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Abstract: For the beneficial pharmacological properties of resveratrol, there is increasingly interest in
enzymatic conversion of polydatin to resveratrol. The metagenomic technique provides an effective
strategy for mining novel polydatin-hydrolysis enzymes from uncultured microorganisms. In this
study, a metagenomic library of mangrove soil was constructed and a novel 3-glucosidase gene
MiIBgl was isolated. The deduced amino acid sequences of M1Bgl showed the highest identity of 64%
with predicted p-glucosidase in the GenBank database. The gene was cloned and overexpressed in
Escherichia coli BL21(DE3). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)
assay demonstrated the purified recombinant (3-glucosidase r-MIBgl with a molecular weight
approximately of 71 kDa. The optimal pH and temperature of purified recombinant r-M1Bgl were 7.0
and 40 °C, respectively. --MIBgl could hydrolyze polydatin effectively. The kcat and keat/ Kim values
for polydatin were 989 s~! and 1476 mM~!.s~!, respectively. These properties suggest that -r-MIBgl
has potential application in the enzymatic conversion of polydatin to resveratrol for further study.
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1. Introduction

Resveratrol (3,4,5-trihydroxystilbene), a non-flavonoid polyphenolic compound, reportedly has a
wide range of pharmacological properties, including antitumor, antithrombosis, antiatherosclerosis,
antioxidant, and antiinflammatory [1-3]. It was listed as one of the most promising drugs for
anti-cancer and anti-cardiovascular disease [4]. Resveratrol has been developed as a dietary
supplement and food additive due to its multiple biological and pharmacological activities. There
is increasing demand for resveratrol in food and health products. Currently, resveratrol is mainly
obtained from natural plants by solvent extraction. However, there is only a small concentration of
resveratrol (about 0.2%) in plants and it is expensive to obtain large quantities by large-scale extraction.
It was reported that polydatin (resveratrol-3-O--D-glucoside), the glycoside form of the precursor of
resveratrol, is 10-15 times higher than resveratrol [5,6]. Therefore, to obtain resveratrol more effectively
and economically, the conversion of polydatin to resveratrol by cleaving the glucoside has been proved
to be a feasible procedure.

B-Glucosidases ([3-D-glucopyranoside glucohydrolases, E.C. 3.2.1.21) catalyze the hydrolysis
of p-glucosidic linkages of various oligosaccharides and glycosides to form glucose and a
shorter/debranched oligosaccharide [7]. p-Glucosidases have many applications in biological
processes, such as hydrolysis of cellulose to produce ethanol [8], synthesis of alkyl glucoside and
gentiooligaccharide [9], improving the flavor in food processing [10], hydrolysis of isoflavone
glycosides [11], and conversion of polydatin to resveratrol [12]. Among the above mentioned
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biotechnological processes, hydrolysis of polydatin is an application with high commercial value.
Compared with acid and heating hydrolysis, microbial and enzymatic conversion of polydatin to
resveratrol only requires mild conditions, simple procedures, and results in less pollution [13]. Many
studies on the microbial conversion of polydatin to resveratrol with various microorganisms have
been reported [5,6,14,15]. Although the yield of resveratrol was increased, the long fermentation
time and low productivity greatly restricted its industrial application. Enzymatic conversion of
polydatin has been suggested to be the most efficient technique. Recently, researchers investigated
the conversion of polydatin to resveratrol by using (-glucosidase from Aspergillus oryzae and
Lactobacillus kimchi [12,16,17]. However, the catalytic efficiency of these (-glucosidases was still
not satisfied due to their low hydrolysis activity. Moreover, these (3-glucosidases that hydrolyse
polydatin were from cultured microorganisms and little attention had been paid to 3-glucosidases
from unculturable microorganisms. More than 99% of the microorganisms cannot be cultured using
conventional methods, which leaves a great deal of industry-potential (3-glucosidases unmined [18].
The metagenomic approach has been successfully employed in the isolation and identification
of novel B-glucosidases from various samples [19-22]. Nevertheless, the hydrolysis activity of
these (-glucosidases for polydatin has not been investigated until now. Therefore, screening
novel B-glucosidases with high conversion efficiency for polydatin from the metagenomic library is
urgently demanded.

