oxidants are iodosylbenzene, sodium hypochlorite, chromium trioxide,
t-butyl hydroperoxide, H2O2, etc. These strong oxidants can improve the oxidation rate and increase
the yield of product, but they are expensive and harmful to the environment. Therefore, developing
a green oxidation process is of importance in view of the academic research and industrial application.
Recently, the oxidation with molecular oxygen as an oxidant has received much attention as it is a cheap,
abundant and environmentally benign process and some achievements have been obtained [9–13].
For example, the ionic liquids with metal chelate anion [C10mim][Co(F6-acac)3] exhibited high catalytic
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activity for the allylic oxidation of cyclohexene in the absence of solvent with a high selectivity of
81% to 2-cyclohexen-1-one at a conversion of 100% [10], and the Cu-[cationic salphen][Br´]2 complex
presented a selectivity of 64.1% to 2-cyclohexen-1-one at a 100% conversion for the aerobic oxidation
of cyclohexene in acetonitrile [11]. Although these homogeneous catalysts are efficient for the selective
allylic oxidation of cyclohexene, their industrial application is limited due to the difficult separation,
and the residual metal ions will affect the quality of the product. Hence, heterogeneous catalysts have
been developed by immobilizing metal complexes on solid supports, such as resinate-immobilized
Co(II), which exhibited high catalytic activity with a 44.4% selectivity to 2-cyclohexen-1-one at a 94.5%
conversion of cyclohexene [12]. Core-shell type Fe3O4@chitosan-Schiff base-immobilized Co(II), Cu(II)
and Mn(II) complexes were also reported active for the cyclohexene oxidation, and a selectivity of
77.2% to 2-cyclohexen-1-one was obtained at a conversion of 46.8% [13]. On the other hand, the
supported transition metal or oxides were also employed as heterogeneous catalysts for the allylic
oxidation of cyclohexene [6,14–20]. Recently, Au nanoparticles supported on modified bentonite
and silica gave a high conversion (92%) and an excellent selectivity (97%) to 2-cyclohexen-1-one in
the aerobic oxidation of cyclohexene without solvent [21]. It was also reported that PdO/SBA-15
was an active catalyst for the oxidation of cyclohexene in acetonitrile, and a conversion of 56% and
a selectivity of 82% to 2-cyclohexen-1-one were obtained [6]. In addition, nitrogen-doped carbon
nanotubes, and graphitic carbon nitride-supported FeO and CoO were also effective catalysts for the
oxidation of cyclohexene [14,22]. Until now, it was still a hot topic to design a heterogeneous catalyst
for the aerobic allylic oxidation of cyclohexene.

In our previous work, we found that Ti-Zr-Co metallic catalyst was effective for the oxidation
of cyclohexane and ethylbenzene [23–25], in which cyclohexanol and cyclohexanone were produced
with a high selectivity of 90% at a conversion around 7%, and acetophenone was produced with
a 69.2% selectivity at a high conversion of 61.9%. The Ti-Zr-Co metallic catalyst is simple and cheap
in production and sturdy to wearing in the utilization, as compared to those reported catalysts such
as metal-organic complex, metal nanoparticles and nanocarbon materials. Therefore, it inspires us
to study its efficiency in catalyzing other hydrocarbon oxidations. In the present work, the catalytic
performances of the Ti-Zr-Co catalysts were discussed for the aerobic oxidation of cyclohexene.
We found that 2-cyclohexen-1-one was produced with a high selectivity of 57.6% at a conversion
of 92.2%, which are comparable to the best results reported for the aerobic oxidation of cyclohexene
over heterogeneous catalysts. It was confirmed the surface CoO and Co3O4 acted as the catalytic active
sites and contributed to the excellent conversion and selectivity.

2. Results and Discussion

For the oxidation of cyclohexene, it is very difficult to control product selectivity due to the
existence of the two active groups of the C-H bond at the allylic site and the C=C bond, as when
the C–H bond is oxidized, 2-cyclohexene-1-ol, 2-cyclohexene-1-one or cyclohexene hydroperoxide
will be generated; as the C=C bond is oxidized, cyclohexene oxide, cyclohexanol, cyclohexanone,
cyclohexanediol and dialdehyde will be produced (Scheme 1) [26].
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and the higher conversion and selectivity of 2-cyclohexen-1-one were obtained; in contrast, ethanol
and cyclohexane are less efficient. However, it was found that acetone could be oxidized (to
2,2-diethoxypropane) during the reaction. As a result, acetonitrile is a suitable solvent which led
to a conversion of cyclohexene of 38.0% and a selectivity to 2-cyclohexen-1-one of 60.6%. Therefore,
the acetonitrile was selected as solvent in the following studies.

