catalysts MoPY

Communication

Synthesis of New Chiral Benzimidazolylidene-Rh
Complexes and Their Application in Asymmetric
Addition Reactions of Organoboronic Acids

to Aldehydes

Weiping He "3, Bihui Zhou ", Jie Li I"* and Jianyou Shi %*

1 School of Medicine, Zhejiang University City College, No. 48, Huzhou Road, Hangzhou 310015, China;
wphe2016@163.com (W.H.); 18868816170@163.com (B.Z.)
Individualized Medication Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science &
Sichuan Provincial People’s Hospital, School of Medicine, Center for Information in Medicine,
University of Electronic Science and Technology of China, Chengdu 610072, China
College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
*  Correspondence: lijie@zucc.edu.cn (J.L.); shijianyoude@126.com (J.S.);

Tel.: +86-571-8801-6565 (J.L.); +86-177-0813-0657 (J.S.)

Academic Editor: Georgiy B. Shul'pin
Received: 29 July 2016; Accepted: 25 August 2016; Published: 3 September 2016

Abstract: A series of novel chiral N-heterocyclic carbene rhodium complexes (NHC-Rh) based on
benzimidazole have been prepared, and all of the NHC-Rh complexes were fully characterized
by NMR and mass spectrometry. These complexes could be used as catalysts for the asymmetric
1,2-addition of organoboronic acids to aldehydes, affording chiral diarylmethanols with high yields
and moderate enantioselectivities.
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1. Introduction

Since N-heterocycliccarbenes (NHCs) are excellent o-donors, and their metal complexes show
higher air and thermal stability than phosphane ligands. NHCs are now well established as efficient
alternatives to phosphane ligands [1-10]. Much work has been devoted to the design and development
of carbene compounds with new structures to tune their steric and electronic properties, and also to
their application in organometallic catalysis. As excellent ligands for transition metals, NHCs have
found multiple applications in some of the most important catalytic transformations in the chemical
industry. As a logical extension of this development, chiral NHC ligands and their application in
asymmetric catalysis are receiving increasing attention [11-16]. Despite considerable efforts devoted
to this field, the design and synthesis of novel chiral NHCs to enhance their enantioselectivity is still
a challenge.

Enantioenriched diarylmethanols are the structural core unit in a considerable number of bioactive
compounds and pharmaceuticals [17-20]. The Rh-catalyzed enantioselective arylation of aromatic
aldehydes with organoboronic acids has emerged as a direct and economical route for the synthesis of
enantiomerically-enriched diarylmethanols [21]. In 1998, Miyaura and co-workers initially reported
the enantioselective Rh-catalyzed addition of phenylboronic acid to naphthaldehyde by using the
(5)-MeO-MOP ligand, giving naphthyphenylmethanol in 78% yield and 41% ee [22]. Since then,
considerable efforts have been made in this type of reaction [23-30]. However, examples of using chiral
N-heterocycliccarbenes in the ligand-catalyzed asymmetric arylation of aldehydes are rare [31-35].
Therefore, developing new chiral N-heterocycliccarbene ligands for the asymmetric 1,2-addition of
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organoboronic acid to aldehydes is an important synthetic goal. The above-mentioned findings,
and our interests in NHCs and C—C forming reactions triggered our efforts to develop new NHC
ligands for application in homogeneous catalysis. After our recent report of the synthesis of several
chiral benzimidazolium salts for the in situ Rh-catalyzed asymmetric arylation of aldehydes [36], we
herein report the synthesis of a series of new NHC-Rh complexes based on benzimidazole and their
application in the asymmetric 1,2-addition of arylboronic acids to aldehydes.

2. Results

The synthetic route to the new NHC-Rh complexes based on the benzimidazole skeleton is
shown in Schemes 1 and 2. The NHC complexes were synthesized from enantiomerically-pure
benzimidazolium salts (1a-g), which in turn can be prepared by following our previous articles [36,37].
Among the NHC precursors prepared, compounds 1c and 1d were new and are reported for the first
time in this paper. In the next step, the mild transmetalation developed by Wang and Lin was adopted
to prepare rhodium(I) complexes of 1a—g. According to this strategy, the benzimidazolium salts 1 were
treated with Ag,O in anhydrous CH,Cl, at room temperature in the darkness. Then direct addition of
[Rh(COD)Cl]; to the freshly prepared solution of silver complexes yielded the corresponding chiral
complexes 2a-g upon workup, which could be purified by chromatography on silica gel (Scheme 2).
The complexes were characterized by 'H NMR, 3C NMR, and high-resolution mass spectrometry
(HRMS), and the absence of an N-Cypjc—N resonance in the 'TH NMR spectra confirmed the formation
of the carbene complexes.
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Scheme 1. Synthesis of benzimidazolium salts 1a-g.

