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Abstract: A novel procedure for the synthesis of both hydroxyapatite (HAP) and palladium doped
HAP via a wet chemical precipitation method is described herein. X-ray Diffraction (XRD), Raman
Spectroscopy, Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray Spectroscopy (EDS)
and Fourier Transform Infrared (FT-IR) Spectroscopy are utilised to characterise the synthesised
material’s morphology, structure and crystallinity. The developed synthetic protocol produces high
purity HAP with an average yield of 83.7 (˘0.10)% and an average particle size of 58.2 (˘0.98) nm,
such synthesis has been achieved at room temperature and within a time period of less than 24 h.
Additionally, in order to enhance the overall conductivity of the material, a range of Pd (2, 4 and
6 wt %) metal doped HAP has been synthesised, characterised and, for the first time, applied towards
the competitive electrocatalytic detection of hydrazine, exhibiting a linear range of 50–400 µM with a
limit of detection (3σ) of 30 µM.
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1. Introduction

Hydroxyapatite (HAP), Ca10(PO4)6(OH)2, is an inorganic compound that has a similar mineral
composition to that of human bones and teeth [1]. HAP has been reported to exhibit excellent
biocompatibility, bone-bonding ability and also possesses no toxicity or inflammatory response
towards the human body [2]. Due to these beneficial attributes, it has widely been investigated within
biomedical applications such as a bone/teeth implants, bone tissue regeneration, cell proliferation
and drug delivery [3,4]. In addition to these applications, the specific characteristics of HAP, such as
low water solubility and high stability under oxidising and reducing conditions, make this material
suitable as a sorbent in the purification of wastewater and removal of a variety of heavy metals, such as
arsenic (III), selenium (IV), lead (II), cadmium (II), cobalt (II) or nickel (II) from contaminated industrial
aqueous waste [5–9]. Another powerful application of HAP is the determination of ammonia for
applications such as environmental pollution control, reported by Zhang et al. [10], who describe
electrochemical detection of ammonia (at room temperature) using a composite of HAP/graphene
which exhibits a significant improvement in the analytical sensitivity compared to that of a bare
graphene sensor. Furthermore, Kanchana et al. [11] employed HAP towards the electrochemical
detection of uric acid demonstrating a limit of detection of 142 nM, which was applied to human urine
and blood serum. These specific applications of HAP require careful control of properties such as
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particle size, dimensional anisotropy, morphology, real microstructure etc., all of which are critically
important for the optimisation and utilisation of HAP into different fields [12,13].

HAP is a non-conductive inorganic compound and is typically used as a catalyst support for a
limited amount of metals/metal oxides [14–16]. In the study reported by Mori et al. [14] palladium
nanoclusters were applied onto HAP surfaces and employed towards selective oxidation of alcohols
with use of molecular oxygen. Subsequently, palladium metal coupled with HAP was also utilised
in Suzuki-Miyaura cross-coupling reactions with sixteen different aryl boronic acids and several
different aryl halides, described by Indra et al. [15]. However, it is not only palladium metal that has
been successfully assembled with HAP; rhodium supported HAP has also been investigated towards
hydrogen generation from the methanolysis of ammonia borane, revealing very high activity [16].

A variety of methods have been developed to synthesise HAP, with the majority employing
either wet chemical [17–19], sol-gel [1], hydrolysis [20], microwave irradiation [21] or hydrothermal
methods [3,22,23]. However, most of the stated techniques require complicated setups such as reflux or
autoclave systems that involve high temperature and pressures; thus the most utilised and proposed
method in this report methodology is wet chemical precipitation, due to its low cost, simplicity
and reduced energy consumption. Additionally, depending upon the solvents used to maintain the
pH during the synthesis different purity yields can be obtained; for example Kavitha et al. [24]
utilised tris-(hydroxymethyl)aminomethane to control a constant pH during the synthesis achieving
an unsatisfactory yield between 27%–36%. Nevertheless, by maintaining a stable solution pH the
crystallinity can be differentiated between flower-like, bowknot-like and monorods, as described by
Liu et al. [21], where microwave radiation was used to synthesise HAP; the specific properties for each
shape of crystals are still under investigation . It is important to note that the majority of studies do
not report specific yields of HAP produced, as summarised within Table 1.