In this study, a novel gene MIBgl was isolated from the mangrove soil metagenomic library by
functional screening. The recombinant 3-glucosidase r-MIBgl was purified and characterized. The
conversion of polydatin to resveratrol with metagenome-derived 3-glucosidase was investigated for
the first time.

2. Results and Discussion

2.1. Construction of the Metagenomic Library and Screening for Clones with B-Glucosidase Activity

A fosmid library of 100,000 clones was constructed using the metagenomic DNA isolated from
mangrove soil. Restriction analysis of randomly selected recombinant plasmids revealed a high level of
diversity of the foreign DNA fragments. The insert sizes ranged from 20 to 55 kb, with an average size
of 30 kb [23]. The fosmid library possessed a capacity of approximately 3 Gb insertion DNA. Seventeen
clones with 3-glucosidase activity were isolated from 10,000 clones by function-based strategy. The
positive fosmid clones were surrounded by a black spot on the selective plates after incubation
at 37 °C for 24 h, indicating the activity of 3-glucosidase. The positive rate of the 3-glucosidase activity
clone in the fosmid library was approximately 17/10,000 which is higher than some metagenomic
libraries [24,25]. After screening the 3-glucosidase activity from the fosmid library, the positive fosmid
clones were rescreened for hydrolytic activity toward polydatin. Finally, one independent clone
fosSCSIO2 with the highest activity toward polydatin was selected for further study.

2.2. Sequence Analysis

The plasmid from fosmid clone fosSCSIO2 was extracted and subcloned. The positive
subclone of plasmid pUC-MIBgl was sequenced. Sequence analysis showed that pUC-MIBgl
contained an open reading frame (ORF) coding for (-glucosidase. The overall G + C content of
the ORF was 59%. The deduced protein product consisted of 663 amino acids which contained
a catalytic domain belonging to glycosyl hydrolase family 3 according to the CAZy database
(http:/ /prosite.expasy.org/). A signal peptide (residues 1-33) was found by the analysis of SignalP
(version 4.1, http://www.cbs.dtu.dk/services/SignalP/). The predicted molecular mass of the
protein was estimated to be 71.2 kDa. The deduced protein showed highest identity with a
predicted (-glucosidase from Sphingomonas sp. LH128 (64% identity) in the GenBank database.
The secondary structures of r-MlBgl and structure-based sequences alignment with 3-D-glucan
exohydrolase isoenzyme Exol are shown in Figure 1. Multiple sequence alignment revealed that
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r-MlIBgl shared the glycosyl hydrolase family 3 catalytic central conserved region Ser-Asp-Trp [26,27].
The conserved and similar amino acids are indicated by boxes and the predicted catalytic nucleophile
residue Asp333 and acid/base residue Glu530 are indicated by filled triangles.
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Figure 1. The secondary structures of r-MIBgl and structure-based sequences alignment with
-D-glucan exohydrolase isoenzyme Exol. The secondary structures and their designations are shown:
arrows and coils represent the 3-strands and «-helices respectively. The glycosyl hydrolase family 3
catalytic central conserved region Ser-Asp-Trp is boxed. The catalytic nucleophile residue Asp333 and
acid /base residue Glu530 are indicated by filled triangles. The structure-based sequences alignment
was carried out by the Swiss-Model server and the secondary structure was assigned with ESPript 3.0
(http:/ /espript.ibep.fr/ESPript/ cgi-bin /ESPript.cgi).

The 3D model structure of r-MlBgl was predicted based on the crystal structure of 3-D-glucan
exohydrolase isoenzyme Exol by using the Swiss-Model server (Figure 2). The quality of the predicted
model r-M1Bgl was acceptable by checking using the Ramachandran plot. The structure of r-MIBgl
contains two domain architecture, corresponding to the Glyco_hydro_3 (residues 117—449) and
Glyco_hydro_3_C (residues 490-661) domain families. Domain 1 forms an (x/{3)g barrel and the
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second domain forms an («/3)s sheet. The active site cleft is formed by the interface of domains 1
and 2 in both monomers. 3-Glucosidase has a retaining catalytic mechanism [28], the residue Asp
functions as the catalytic nucleophile by attacking at the substrate anomeric center to form a covalent
a-D-glucosyl enzyme intermediate, while the other residue Glu/His acts as an acid/base catalyst by
protonating the glycosidic oxygen in the first step and deprotonating the nucleophilic water molecule
in the second step [29]. Asp333 in domain 1 and Glu530 in domain 2 were well aligned with the
catalytic residues (Asp285 and Glu491) in HvExol [30], suggesting that Asp333 and Glu530 may act as
the catalytic nucleophile and acid/base, respectively. According to the 3D model structure of HvExol,
the residues Val87, Leul87, Thr368, and Trp474 were considered important and may participate
in substrate recognition and binding. However, due to limitations of current homology 3D model
structures and modeling methods, the crucial residues of r-MIBg] for the catalysis are required for a
detailed structural comparative analysis and further site directed mutation assay.