With the chiral NHC-Rh complexes in hand, we examined their application in the asymmetric
addition of organoboronic acids to aldehydes. Firstly, all of the NHC-Rh complexes were tested in
enantioselective phenylation of 2-naphthaldehyde (3a) with PhB(OH),. The reaction was performed
with 3.0 mol % of NHC-Rh complex in DME/H,O (5:1) at 80 °C for 12 h. As shown in Table 1,
diarylmethanol 4a was obtained in high yield with each of the NHC-Rh complexes, and compound 2g
gave the best result (18% ee).
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Scheme 2. Synthesis of N-heterocyclic carbene-rhodium NHC-Rh complexes 2a-g.

Table 1. Comparison of NHC-Rh complexes.

o BOH): NHCRn (3mol %) '
KOBu (1equiv) Ph
. .
DME/H,0 (5:1)
3a 80°C, 12h 4a
Entry 2 Ligand Yield (%) P ee (%) ©
1 2a 99 3
2 2b 99 1
3 2¢ 99 6
4 2d 98 17
5 2e 99 3
6 2f 98 3
7 2¢ 99 18
8 no catalyst - -

2 Reaction condition: ligand (3 mol %), KO'Bu (1 equiv.), arylboronic acids (2 equiv.), N, DME/H,0 (5:1),
80 °C, 12 h; P Isolated yields; ¢ Determined by chiral HPLC (CHIRALCEL OD Column) analysis.

We then optimized the experimental conditions using 2g as catalyst. By screening bases in
DME/H,O (5:1), we found that the addition of excess KF (6.0 equiv.) significantly improved the
enantioselectivity as well as yield (Table 2, entry 6). Next, variation of the solvent indicated that the 5:1
mixture of EtOH/DME was the best choice of solvent (Table 2, entry 16). Further screening of reaction
temperature showed that lower temperature afforded the product with similar enantioselectivities but
inferior yields (Table 3, entries 20-22).
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Table 2. Optimization of the reaction conditions.

B(OH), 2g (3 mol %)

oo
+
solvent
3a T, 12h 4a
Entry @ Base Solvent Temperature (°C) Yield (%) P ee (%) ¢
1 NaO'Bu DME/H,0 (5:1) 80 99 18
2 LiO'Bu DME/H,0 (5:1) 80 42 29
3 LiOH DME/H,0 (5:1) 80 99 17
4 KF (1 equiv.) DME/H;0 (5:1) 80 70 32
5 KF (3 equiv.) DME/H;0 (3:1) 80 80 32
6 KF (6 equiv.) DME/H,0 (5:1) 80 99 32
7 KF (6 equiv.) DME/H,0 (10:1) 80 99 14
8 KF (6 equiv.) DME/H,0 (3:1) 80 99 18
9 KF (6 equiv.) Toluene/H,0 (5:1) 80 99 22
10 KF (6 equiv.) MeOH/DME (5:1) 80 99 25
11 KF (6 equiv.) t+-BuOH/MeOH (5:1) 80 99 24
12 KF (6 equiv.) MeOH 80 99 21
13 KF (6 equiv.) i-PrOH 80 99 34
14 KF (6 equiv.) t-BuOH/EtOH (5:1) 80 99 25
15 KF (6 equiv.) DME 80 93 9
16 KF (6 equiv.) EtOH/DME (5:1) 80 99 35
17 KF (6 equiv.) EtOH 80 99 32
18 KF (6 equiv.) Dioxane 80 94 17
19 KF (6 equiv.) i-PrOH/DME (5:1) 80 99 34
20 KF (6 equiv.) EtOH/DME (5:1) 50 - -
21 KF (6 equiv.) i-PrOH 50 43 33
22 KF (6 equiv.) i-PrOH/DME (5:1) 50 47 36

2 Reaction condition: 2g (3 mol %), base (1 equiv.), arylboronic acids (2 equiv.), Np, 80 °C, 12 h; b Isolated yields;

¢ Determined by chiral HPLC (CHIRALCEL OD Column) analysis.