In this paper, a novel wet chemical synthesis protocol for HAP is presented, which is achieved
through the combination and optimisation of existing methods, producing HAP with an average yield
of 83.7 (˘0.10)% (N = 3). This new methodology uses less toxic substrates when compared to previous
approaches and is completed within less than 24 h, which is considerably less time compared to other
studies (as shown in Table 1). The synthesised HAP has been fully characterised using XRD, Raman
Spectroscopy, SEM, EDS, TEM and FT-IR. The synthesis protocol is extended to produce Pd0 (2, 4 and
6 wt %) doped HAP that has been synthesised, characterised and for the first time applied towards the
electrocatalytic detection of hydrazine.
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Table 1. Different approaches for the wet chemical synthesis of hydroxyapatite (HAP) reported within the literature, including solvents employed and yields
(where applicable).

Solvent Used to Maintain pH
during the Synthesis Yield % Comments Time Temperature of

Synthesis/˝C References

Tris hydroxyl methyl amino methane 27–36 - Not stated 300–500 [24]

Ammonia Not stated Yield stated as high, however no
specific value mentioned ~30 h 37 [25]

Ammonia >75 Starch used to prevent
agglomeration of nanoparticles ~40 h 85 [26]

Potassium hydroxide Not stated Yield stated as high, however no
specific value mentioned ~30 h 70 [27]

Ammonia Not stated Yield not stated ~8 days 25–100 [28]

Orthophosphoric acid Not stated Yield not stated ~30 h 18–22 [29]

Ammonia and deionised water Not stated Yield not stated >70 h 18–22 [13]

Ammonia Not stated Yield not stated ~50 h 95 [30]

Ammonia Not stated Yield not stated ~40 h 18–22 [31]

Phosphoric acid Not stated Yield not stated ~80 h 18–22 [32]

Sodium hydroxide 84 - <24 h 18–22 This work
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2. Results and Discussion

2.1. Hydroxyapatite (HAP) Synthesis

Hydroxyapatite (HAP) was synthesised as described in the Experimental Procedures section,
which is a combination of previously reported studies (shown in Table 1) and optimisation of synthesis
time and the solvents used to make the proposed protocol simpler and more efficient with less
environmental damage. The obtained material was characterised via SEM, which as depicted within
Figure 1A,B reveals a highly agglomerated crystalline HAP structure that is typical of nanocrystral
behaviour. The same morphological observations of the HAP has been reported in independent work
by Yamini et al. [33] where XRD studies also confirm it belonged to a hexagonal crystal system.
As observed on TEM images (shown in Figure 2A) HAP reveals small degree of porosity, but more
importantly stable crystalline structure. Following SEM and TEM characterisation, EDS analysis was
performed to examine the elemental composition of the materials. Based upon the results as shown
within ESI Figure 1, it is clear that the composition of the obtained powder contains the elements Ca, P,
O, as expected for HAP, and they are present in the same ratio as that of the stoichiometric reaction.
It is important to note that the presence of sodium particles are contributed by the sodium hydroxide
solution used to maintain a stable pH over the course of reaction (see Experimental Section).
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A Raman spectroscopy study was next employed to characterise the synthesised material.
As shown in Figure 3A, the spectra is dominated by one sharp peak at 963 cm´1, which represents
symmetric stretching mode (v3) of the phosphate ions [34]. The 1049 cm´1 peak corresponds to
the asymmetric stretching mode (v3) of the phosphate ions, while the peak at 450 cm´1 is due
to the symmetric bending mode (v2) of the phosphate ions. The final peak at 581 cm´1 indicates
asymmetric bending mode (v4) of the phosphate groups [34]. Subsequently, the crystallinity of HAP
was investigated using XRD. The XRD pattern shown within Figure 4A suggests a single crystal
structure of hexagonal HAP. This pattern reveals the successful formation of HAP and conforms to the
HAP standard (Joint Committee on Powder Diffraction Standards) JCPDS pattern 01-072-1243) shown
in Figure 4B and described elsewhere [35]. Such crystals were analysed by a Zetasizer using dynamic
light scattering and zeta potential giving an average particle size of 58.2 (˘0.98) nm.