&

D o

Figure 2. The three-dimensional model of r-MIBgl predicted by homology modelling based on the
crystal structure of barley Exol. The domain 1, the domain 2, and the linker are colored in cyan,
lightpink, and wheat, respectively. The predicted nucleophile and acid/base catalyst active site
residues of r-MIBgl (Asp333 and Glu530 respectively) are represented as sticks and shown in yellow.
The catalytic residues and other conserved residues forming the substrate binding site are shown as
sticks in the boxed panel. The picture was generated in PyMOL software(version 1.8, www.pymol.org).

2.3. Enzyme Ouverexpression and Purification

The B-glucosidase gene MIBgl was overexpressed in Escherichia coli BL21(DE3) cells. The
recombinant r-MIBgl with an N-terminal 6 x His-tagged protein was purified with Ni**-NTA
chromatography. SDS-PAGE analysis showed that r-MlBgl was purified to homogeneity, with a
molecular mass approximately of 71 kDa which corresponded to the calculated mass (Figure 3).
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Figure 3. A 10% SDS-PAGE analysis of the purified r-MIBgl. M protein marker; 1 recombinant
Escherichia coli BL21(DE3) harboring pET-MIBgl induced with IPTG; 2 purified r-MIBgl.
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2.4. Physico-Chemical Characterization of r-MIBgl

Figure 4a shows that r-MlBgl was most active at pH 7.0. The optimal temperature of r-MIBgl
was determined to be 40 °C (Figure 4b). The optimal pH and temperature of r-MIBgl was similar
to B-glucosidase isolated from the metagenomic library of mangrove soil [20]. r-MIBgl maintained
more than 50% activity at temperatures from 25 to 35 °C and approximately 10% activity at 0 °C,
indicating it was a cold adapted enzyme. The cold adapted 3-glucosidases have the advantage
in reaction of requiring low temperature, such as increasing resveratrol in wine [31]. Also, they
can offer economic benefits through energy savings in food processing or bioconversion [32]. The
activity of r-MIBgl was stable at a temperature below 30 °C, but its activity decreased dramatically
when the temperature climbed up to 35 °C after incubating for 1 h (Figure 4b). The cold-active
enzymes were usually highly active at low temperature but thermolabile [33]. Compared with some
cold-active 3-glucosidases, r-MIBgl showed higher thermostability at 30 °C [32,34,35]. High hydrolytic
efficiency and thermostability are both important properties in industrial application. Althought
r-MlBgl exhibited higher activity at low temperature than thermophilic 3-glucosidases [36,37], the
lower thermostability limited its application. It was reported that the activity and thermostability of
cold-active enzymes could be co-evolutionary [38], so direct evolution work of improving the activity
and thermostability of r-M1Bgl is now under study.
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Figure 4. Effects of pH and temperature on the activity of the purified r-MIBgl. (a) Effect of pH on
r-MlBgl activity. The effect of pH on r-MIBg] activity was determined between pH 3.0-11.0 at 40 °C;
(b) Effect of temperature on r-MIBgl activity and thermostability assay. The activity was determined in
Mcllvaine buffer (pH 7.0) at various temperatures (0 to 65 °C); Thermostability of r-MIBgl was assayed
after pre-incubation at temperatures 0 to 45 °C for 1 h. The error bars represent the means + SD (n = 3).

Activity of r-MIBgl in the presence of 1 mM and 10 mM concentration of different metal ions or
chemical reagents is shown in Table 1. Most metal ions had no significant inhibition on the activity of
r-MIBgl except 7Zn?*, Ba?*, and Cu?* at 1 mM concentration. Whereas, CaZ*, Ni%*, Co?*, EDTA, and
SDS at 10 mM were also potential inhibitors.