Table 1. Effect of solvent on the oxidation of cyclohexene over Ti60Zr10Co30 catalyst.

Solvent Conversion (%)
Selectivity (%) a

(1) (2) (3) (4) (5) Others b

Acetone 43.9 7.3 0 1.5 13.3 71.8 6.1
Acetonitrile 38.0 3.0 0.4 1.4 13.6 60.6 21.0

Ethanol 22.0 1.4 0 0.3 4.7 25.0 68.6 c

Cyclohexane 6.2 - 0.2 7.4 9.9 37.8 44.7 d

Reaction conditions: cyclohexene 1 mL (at a concentration of 4.8%), solvent 20 mL, Ti60Zr10Co30 20 mg, O2
2 MPa, 100 ˝C, 12 h. a (1) cyclohexene oxide; (2) cyclohexanol; (3) cyclohexanone; (4) 2-cyclohexen-1-ol;
(5) 2-cyclohexen-1-one; b Others may consist of reaction intermediate such as cyclohexene hydrogen peroxide,
deeply oxidized products such as some ring-opening acids or the byproduct from solvent reacting with substrate.
c The ethanol was oxidized into acetic acid and ethyl acetate. d A certain amount of cyclohexane was found to
be oxidized to cyclohexanol and cyclohexanone. The result could not exact calculated.

Next, the reaction conditions were evaluated for the oxidation of cyclohexene in acetonitrile.
The results for the effect of the concentration of cyclohexene are shown in Table 2. The conversion of
cyclohexene increased significantly with the concentration of cyclohexene; it increased from 33.8% to
97.5% when the cyclohexene concentration was raised from 4.8% to 13.0%. However, the selectivity
to 2-cyclohexen-1-one decreased linearly due to deep oxidation of 2-cyclohexen-1-one to undesired
byproducts at a higher conversion. The aerobic oxidation of cyclohexene is a radical reaction; it contains
the chain-initiation, -propagation and -termination steps [1]. The produced radical in the initial step
could promote the following steps and was more efficient at higher cyclohexene concentrations as it
enhanced the impact probability of radicals, resulting in an increase of the conversion of cyclohexene.
It is notable that when the concentration of cyclohexene increased to 16.7%, the reaction became
very violent with a sharp increase of pressure (up to 10 MPa at 3.3 h); for safety, the concentration of
cyclohexene was controlled below 16.7% under the present reaction conditions.

Table 2. Effect of the cyclohexene concentration on the oxidation reaction.

Entry Cyclohexene (%) a Time (h) Conversion (%)
Selectivity (%)

(1) (2) (3) (4) (5) Others b

1 4.8 5 33.8 3.1 - 1.7 19.1 71.3 4.9
2 9.1 5 67.0 5.5 - 0.7 11.6 62.5 19.8
3 13.0 5 97.5 - - 0.6 3.7 49.5 46.1

4 c 16.7 3.3 92.8 1.9 0.9 1.4 6.2 30.2 59.4

Reaction conditions: acetonitrile 20 mL, Ti60Zr10Co30 20 mg, O2 2 MPa, 120 ˝C. a Concentration of cyclohexene
= Vcyclohexene/(Vcyclohexene + Vacetonitrile) ˆ 100%; b Others may consist of reaction intermediate such as
cyclohexene hydrogen peroxide, deeply oxidized products such as some ring-opening acids; c When the
concentration of cyclohexene reached 16.7%, the reaction proceeded very quickly with a suddenly pressure
rising, and the reaction was stopped at 3.3 h for safety.

It is well known that temperature is one of the most important factors for oxidation reactions.
Generally, high temperature is in favor for the oxidation of hydrocarbons. As the results show in
Figure 1, the conversion increased from 17.8% to 98.2% while the selectivity of 2-cyclohexen-1-one
decreased from 70.1% to 43.7% with the temperature rising from 80 to 140 ˝C. Deep oxidation is
serious at higher temperatures and undesirable byproducts such as ring-opening acids are produced.
The selectivity of cyclohexene oxide, cyclohexanol and cyclohexanone changed slightly, within 5%.
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The optimal temperature was 120 ˝C, at which a 57.6% selectivity of 2-cyclohexene-1-one was obtained
at a high conversion of 92.2%.
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Figure 1. Effect of temperature on the oxidation of cyclohexene. Reaction conditions: acetonitrile
20 mL, cyclohexene 1 mL (at a concentration of 4.8%), Ti60Zr10Co30 20 mg, 2 MPa O2, 12 h.