Attention was next turned to the spectral characterisation of the HAP via FT-IR, using attenuated
total reflectance (ATR) to indicate chemical bonding of the HAP powder and determine any impurities
(such as nitrate ions) that are formed during the reaction that could cause contamination of the
end product. The double peak present at 599 cm´1 and 603 cm´1, as shown in ESI Figure 2, is
associated with bending modes in the P–O bonds in the phosphate groups. The peak observed at
1024 cm´1 indicates a stretching mode in the P–O bonds within the HAP, which agrees with the reports
described elsewhere [36,37]. Therefore, formation of the phosphate group within the synthesised
HAP is confirmed via FTIR studies. At the same time, infrared excludes contamination by nitric acid,
which were by-products removed by multiple washing steps (using ethanol and deionised water) of
the synthesised HAP. This is due to the absence of nitro group peaks, which appear in the range of
1550–1475 cm´1 (asymmetric stretch) and 1360–1290 cm´1 (symmetric stretch) [38].
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Figure 4. X-ray Diffraction pattern of HAP (A); Standard HAP pattern—JCPDS (Joint Committee on
Powder Diffraction Standards) 01-072-1243 (B); Pd (2 wt %) doped HAP (C); HAP (solid line) and Pd
doped HAP (dash line) (D) [35].

This wet synthesis approach after optimisation was repeated three times with the average
percentage yield found to correspond to 83.7% (˘0.10%; N = 3), which is extremely high when
compared to other literature studies as presented in Table 1. It should be noted that most of the reported
studies do not mention a specific value of the yield obtained [28–30,39,40]. Öner et al. [27] reported an
approach where they have used less harmful components than ammonia i.e. potassium hydroxide,
nevertheless no yield or reproducibility of the proposed method was specified. In comparison to the
previously reported strategies, presented within Table 1, this new proposed synthesis is more attractive
as it gives rise to a shorter reaction time (<24 h), low temperature synthesis (room temperature) and
therefore reduced energy consumption, homogenous mixing, nanophase particle size/shape control
and higher product yield. Obtaining high yield in the synthesis is essential to validate the proposed
route and demonstrate how reliable and successful the methodology is when compared to theoretical
equation of the reaction.

2.2. Palladium Doped HAP

The above approach was to extend the synthesis of HAP with an active metal, in this case
palladium, to enhance overall conductivity of the material and at the same time make it capable to
perform electrocatalysis. The Pd0 doped HAP was synthesised as described in the Experimental
Procedures via an ion exchange mechanism using three different amounts of Pd salt to obtain 2, 4 and
6 wt % modified HAP. The SEM images revealed the morphology of the particulates remained the
same after application of the palladium metal upon the HAP surface (Figure 1C,D). As shown on TEM
images (Figure 2B) palladium has been uniformly distributed throughout the sample demonstrating
the reliability of ion exchange loading method. Raman Spectroscopy of the palladium doped HAP
confirm that the phosphate groups within HAP structure persist unchanged as shown in Figure 3B,
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however the intensity of the peaks decreased significantly due to changes in the centre of symmetry of
the material. As described before HAP possesses hexagonal crystal structure, however introducing
metal into the system results in asymmetry in the system, therefore crystallinity of the material is
decreased giving reduced intensity peaks [41]. XRD analysis showed larger crystal formation due to
the palladium metal deposited upon the HAP surface, indicated by sharper (narrower) XRD peaks,
when compared to the JCPDS pattern presented in Figure 4B,C. Also, patterns reveal face-centred-cubic
crystalline palladium metal, with all the peaks shifted slightly, corresponding to a lower binding
energy of the material (shown in Figure 4D) [42,43]. This scenario is also accompanied by an increased
intensity of the peaks, which is characteristic behaviour for material with changed centre of symmetry
of the material. Next, based on the XRD patterns from the varied amounts of Pd0 loaded on the
HAP, the peak that corresponds to the metal, at 40 degrees 2θ, clearly increases with additions of
palladium on the surface of HAP during the synthesis (Figure 5A,B), indicating higher concentrations
of palladium metal in the end product.
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2.3. Application of Pd0 Doped HAP

Following the described synthesis of the Pd doped HAP, attention was next turned to the
application of the material towards the electrochemical detection of hydrazine. Hydrazine is described
as a very powerful reducing agent that is widely used in many different industries [44]. According to
the Environmental Protection Agency (EPA), it is recognised as an environmental pollutant due to its
toxicity and its tendency to act as an irritant [45]. Humans can be exposed to hydrazine via drinking
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contaminated water, inhaling contaminated air, or even from swallowing and touching contaminated
dust [46]. Severe exposure to hydrazine is detrimental to the liver, kidneys and central nervous system;
therefore, there is a need for a reliable, fast and simple electrochemical sensing platform for the
detection of hydrazine [45].