2.5. Substrate Specificity and Enzymatic Kinetics

To investigate the substrate specificity, activities of r-MIBgl towards different substrates
were assayed (Table 2). r-MlBgl proved to be most active toward polydatin, and showed
high activity on p-nitrophenyl-B-D-glucopyranoside (pPNPG) and esculin, indicating that r-MIBgl
could hydrolyze aryl -glycosidic bonds effectively. r-MlBgl exhibited weak activities toward
p-nitrophenyl-[3-D-galactopyranoside and p-nitrophenyl-3-D-xylopyranoside but no detectable activity
toward p-nitrophenyl-p-D-cellobioside. It was similar to the 3-glucosidases BglA and Bgl] from
Aspergillus oryzae which could hydrolyze p-nitrophenyl-f-D-xylopyranoside slowly but with no
detectable activity toward p-nitrophenyl-3-D-cellobioside [39]. For the oligosaccharides and
polysaccharides, r-MIBgl showed no activities toward cellobioside, cellotriose, carboxymethyl
cellulose, avicel, and starch, indicating that r-MIBgl could not hydrolyze the oligosaccharides and
polysaccharides form by (3-(1,4), «-(1,4), and x-(1,6) glycosidic bonds. The substrate specificity analysis
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suggested that r-MIBgl possessed strong substrate specificity. It could only hydrolyze aryl 3-glycosides
and had no hydrolysis activities toward oligosaccharides and polysaccharides. According to the
classification by substrate specificity, r-M1Bgl belongs to aryl 3-glucosidase [40].

Table 1. Effect of 1 or 10 mM metal ions and chemical reagents on the activity of r-MIBgl.

Relative Activity (%) 2

Reagents
Concentration (1 mM) Concentration (10 mM)
None 100.0 +2.6° 100.0 + 4.2
Na* 989 + 5.4 8153 + 3.4
K* 1045 + 2.5 85.6 + 3.2
Lit 91 + 3.6 80 + 4.1
NH,* 1024 + 4.2 933+ 4.8
Mg 104.1 +43 88.1+3.5
Fe3* 96.5 + 3.2 58.8 + 3.6
Zn%* 123+ 24 57+ 1.1
Ca?* 58.4 +4.3 45.6 +2.9
Cu?t 82+23 59+ 1.4
Ni2* 824 +42 59.3 + 3.8
Ba2+ 445+ 3.4 234+ 3.1
Co?* 66.1 +3.5 447 + 4.6
EDTA 56.4 + 4.7 259+ 3.8
SDS 76.4 + 4.8 55.2 + 3.1

2 Assay was performed under optimum conditions; ? Values represent the means + SD (1 = 3).

Table 2. Substrate specificity of r-BgINH.

Substrates Configuration of Glycoside Linkage Specific Activity (U-mg™') 2
Aryl B-glycosides - -
p-Nitrophenyl-f3-D-glucopyranoside -Glucose 248.26
p-Nitrophenyl-f3-D-galactopyranoside -Galactose 28.79
p-Nitrophenyl-f-D-cellobioside [3-Cellobiose ND
p-Nitrophenyl-p-D-xylopyranoside -Xylose 18.87
Polydatin -Glucose 422.21
Esculin B-Glucose 126.69
Oligosaccharides and polysaccharides - -
Cellobiose B-(1,4)-Glucose ND
Cellotriose B-(1,4)-Glucose ND
Carboxymethy]l cellulose 3-(1,4)-Glucose ND
Avicel -(1,4)-Glucose ND
Starch «-(1,4) and «-(1,6)-Glucose ND

2 Assay was determined at the optimum condition; ND, no detectable activity.

The kinetic parameters of r-MIBgl were determined using pNPG as the substrate. The initial
rate of the reaction was measured under optimal conditions. The kinetic parameters of Ky, and Vmax
were determined by plotting the substrate concentration vs. the initial velocity of each reaction and
subjecting the data to non linear regression analysis. Results showed that the Ky, and Vmax values
of r-MIBgl were 0.69 mM and 248.26 U- mg_1 respectively. The kot and the keat / Ky were 581.52 g1
and 842.78 mM~!. 57!, respectively. B-Glucosidases from different sources of microorganisms have
variable kinetic parameters of Ky, and kc,t values but usually lower than 1 mM and 1000 s 1
respectively [11,17,39]. The detected K, and kcat values of r-MIBgl toward this substrate were within
the same range.
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2.6. Enzymatic Conversion of Polydatin to Resveratrol