2 Reaction condition: 2g (3 mol %), KF (6.0 equiv.), arylboronic acids (2 equiv.), EEOH/DME (5:1), N,, 80 °C,
12 h; P Isolated yields; ¢ Determined by chiral HPLC (CHIRALCEL OD or AD Column) analysis.

Table 3. Scope of methodology.

B(OH), 2g (3 mol %)
KF (6.0 equiv)

Ar—CHO + - Ph
EtOH/DME (5:1)
3 80 °C, 12h 4
Entry 2 Arp Yield (%) © ee (%) €
1 1-Naphthyl 3b 97 4b 43
2 2-MeOPh 3¢ 99 4c 37
3 4-MeOPh 3d 854d 46
4 4-CF3Ph 3e 94 4e 40
5 3,4-DiMePh 3f 99 4f 28
6 4-FtPh 3g 99 4g 36
7 2-FPh 3h 93 4h 38
8 3,5-DiFPh 3i 88 4i 28
9 4-NO,Ph 3j 94 4j 28
10 2-thienyl 3k 99 4k 18
11 2-furyl 31 98 41 19

4 0f9

Having optimized reaction conditions, we examined the reactions with various aldehydes, and
the results are summarized in Table 3. The arylations with either electron-rich or electron-deficient
benzaldehydes proceeded smoothly to afford the corresponding diarylmethanols in excellent
yields and moderate enantioselectivities. The best enantioselectivity was obtained starting from
o-anisaldehyde (46% ee, entry 3).
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3. Materials and Methods

3.1. General

MS spectra were measured on a Finnigan LCQDECA XP instrument (ThermoFinnigan Co.,
California, CA, USA) and an Agilent Q-TOF 1290LC/6224 MS system (Aglient Technologies Inc.,
California, CA, USA); 'H and 13C NMR spectra were obtained on Bruker AVANCE III 500 MHz and
600 MHz spectrometers (Bruker Co., Faellanden, Switzerland) with TMS as the internal standard;
silica gel GF,54 and H (1040 mm, Qingdao Marine Chemical Factory, Qingdao, China) were used for
TLC and CC. Unless otherwise noted, all reactions were carried out under an atmosphere of argon
or nitrogen.

3.2. Preparation of Benzimidazolium Salt 1la-g

The NHC precursors la—g were synthesized following our previous paper [36], and the 'H
NMR spectra of 1a-b and 1e—f were identical to those reported in the literature [36,37]. 1c: 'H NMR
(500 MHz, CDCl3) 4: 11.18 (s, 1H), 8.24-7.08 (m, 14H), 2.53 (d, | = 6.9 Hz, 3H), 2.39 (s, 3H), 2.07 (s, 3H),
2.00 (s, 3H). 1d: 'H NMR (500 MHz, CDCl3) é: 10.73 (s, 1H), 8.21-7.42 (m, 16H), 7.11 (q, ] = 6.8 Hz, 1H),
2.56 (d, ] = 6.8 Hz, 3H).

3.3. Preparation of NHC—Rh Complexes 2a-g

To a solution of imidazolinium salt 1a (364.0 mg, 1.00 mmol) in CH,Cl, (25 mL) was added
silver(I) oxide (115.9 mg, 0.50 mmol) in one portion. The suspension was stirred for 3 h in the darkness,
during which the black color gradually diminished. The reaction mixture was filtered through a small
pad of Celite, [Rh(COD)Cl], (246.5 mg, 0.50 mmol) was added in one portion, and the reaction mixture
was stirred for an additional 16 h. The solvent was evaporated, and the residue was purified by flash
chromatography on silica gel with CH,Cl, as eluent. After evaporation of volatiles, the residue was
purified by column chromatography (CH,Cl,) to give 2a (515.0 mg, 88% yield). 'H NMR (500 MHz,
CDCl3) 6: 7.52-7.43 (m, 2H), 7.19-7.08 (m, 2H), 5.86 (m, 1H), 5.73 (m, 1H), 5.18 (m, 1H), 5.04 (m, 1H),
3.66 (t, ] =7.2 Hz, 1H), 3.41 (d, ] = 7.5 Hz, 1H), 2.58-1.79 (m, 15H), 1.71 (m, 6H), 1.52-0.86 (m, 15H);
13C NMR (125 MHz, CDCl3) &: 134.17,133.92, 121.77, 121.53, 112.10, 112.01, 98.81, 98.76, 98.66, 98.61,
77.28,76.78, 68.79, 68.67, 67.40, 67.28, 63.73, 62.82, 42.57, 42.35, 33.29, 32.35, 32.07, 31.93, 31.34, 30.68,
30.37,29.70, 29.36, 28.23, 26.53, 26.42, 26.40, 26.37, 26.05, 25.94, 22.70, 19.06, 18.43, 14.12; HR-ESIMS:
m/z 549.2792 [M—CI]* (caled. for C31HyNoRh, 549.2716).