In addition, the influence of reaction time on the conversion and product selectivity were
examined at conditions of 120 ˝C, a cyclohexene concentration of 9.1% and an oxygen pressure
of 2 MPa. As shown in Figure 2, the conversion increased to 96.1% with extending the reaction time to
8 h. The selectivity of 2-cyclohexen-1-ol and 2-cyclohexen-1-one decreased from 20.3% to 4.0% and
68.8% to 55.3% due to the formation and accumulation of deep oxidation products with the reaction
proceeding. The other products derived from deep oxidation such as the ring-opening acids increased
with a selectivity up to 40% (8 h) from 6% (1 h), and the intermediates such as cyclohexene oxide,
cyclohexanol and cyclohexanone changed very little (<5.5%).
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Generally, the aerobic radical oxidation of hydrocarbons can automatically occur in the absence
of catalyst [27], but it is very slow and the selectivity of the desired product is poor. The oxidation of
cyclohexene can also automatically occur somewhat at certain conditions without catalyst; however,
the conversion and selectivity to 2-cyclohexen-1-one are quite low [22]. Herein, we also found that the
cyclohexene can convert with a conversion of 14.4% under the aerobic oxidation conditions without
catalyst. As expected, the presence of TiZrCo catalysts can promote the reaction rate significantly as
shown in Figure 3. The catalytic performances of TiZrCo catalysts were discussed according to the
composition and the surface active species. It is clear that the catalytic activity depends on the Co
content in the TiZrCo metallic catalysts, as the conversion of cyclohexene increased to 38.5% over



Catalysts 2016, 6, 24 5 of 9

Ti50Zr10Co40 from 32% over Ti70Zr10Co20, while the selectivity to 2-cyclohexene-1-one was around
66%–69%, and changed very little. These results indicate that the ternary TiZrCo metallic catalysts
are effective for the present cyclohexene oxidation, and the content of Co affects the catalytic activity
significantly. In order to check the catalytic efficiency of Co species in the present oxidation, CoTi2 and
Co3O4/TiO2 with the higher content of Co species were also examined. Unfortunately, both of them
gave lower activity compared to the ternary TiZrCo metallic catalysts, as seen in Figure 3. These results
suggested not only the Co species but the surface and bulk structure of the TiZrCo catalysts play
an important role in the present oxidation. It is assumed that the addition of Zr may produce surface
defects and induce the formation of many more CoO and Co3O4 active species.
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Therefore, the structure of the TiZrCo catalysts and their relationship to the catalytic performances
were discussed. The SEM image of a representative sample of Ti60Zr10Co30 is shown in Figure 4a.
The size of the particles is at a range of 50–100 µm, and the other two samples with different
compositions should have a similar morphology as all the samples were crushed and screen-separated
by 140 meshes before being examined. The bulk structure of these samples was characterized with XRD
as shown in Figure 4b. For Ti60Zr10Co30, with a molar ratio of Co/Ti of 1/2, the diffraction patterns
are in accordance with the CoTi2 phase without other crystal phases. For Ti70Zr10Co20, an I-phase was
found beside the CoTi2 phase [28]. However, for Ti50Zr10Co40, a new CoTi phase was detected beside
the CoTi2 phase.
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Therefore, the variation of Co content will impact the bulk structure of TiZrCo significantly, which
may have an effect on the catalytic activity. By comparison, the surface species will play a more
important role in the catalysis due to the catalytic reaction always occurring on the surface of the
heterogeneous catalyst. The surface composition of TiZrCo was studied by XPS. As shown in Figure 5,
the Ti and Zr existed on the surface with oxidation states of TiO2 and ZrO2, and Co mainly existed on
the surface with metallic Co, oxides of CoO and Co3O4, as confirmed by the peak at the binding energy
of 777.6 eV and intense shake-up satellites Co 2p XPS spectra around 6 eV above the primary spin-orbit
Bes [29–31]; Co3O4 was confirmed by Co3+/Co2+ (2/1) [32]. The surface compositions calculated
according to the results of XPS (Figure 5) are listed in Table 3. To consider the main active species
of the Co element, it is clear that all the catalysts contained the same species of Co, CoO and Co3O4

on their surfaces, including CoTi2. The most active Ti50Zr10Co40 catalyst contains a higher ratio of
CoO on the surface and different bulk phases, which suggested CoO may be more effective than the
Co3O4 species, and the bulk phase may be also involved in the present catalysis based on the reaction
results in Figure 3. In addition, the surface area of TiZrCo catalysts was also examined, as shown in
Table 3; it should have less effect on the present oxidation compared to the surface active species, as
the Ti70Zr10Co20 with the largest surface area did show a lower conversion, which contains a lower
ratio of CoO and Co3O4 on the surface.
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Table 3. Textural and surface properties.