Figure 6A represents a linear sweep voltammogram recorded in a pH 7.4 PBS containing 0.5 M
hydrazine using Pd (4 wt %) doped HAP modified screen-printed electrode (Pd/HAP/SPE) in
comparison to the bare SPE in the same aqueous solution. As described previously upon palladium
metal surfaces the electrochemical oxidation of hydrazine involves transfer of 4 electrons per molecule
leading to the production of nitrogen [47]. It can be observed in Figure 6A, that the bare SPE was
first examined in order to evaluate its suitability to detect hydrazine, with an analytical signal, unlike
when the electrode was modified with Pd doped HAP where significant increase in current is observed
demonstrating the catalytic role towards the material. In the study by Batchelor-McAuley et al. [48], the
application of pure Pd nanoparticle modified electrode the electrochemical oxidation of hydrazine was
reported to occur at a peak potential at ~+0.2 V (vs. SCE). In this study the electrochemical oxidation of
hydrazine was found to occur ~+0.5 V (vs. SCE) which indicates an overpotential is required to drive
the electrochemical reaction which is likely due to a sparsely distributed Pd over the HAP. Note that
this approach has taken an inert material (i.e., HAP) and transformed it into a useful electrochemical
material. This is reflected in the difference in the overpotential observed in our work, which is higher
than prior literature. Unlike previously reported studies, where the employed materials have always
been conductive i.e., graphene/carbon nanotubes on standard glassy carbon electrode, as listed in
Table 2, this work for the first time combines a new material described above on a disposable, easy to
use and low cost screen-printed electrochemical platform.
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in a pH 7.4 PBS (phosphate buffered solution) in the presence of 500 µM hydrazine (A); Calibration
plot (B). Error bars indicate a standard deviation of N = 3. Scan rate: 5 mV¨s´1 vs. SCE. Note that each
data point on calibration plot (B) represents new electrode utilised.
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Table 2. Plethora of palladium metal modified surfaces employed for hydrazine detection with limits of detection and electrochemical methods used. The following
abbreviations are used: glassy carbon electrode (GCE), cyclic voltammetry (CV), linear sweep voltammetry (LSV), ethylenediamine cellulose (EDAC), polyaniline
(PANI), boron-doped diamond (BDD), basal plane pyrolytic graphite electrode (BPPG).

Metal Pd Loading/wt % Support Electrode Electrochemical Method Linear Range/µM LOD (3σ)/µM References

Au/Pd Not stated TiO2 nanotubes GCE CV 0.06–700 12 [49]
Pd 20.6 Carbon nanotubes GCE CV 2.5–700 1 [50]
Pd 100 PANI GCE CV 10–300 0.5 [51]
Pd 0.6 Carbon black GCE CV 5–50 8.8 [47]
Pd 100 Not stated MWCNT LSV 56–157 10 [52]
Pd 100 Not stated BDD LSV 27.2–85 2.6 [53]

Pd/Au/Ag Not stated Glassy Carbon Microspheres BPPG CV 0–300 4 [54]
Pd Not stated Graphene GCE CV 1–740 17 [55]
Pd Not stated Guar gum GCE CV 50–600 4.1 [56]

Au/Pd Not stated Graphene nanoplatelets GCE CV Not stated Not stated [57]
Pd 7.3 EDAC GCE CV 5–150 1.5 [58]
Pd 4 HAP SPE LSV 50–400 30 This work
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It was observed that the first material tested (i.e., 2 wt % of Pd) gave random and unreproducible
electrochemical signals. It was clear that the amount of metal in the material was insufficient to detect
hydrazine accurately even though oxidation signals were recorded. Subsequently, the last material
synthesised (i.e. 6 wt % of Pd) revealed good reproducibility over the range of electrodes tested (N = 3),
however at lower coverages the peak potential possessed a large percentage error and a lower peak
current when compared to 4 wt % (shown in ESI Figure 3). Hence, it was demonstrated that the best
metal loading on the HAP surface with the best reproducibility of the electrocatalytic determination of
hydrazine, using different electrodes and different coverages was 4 wt % of Pd upon the HAP surface.
In terms of intensity of the peak current, it was noted that the best coverage on SPE using such material
corresponded to 10 µL (50 µg immobilised upon the electrode surface). Therefore, it was selected for
further tests.