Analogous compounds 2b-g were prepared according to the similar procedure for 2a. HR-ESIMS,
H and '®C NMR data see Supplementary Materials. 2b: 97% yield; 'H NMR (500 MHz, CDCl3)
0: 9.08 (q, ] = 7.3 Hz, 1H), 8.57 (m, 2H), 8.03-7.51 (m, 9H), 7.36 (m, 5H), 7.18 (m, 2H), 7.11-7.00
(m, 1H), 5.16 (m, 1H), 5.03 (m, 1H), 3.38 (s, 1H), 3.02 (t, ] = 7.2 Hz, 1H), 2.67 (d, ] = 7.2 Hz, 3H),
2.35 (m, 1H), 2.25 (d, ] = 7.3 Hz, 3H), 2.15-1.98 (m, 1H), 1.96-1.77 (m, 2H), 1.55 (m, 1H), 1.51-1.41
(m, 1H), 1.20 (d, ] = 10.3 Hz, 1H), 0.95-0.88 (m, 1H); 1*C NMR (125 MHz, CDCl;) §: 138.83, 136.20,
135.84, 134.96, 134.13, 134.06, 130.80, 130.03, 129.10, 129.03, 128.77, 128.01, 127.07, 126.59, 126.12, 126.03,
125.21, 125.14, 124.19, 123.90, 123.73, 122.35, 122.32, 122.24, 113.93, 112.26, 99.20, 97.82, 77.28, 76.78,
70.74,70.62, 67.45, 67.33, 61.11, 56.76, 32.68, 31.94, 31.75, 29.71, 29.35, 27.39, 22.70, 22.33, 20.83, 14.13;
HR-ESIMS: m/z 529.1152 [M~CI-COD]* (calcd. for C31HpsNoRh, 529.1151). 2¢: 91% yield; 'H NMR
(500 MHz, CDCl3) 4: 8.76-8.56 (m, 2H), 8.21 (d, ] = 5.5 Hz, 2H), 7.96 (d, ] = 8.1 Hz, 1H), 7.78 (m, 3H), 7.61
(m, 4H), 7.44 (d, ] = 8.0 Hz, 1H), 7.39-7.24 (m, 4H), 5.01 (s, 2H), 2.60-2.52 (m, 1H), 2.48 (m, 1H), 2.31 (d,
] =7.4 Hz, 3H), 1.91-1.80 (m, 1H), 1.70-1.61 (m, 1H), 1.55-1.40 (m, 2H), 1.31 (m, 2H), 1.09-0.99 (m,
1H), 0.65 (m, 1H); 13C NMR (125 MHz, CDCl3) é: 139.48, 138.06, 136.15, 134.82, 133.99, 130.09, 129.10,
128.97,128.52, 127.98, 127.29, 126.78, 126.14, 125.25, 123.87, 123.01, 122.74, 122.15, 113.24, 111.01, 99.67,
99.62, 98.81, 98.76, 77.28, 76.77, 69.64, 69.53, 68.89, 68.77, 59.83, 53.42, 31.98, 31.77, 29.70, 28.07, 27.96,
20.95; HR-ESIMS: m/z 559.2367 [M—CI]* (calcd. for C33H3pNoRh, 559.1621). 2d: 89% yield; 'H NMR
(500 MHz, CDCl3) é: 8.91 (q, ] =7.3 Hz, 1H), 8.65 (d, ] = 8.6 Hz, 1H), 7.96 (d, ] = 8.1 Hz, 1H), 7.85-7.69
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(m, 3H), 7.61 (t, ] = 7.5 Hz, 1H), 7.33-7.27 (m, 2H), 7.24-7.11 (m, 3H), 7.01-6.86 (m, 2H), 4.98 (m, 1H),
4.89-4.78 (m, 1H), 3.07-2.93 (m, 1H), 2.72 (t, | = 7.2 Hz, 1H), 2.51 (s, 3H), 2.43 (s, 3H), 2.37 (d, ] =7.3 Hz,
3H), 2.02-1.88 (m, 1H), 1.65 (m, 4H), 1.54-1.28 (m, 4H), 1.10 (s, 1H), 0.67 (m, 1H); 13C NMR (125 MHz,
CDCl3) 4: 140.28, 139.09, 138.04, 136.73, 135.17, 134.61, 134.05, 132.92, 130.17, 130.04, 128.93, 128.37,