Entry Catalyst Bulk Phase a Surface Content of Co (%) b
SBET (m2/g) c

Co CoO Co3O4

1 CoTi2 CoTi2, I-phase 31.5 37.8 30.7 -
2 Ti70Zr10Co20 CoTi2, I-phase 26.9 31.2 40.9 189
3 Ti60Zr10Co30 CoTi2 20.1 32.8 47.1 70
4 Ti50Zr10Co40 CoTi2, CoTi 11.5 70.3 18.2 76

a The bulk phase of the alloy catalysts was obtained based on the XRD patterns; b The surface composition of
the alloy catalysts was calculated from XPS results; c The surface areas were calculated using the BET equation.

3. Experimental Section

3.1. Ti-Zr-Co Alloy Preparation

The series of Ti-Zr-Co alloys, as reported in our previous works [25], were prepared by arc-melting
of Ti (99 wt. %), Zr (97 wt. %) and Co (99 wt. %) metals with a certain mole ratio on a water-cooled
cuprum hearth in a high-purity argon atmosphere at 250 A. To make the chemical compositions
homogenous, the ingot of alloy was turned over and remelted at least three times. After that, the
surface of the cast ingot was burnished in order to eliminate the oxide layer. Then the alloy ingot was
crushed by repeated manual beating with a steel pestle and mortar, and the alloy powders were screen
separated by 140 meshes.

3.2. Catalyst Characterization

The phase composition and microstructure of the alloys were examined by X-ray diffraction (XRD)
on a Bruker-AXS D8 ADVANCE (Bruker AXS, Karlsruhe, Germany) with Kα. The leaching of Ti, Zr
or Co in the filtrate was not detected by ICP-OES measurement (iCAP6300, Thermo Waltham, MA,
USA). XPS measurements were performed by using a VG Microtech 3000 Multilab. The electronic
states of Co 2p, Zr 3d and Ti 2p were determined. All XPS spectra were corrected to the C 1s peak at
284.6 eV. Scanning electron microscopy (SEM) image was performed on a Hitachi S-4800 field emission
scanning electron microscope (HITACHI, Tokyo, Japan) at an accelerating voltage of 10 kV, and the
size of particles was in a range of 50–100 µm. Nitrogen porosimetry measurement was performed on
a Micromeritics ASAP 2020M instrument (Micromeritics, Norcross, GA, USA). The surface areas were
calculated using the BET equation.

3.3. Catalytic Tests

The catalytic performance was tested in a stainless steel autoclave with a Teflon inner liner
(50 mL). Typically, the Ti-Zr-Co catalyst (20 mg), cyclohexene (2 mL) and acetonitrile (20 mL) were
added. The reactor was then sealed, and placed into an oil bath preset to 120 ˝C for 5 min. O2 (2 MPa)
was introduced and the reaction was started with a continuously stirring at 1200 rpm. When the
reaction finished, the reactor was cooled to room temperature and then depressurized carefully.
Then the reaction solution was diluted with ethanol to 50 mL, the composition of reaction products
was confirmed by gas chromatography/mass spectrometry (Agilent 5890, Santa Clara, CA, USA) and
analyzed with a gas chromatograph (Shimadzu, Kyoto, Japan, GC-2010) equipped with a capillary
column (RTX-50, Bellefonte, PA, USA, 30 m ˆ 0.25 mm ˆ 0.25 µm, carrier: N2) and a flame ionization
detector (FID).

Safety warning: The use of compressed O2 in the presence of organic substrates requires
appropriate safety precautions and must be carried out in suitable equipment. When the pressure
decreased far more quickly, the reaction must be stopped immediately. Note, the reaction should be
diluted by solvent, otherwise, the blast occur as the reaction is very violent.
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4. Conclusions

In summary, TiZrCo catalysts were studied for the first time for the oxidation of cyclohexene.
High selectivity (57.6%) to 2-cyclohexen-1-one was obtained at a high conversion (92.2%) of
cyclohexene. CoO and Co3O4 on the surface are the main active species and contribute to the high
activity and selectivity in the present cyclohexene oxidation. These results indicate that TiZrCo metallic
catalysts are effective for the aerobic oxidation of cyclohexene. It is important and significant to extend
the studies of the metallic alloy catalyst in catalyzing the aerobic oxidation of hydrocarbons. It is
expected that the TiZrCo catalysts may have a broad prospect in industrial applications.
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