Enzymatic conversion of polydatin to resveratrol was determined by HPLC. The hydrolyzing
parameters of r-MlBgl towards polydatin were investigated by Michaelis-Menten plots (Figure 5).
The productivity of resveratrol was 1.28 mM/h. The Kp, kcat and kcat/ Km values for polydatin were
0.67 mM, 989 s~! and 1476 mM~!.s~!, respectively. Due to the important role of resveratrol and
its pharmacological properties, considerable scientific attention is being achieved in the enzymatic
conversion of polydatin to resveratrol. It was reported that 3-glucosidases from Lactobacillus kimchi
and Aspergillus oryzae hydrolyze polydatin effectively. The comparison of productivity and kinetic
parameters of r-MlBgl with other (3-glucosidases toward polydatin are seen in Table 3. Compared
with these reported 3-glucosidases, r-MIBgl exhibited the highest productivity of resveratrol of the
-glucosidases from Aspergillus oryzae and Lactobacillus kimchi per unit of enzyme [12,17]. r-MIBgl also
exhibited higher kcat and kcat / Km values than p-glucosidase from Lactobacillus kimchi, indicating it is
able to hydrolyze polydatin more effectively.

0.18-

0.15+

0.124

0.09+

1/v (min/mM)

0.06-

Initial reaction rate
(mM/min)

0.03+

1/[s] (L/mM)

0.00 L) ) ) L) L) 1
0 1 2 3 4 5 6

Concentration of polydatin (mM)

Figure 5. Michaelis-Menten plots for the reactions with substrate of polydatin. The inset shows the
Lineweaver-Burk plots. Each data point represents the mean + SD of three independent experiments.

Table 3. A comparison of productivity and kinetic parameters of r-MIBgl for polydatin with
other 3-glucosidases.

Time Productivity Kn keat keat/Km

Enzyme Origin Amounts () (mM/h) (@M) s (@M-—1.s-1) References
Lactobacillus kimchi 3.28 ug/mL 40 0.64 0.20 1.29 6.45 [17]
Aspergillus oryzae NR? 2 NR 0.74 NR NR [16]
Aspergillus oryzae 5U/mL 4 5.12 NR NR NR [12]

Metagenomic library 0.13U/mL 1 1.28" 0.67 989 1476 This study

2 NR, not reported; b The reaction mixture containing 0.125 U/mL r-MIBgl and 1 mg/mL polydatin was
performed in 0.2 M Mcllvaine buffer (pH 7.0) at 30 °C for 1 h. The productivity (mM/h) was defined as the
increase in the concentration of resveratrol produced in 1 h [41].

3. Experimental Section

3.1. Strains, Vectors and Reagents

Escherichia coli EPI300-T1R and Copycontrol pCC2FOS (Epicentre, Madison, WI, USA) were used
as host strain and vector for construction of the metagenomic library. pET22b (+) (Novagen, Madison,
WI, USA) was used as the expression vector to produce the target protein in Escherichia coli BL21(DE3)
(Novagen). DNA isolation and purification kits, Escherichia coli DH50, pMD19-T vector, restriction
endonucleases, DNA polymerase, dNTPs, T4 DNA ligase and isopropyl-{3-D-1-thiogalactopyranoside
(IPTG) were purchased from TaKaRa. Substrates p-nitrophenyl-f-D-glucopyranoside (pNPG),
polydatin, and resveratrol standards were from Sigma-Aldrich. All other chemicals were of analytical
grade unless otherwise stated.
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3.2. Metagenomic Library Construction

The topsoil samples (0-10 cm) were collected from the Mangrove Reserve of Sanya City
(18°15'16.32”’N, 109°30'28.10"'E), Hainan province of China. The samples were stored at —20 °C
until the DNA extractions were performed. Extraction of the total genomic DNA from soil samples
was performed according to the method reported with minor modifications [23]. The DNA fragments
(3548 kb) were obtained and purified by pulsed-field gel electrophoresis (PFGE). And then the
metagenomic library was constructed following the instructions of the CopyControl Fosmid Library
Production Kit.