Next, the voltammetric detection of hydrazine was explored with additions made into pH 7.4
phosphate buffered solution where the voltammetric signal was monitored as a function of
concentration. Consequently, a plot of the oxidation peak height vs. hydrazine concentration was
constructed and illustrated in Figure 6B, using the optimised 4 wt % Pd upon HAP modified SPE.
Note, that regarding the disposable character of screen printed electrodes, they were used as one shot
sensors, thus three different electrodes were used for different concentrations of hydrazine giving
non-significant variations (shown as standard deviations in Figure 6B). The plot reveals a linear
response over the concentration range of 50–400 µM hydrazine, (IH/µA = 0.3904 ˆ 10´4 µA¨µM´1

+ 0.0025 µA; R2 = 0.9994; N = 7). It was additionally noted, that the lowest detectable concentration
of hydrazine in this study was found to be 50 µM with a (limit of detection) LOD (3σ) of 30 µM,
which is higher in comparison to a study published by Zhao et al. [50] and Ejaz et al. [55] with a LOD
of 12 µM and 17 µM, respectively. However, it worth to note that both studies utilised traditional
electrochemical setup i.e., glassy carbon electrode and employed conductive supports such carbon
nanotubes or graphene. The modification of low cost, easy to use and portable screen-printed electrodes
with Pd (4 wt %) doped HAP was demonstrated to be electrochemically useful, when HAP has been
transformed from inert material into a semi-conductive material that has been successfully applied for
the electroanalytical detection of hydrazine, demonstrating to be a suitable and low production cost
analytical sensor. It is clear that the more expensive pure palladium alternatives offer further beneficial
electrochemical responses with lower LOD, these reports are summarised in Table 2. However, in terms
of production costs, this reported novel synthesis and material still proves beneficial and competitive
for the application of a low Pd hydrazine sensor; the low metallic Pd content (4 wt %) makes this
material an remarkably attractive alternative to existing Pd modified electrodes.

3. Experimental Procedures

3.1. Materials and Chemicals

All chemicals were obtained from Sigma-Aldrich (Dorset, UK) and were used as received without
any further purification. All solutions were made by using deionised water with resistivity not less
than 18.2 MΩ¨cm.

3.2. Synthesis of HAP

(NH4)2HPO4 (0.4 M, 100 mL) was stirred at room temperature (18–22 ˝C) in a 2 L beaker with
Ca(NO3)2 (0.6 M, 100 mL) added dropwise over one hour, resulting in a “milky” suspension of HAP.
The Ca/P molar ratio was kept at 1.67 corresponding to the stoichiometry of HAP. The pH was
maintained through the addition of NaOH (0.1 M) within the range 9.4–9.5. This “milky” suspension
was then stirred overnight at room temperature using a magnetic stirring bar. The obtained precipitate
was filtered, cleaned alternately with water and ethanol three times, oven dried at 65 ˝C for six
hours, and then calcined at 600 ˝C for a further two hours making full synthesis complete within less
than 24 h.
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3.3. Synthesis of Pd0 Doped HAP

First, Pd(NO3)2 (50, 100 and 150 mg) was dissolved in 100 mL of deionised water, after which
the HAP was added (1 g) and the resulting mixture was stirred for three days at room temperature
(ion exchange), filtered and vacuum dried. The obtained PdO upon HAP appeared as a yellow powder,
which was then reduced to Pd0 through introduction of a flow of hydrogen (30 mL¨min´1) at 300 ˝C
using a chemical vapour deposition (CVD) rig with a rotary pump (Carbolite type 3216, Tempatron,
PID500/110/330, Essex, UK) to obtain a pressure of 1000 Pa. The excess of hydrogen was removed
from the surface using argon atmosphere and the sample was cooled to room temperature under the
same conditions. The end product was observed to be a grey powder [59,60].

3.4. Electrochemical Measurements

Experiments were performed using a typical three-electrode system (supplier, city, country),
consisting of a graphitic screen-printed electrode (SPE) working surface (3 mm diameter), platinum
wire counter electrode and a saturated calomel electrode (SCE) as the reference completing the circuit.