3.3. Screening of B-Glucosidase Gene MIBgl

Recombinant Escherichia coli EPI300-T1R strains of the metagenomic library were replicated onto
Luria-Bertani (LB) agar plates containing 0.1% esculin to detect 3-glucosidase activity. The plates
were incubated at 28 °C for 16 h and then placed at room temperature for 2-3 days. The clones that
turned dark brown on the plate were selected as 3-glucosidase positive recombinants. The fosmid
DNA of positive clones were isolated and partially digested with Sau3A I. DNA fragments of 1-5 kb
were recovered and ligated into pUC19 with BamH I digested. And then transformed to Escherichia coli
DH5a. The subcloned library was rescreened of 3-glucosidase activities and the plasmid from positive
clones was sequenced.

3.4. Sequence Analysis

The sequence similarities and conserved motif of MIBgl was analyzed by BLAST program
(version 2.3, http:/ /www.ncbi.nlm.nih.gov/BLAST). Multiple sequence alignment of MIBgl with
similar B-glucosidase sequences was carried out using the ClustalX (Version 2.0, EMBL-EBI) and
DNAMAN (Version 6.0, Lynnon Biosoft Corp., San Ramon, CA, USA) program. The three-dimensional
(3D) model of r-MlBgl was generated by homology modelling using the Swiss-Model server
(http:/ /swissmodel.expasy.org). The crystal structure of 3-D-glucan exohydrolase isoenzyme Exol
(PDB code: 1EX1) was served as template for modelling the structure of r-M1Bgl. The coloring and
labeling of the 3D structures were performed by using PyMOL software (version 1.8, www.pymol.org).

3.5. Gene Expression and Purification of Recombinant B-Glucosidase r-MIBgl

The (-glucosidase gene MIBgl was amplified by wusing the primer pair of
GCATGCCATGGGCGCACAGCAACCGGAATTGGCAG (Nco I digestion site underlined) and
CCTCCGCTCGAGCAGCACGATCCCGGCTCCAAAG (Xho I digestion site underlined). The PCR
product was digested with restriction endonucleases Nco I and Xho I, then ligated into pET-22b (+)
vector which digested with the same enzymes. The recombinant plasmid pET-MIBgl was transformed
into Escherichia coli BL21(DE3) to express the target protein. The transformed Escherichia coli BL21(DE3)
cells carrying pET-MIBgl were cultured in LB medium containing ampicillin (100 ug/mL) at 37 °C.
After inducing in 1 mM IPTG at 22 °C for 16 h, cells were harvested, washed twice with Tris-HCl
buffer (pH 7.6), and lysed by sonication on ice for 20 min at a pulse frequency of 4 s/4 s. The lysate
was centrifuged at 10,000 g for 20 min at 4 °C. The supernatant was applied to a Ni>*-NTA agarose gel
column for purification. The recombinant (3-glucosidase r-M1Bgl was eluted with 200 mM imidazole
and then dialyzed in deionized double-distilled H,O at 4 °C for 24 h. The purified protein was
detected with sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The protein
concentration was determined by the Bradford method [42] with bovine serum albumin as standard.

3.6. Enzyme Activity Assay

[-Glucosidase activity was determined using pNPG as the substrate [43]. The reaction mixure
contained 1 pL of appropriately diluted enzyme, 10 uL 25 mM pNPG, and 89 puL 0.2 M Mcllvaine
buffer (pH 7.0). After incubation at 40 °C for 5 min, the reaction was terminated with 50 pL 1
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M Nay;COj;. The amount of liberated p-nitrophenol was measured by detecting the absorption
at 405 nm. The control was set by adding 50 uL. 1 M Na,COj3 before addition of the enzyme. One unit
of 3-glucosidase activity (U) was defined as the amount of enzyme that produced 1 pmol p-nitrophenol
per min under the optimal conditions. To determine the Ky, and Vmax values towards pNPG, a
series of concentrations (0.25-2.5 mM) of pNPG in Mcllvaine buffer (pH 7.0) were incubated at 40 °C
for 5 min. The reaction starting and stopping conditions were the same as those used previously.