The SPEs were fabricated in-house with appropriate stencil designs using a microDEK
1760RS screen-printing machine (DEK, Weymouth, UK). For each of the screen-printed sensors a
carbon-graphite ink formulation was first screen-printed onto a polyester flexible film (Autostat,
250 µm thickness). This layer was cured in a fan oven at 60 ˝C for 30 min. Next a silver/silver chloride
(40:60) pseudo-reference electrode was applied by screen-printing Ag/AgCl paste (Product Code:
C2040308P2; Gwent Electronic Materials Ltd., Pontypool, UK) onto the plastic substrate. This layer
was once more cured in a fan oven at 60 ˝C for 30 min. Last a dielectric paste ink (Product Code:
D2070423P5; Gwent Electronic Materials Ltd., Pontypool, UK) was printed to cover the connections
and define the 3 mm diameter graphite working electrode. After curing at 60 ˝C for 30 min the
screen-printed electrode was ready to use [61].

The SPE was then precisely cut to remove the Ag/AgCl pseudo-reference and carbon counter
allowing for modification of Pd doped HAP using the drop-coating method; an external SCE and
counter electrode were then utilised for electrochemical studies. Linear Sweep Voltammetry (LSV)
method was carried out in the range of 0 to +0.8 V at the scan rate 5 mV¨s´1 vs. SCE. The dispersed
Pd (2, 4 and 6 wt %) doped HAP was dissolved in a mixture of ethanol-water (50:50) to obtain a final
concentration of 0.5 mg¨mL´1 and was gently sonicated. Aliquots (2 µL at a time) were then pipetted
into the surface of the working electrode and dried in an oven below 40 ˝C. Each modification was
repeated on three different electrodes to examine reproducibility of the different coverages assayed.
Hydrazine solution (500 µM) in a pH 7.4 phosphate buffered solution (PBS) was employed as an
analyte throughout the electrochemical tests. Voltammetric measurements were carried out using
an µ-AUTOLAB III (ECO-Chemie, Utrecht, The Netherlands) potentiostat. All measurements were
performed at 25 ˝C. In addition an edge-connector was used to ensure the reproducibility of the
electrochemical connections throughout the studies [61].

3.5. Characterisation of the HAP and Pd0 Doped HAP

The structure, crystallography and morphology of the synthesised HAP and Pd doped HAP
particles were analysed using various of techniques. Scanning Electron Microscopy (SEM) images
were obtained with a Supra 40VP model SEM (Carl Zeiss Ltd., Cambridge, UK) coupled to an Apollo
40 SDD energy-dispersive X-ray microscope (EDAX, Cambridge, UK) to estimate surface elemental
composition of HAP and Pd content; Transmission Electron Microscopy (TEM) (JEOL JEM 2100 using
200 kV, Akishima, Tokyo) images were acquired to study the surface morphology of the samples by
dispersing the particles in ethanol and sonicating one hour before drying on the TEM grid. After
evaporation of the solvent sample was cleaned using plasma etching system; Raman Spectroscopy
was performed using a “inVia” confocal Raman Microscope (Reinshaw PLC, York, UK) equipped
with a confocal microscope (ˆ50 objective) spectrometer with an argon laser (514 nm excitation)
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and a very low laser power level (0.8 mW) to avoid any heating effects to examine stretching and
bending modes within the molecule. Fourier transform infrared spectroscopy (FT-IR) (Nicolet 380
Smart iTR, Waltham, USA) used diamond attenuated total reflection (ATR) diamond detector without
any further purification of sample to confirm formation of the phosphate groups within HAP; X-ray
Diffraction (XRD) (X’Pert Powder, PANalytical, Cambridge, UK) was used in powder spinning mode
to distinguish the crystallinity of the material and confirm formation and phase purity of both HAP
and Pd. The angle of the anti-scatter slit was 1˝ and the 2θ range measured was between 20˝–60˝

using Cu-Kα radiation, with a step size of 0.052˝ and 200 s/step. A Zeta sizer (Nano series, NanoZS,
Malvern Instruments, Malvern, UK) was used to estimate the size of the HAP particles.

4. Conclusions

This paper has reported a novel wet chemical synthesis of HAP with a high average yield of
83.7 (˘0.10)% with an average particle size of 58.2 ˘ 0.98 nm. It is not only the yield that makes
this approach extremely attractive, but also low temperature synthesis, low cost, simplicity of the
method, homogenous mixing and nanophase particle size control resulting in a very pure phase of
HAP. Characterisation of HAP nanocrystals indicated that the synthesised material was pure and
crystalline with a Raman spectra revealing successful formation of the phosphate groups within the
HAP crystals. This was also demonstrated by XRD, where patterns showed that HAP possessed a
single crystalline structure, however by adding palladium upon the surface, crystals become larger
causing more intense and sharper peaks. Also, the excellent purity of crystals obtained applying the
methodology proposed in this work was confirmed by FT-IR where potential nitro impurities were
not present. Finally, the modification of low cost, easy to use and portable screen-printed electrodes
with Pd (4 wt %) doped HAP was demonstrated to be electrochemically useful, when HAP has been
transformed from inert material into a semi-conductive that has been successfully applied for the
electroanalytical detection of hydrazine, demonstrating to be a suitable and low production cost
analytical sensor.
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54. Baron, R.; Šljukić, B.; Salter, C.; Crossley, A.; Compton, R.G. Development of an electrochemical sensor
nanoarray for hydrazine detection using a combinatorial approach. Electroanalysis 2007, 19, 1062–1068.
[CrossRef]

55. Ejaz, A.; Ahmed, M.S.; Jeon, S. Highly efficient benzylamine functionalized graphene supported palladium
for electrocatalytic hydrazine determination. Sens. Actuators B Chem. 2015, 221, 1256–1263. [CrossRef]

56. Rastogi, P.K.; Ganesan, V.; Krishnamoorthi, S. Palladium nanoparticles decorated gaur gum based hybrid
material for electrocatalytic hydrazine determination. Electrochim. Acta 2014, 125, 593–600. [CrossRef]

57. Wan, Q.; Liu, Y.; Wang, Z.; Wei, W.; Li, B.; Zou, J.; Yang, N. Graphene nanoplatelets supported metal
nanoparticles for electrochemical oxidation of hydrazine. Electrochem. Commun. 2013, 29, 29–32. [CrossRef]

58. Ahmar, H.; Keshipour, S.; Hosseini, H.; Fakhari, A.R.; Shaabani, A.; Bagheri, A. Electrocatalytic oxidation
of hydrazine at glassy carbon electrode modified with ethylenediamine cellulose immobilized palladium
nanoparticles. J. Electroanal. Chem. 2013, 690, 96–103. [CrossRef]

59. Gauthard, F.; Epron, F.; Barbier, J. Palladium and platinum-based catalysts in the catalytic reduction of nitrate
in water: Effect of copper, silver, or gold addition. J. Catal. 2003, 220, 182–191. [CrossRef]

60. Rakap, M.; Özkar, S. Hydroxyapatite-supported palladium(0) nanoclusters as effective and reusable catalyst
for hydrogen generation from the hydrolysis of ammonia-borane. Int. J. Hydrogen Energy 2011, 36, 7019–7027.
[CrossRef]

61. Galdino, F.E.; Foster, C.W.; Bonacin, J.A.; Banks, C.E. Exploring the electrical wiring of screen-printed
configurations utilised in electroanalysis. Anal. Methods 2015, 7, 1208–1214. [CrossRef]

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.msec.2013.09.016
http://www.ncbi.nlm.nih.gov/pubmed/24268262
http://dx.doi.org/10.1016/j.electacta.2011.03.014
http://dx.doi.org/10.1016/j.snb.2010.07.004
http://dx.doi.org/10.1002/elan.200603681
http://dx.doi.org/10.1039/B513751A
http://www.ncbi.nlm.nih.gov/pubmed/16365670
http://dx.doi.org/10.1002/elan.200703822
http://dx.doi.org/10.1016/j.snb.2015.07.093
http://dx.doi.org/10.1016/j.electacta.2014.01.148
http://dx.doi.org/10.1016/j.elecom.2013.01.007
http://dx.doi.org/10.1016/j.jelechem.2012.11.031
http://dx.doi.org/10.1016/S0021-9517(03)00252-5
http://dx.doi.org/10.1016/j.ijhydene.2011.03.017
http://dx.doi.org/10.1039/C4AY02704C
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction 
	Results and Discussion 
	Hydroxyapatite (HAP) Synthesis 
	Palladium Doped HAP 
	Application of Pd0 Doped HAP 

	Experimental Procedures 
	Materials and Chemicals 
	Synthesis of HAP 
	Synthesis of Pd0 Doped HAP 
	Electrochemical Measurements 
	Characterisation of the HAP and Pd0 Doped HAP 

	Conclusions 