3.7. Physico-Chemical Characterization of r-MIBgl

The characterization of r-MlBgl was detected by using pNPG as the substrate. The optimal
reaction pH was tested in varying pH buffer (pH 3.0-11.0) at 40 °C. The buffers used were 0.2 M
Mcllvaine buffer for pH 3.0-8.0 and 0.05 M glycine-NaOH buffer for pH 8.0-11.0. The optimal reaction
temperature was determined in Mcllvaine buffer (pH 7.0) at a temperature from 0 to 65 °C at intervals
of 5 °C. The thermal stability of r-MIBgl was determined by measuring the residual activity after
incubating enzyme at different temperatures from 0 °C to 45 °C for 1 h. To investigate the effects
of different metal ions on enzyme activity, 1 mM and 10 mM (final concentration) of Na*, K*, Li*,
NH,*, Mg2+, Fe3*, Zn*, Ca?*, Cu?*, Ni?*, Ba?t, Co?*, EDTA, and SDS were individually added to the
reaction system. All enzyme activities were determined in three independent experiments.

3.8. Substrate Specificity

Substrate specificity of r-MIBgl was determined by using pNPG, p-nitrophenyl-3-D-galactopyranoside,
p-nitrophenyl-p-D-cellobioside and p-nitrophenyl-3-D-xylopyranoside at 2.5 mM final concentration.
r-MIBgl activities on esculin, carboxymethylcellulose (CMC), xylan, avicel and starch as substrates at
1% concentration were also tested. The activities were estimated by assaying the reducing sugars via
DNS (3,5-dinitrosalicylic acid) method [44]. The product from reaction of DNS and reducing sugar
was brown on heating, and the amount of reducing sugar was determined by detecting the brown
product at ODsyg using the glucose curve as standard. Activities on cellobiose and cellotriose were
determined by using the glucose assay kit. One unit of activity (U) was defined as the amount of
enzyme that produced 1 umol reducing sugar per min under the optimal conditions.

3.9. Enzymatic Conversion of Polydatin to Resveratrol

To determine the kinetic properties of recombinant r-M1Bgl toward polydatin, 200 uL reaction
mixtures containing 0.0125 U enzyme and a series of concentrations of polydatin (0.256-5.12 mM) in
Mcllvaine buffer (pH 7.0) were incubated at 40 °C for 5 min. The reaction was stopped by adding
800 puL methanol. For analysis of the amount of resveratrol produced, the reaction mixtures were
diluted 10 times with methanol and filtered through a 0.22 pym membrane prior to high performance
liquid chromatography (HPLC). An Agilent system equipped with a reverse phase column C 18
(4.6 x 250 mm, 5 um) was used in this study. The sample was injected and eluted with a linear gradient
of solvent A (0.1% formic acid in water) and solvent B (100% acetonitrile) from 95:5 to 20:80 for 45 min,
and then from 20:80 to 95:5 for 5 min at a flow rate of 1 mL/min. The UV absorption was measured
at 306 nm. The amount of polydatin and resveratrol in the samples were calculated using standard
curves prepared from known concentrations of standards. All enzymatic conversions were determined
in three independent experiments, and a reaction mixture with heat inactivated enzyme was used as a
blank control. The kinetic parameters of Ky, and Vmax towards polydatin were subjected to nonlinear
regression analysis with the GraphPad Prism 5.0 software (Version 5.0, GraphPad software Inc.,
San Diego, CA, USA).

3.10. Nucleotide Sequence Accession Number

The nucleotide sequences of the 3-glucosidase gene MIBgl from the mangrove metagenomic
library were deposited in the GenBank database under accession number KF424271.
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4. Conclusions

A metagenomic library of mangrove soil was constructed and a novel GH3 (3-glucosidase
was isolated by functional screening. The recombinant r-MIBgl was overexpressed, purified, and
characterized. r-MIBgl exhibited high relative activities at low temperature. It had strong substrate
specificity that could only hydrolyze aryl 3-glycosides. A very attractive characteristic of r-MIBgl was
the high catalytic efficiency toward polydatin. The kcat, kcat/ Km and productivity of r-M1Bgl toward
polydatin were higher than the 3-glucosidases previously reported. These properties make it a good
candidate in enzymatic conversion of polydatin to resveratrol. This study also highlights the utility of
the metagenomic approach in discovering novel 3-glucosidases for hydrolysis of polydatin.
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