127.78, 126.65, 126.11, 125.33, 124.15, 122.82, 122.70, 121.60, 113.30, 110.80, 98.82, 98.77, 98.48, 98.42,
77.29,76.78, 69.57, 69.45, 67.98, 67.86, 59.99, 32.79, 31.94, 31.32, 29.70, 29.67, 29.37, 28.96, 27.19, 22.70,
21.18, 21.06, 19.68, 17.72, 14.12; HR-ESIMS: m/z 601.4336 [M—CI]* (calcd. for C3sH3gN,Rh, 601.2090).
2e: 83% yield; 'H NMR (500 MHz, CDCl3) d: 8.45 (m, 1H), 7.60~7.47 (m, 2H), 7.29 (m, 1H), 7.22-7.08
(m, 3H), 6.95 (d, ] = 7.9 Hz, 1H), 5.74-5.64 (m, 1H), 5.03-4.88 (m, 2H), 3.78 (d, | = 6.1 Hz, 3H), 3.56
(s, 1H), 2.89 (s, 1H), 2.44-2.16 (m, 4H), 1.98-1.61 (m, 11H), 1.47-1.34 (m, 4H), 1.19-1.05 (m, 2H), 0.89
(t, ] = 6.9 Hz, 1H); 13C NMR (125 MHz, CDCl3) &: 154.29, 136.69, 133.17, 132.68, 130.21, 126.85, 122.06,
121.99,121.09, 111.75, 111.69, 111.55, 110.98, 110.91, 98.84, 98.79, 98.09, 98.04, 77.28, 76.77, 68.84, 68.72,
67.61, 67.49, 64.12, 63.25, 55.59, 55.42, 42.65, 42.18, 33.21, 32.88, 31.93, 31.66, 31.16, 30.96, 29.70, 29.66,
29.37, 28.60, 28.51, 28.35, 26.58, 26.48, 26.39, 26.25, 25.92, 22.70, 18.94, 18.03, 14.12; HR-ESIMS: m/z
545.2188 [M—-CI]* (calcd. for C30H3sN,ORh, 545.2039). Complex 2f is a known compound, and the
NMR and high-resolution mass spectrometry of this compound were identical to those reported in
the literature [36]. 2g: 90% yield; IH NMR (500 MHz, CDCl3) 6: 8.04 (m, 4H), 7.63 (m, 4H), 7.40-7.30
(m, 1H), 7.25-7.07 (m, 3H), 6.16 (m, 1H), 5.05 (m, 2H), 3.75-3.55 (m, 1H), 2.54-2.15 (m, 3H), 1.92 (s, 1H),
1.81 (d, ] = 7.2 Hz, 3H), 1.74-1.67 (m, 1H), 1.51-1.41 (m, 2H), 1.31 (s, 9H), 1.21-1.05 (m, 1H); 3C NMR
(125 MHz, CDCl3) é: 135.28, 133.64, 132.76, 128.65, 128.46, 127.81, 126.98, 126.86, 122.47, 122.39, 122.35,
122.24,113.83, 113.35, 110.93, 110.79, 99.59, 98.86, 97.91, 77.28, 76.77, 70.21, 67.97, 67.36, 67.18, 66.97,
66.86, 36.00, 35.64, 32.68, 32.06, 31.83, 31.27, 29.70, 29.49, 29.39, 29.32, 29.06, 27.72, 27.22,15.73, 15.14,
14.12; HR-ESIMS: m/z 539.2090 [M—Cl]* (calcd. for C31H36N,Rh, 539.1934).

3.4. Representative Procedure for the Rh-Catalyzed Asymmetric Arylation of Aldehyde

The NHC-Rh complex 2g (2.2 mg, 0.00375 mmol) was weighted into 1 mL of DME/H,O (5:1)
under Np. After stirring at room temperature for 5 min, KF (43.6 mg, 0.75 mmol), phenylboronic
acid (30.5 mg, 0.25 mmol), and 2-naphthaldehyde (19.5 mg, 0.125 mmol) were added successively.
The resulting mixture was stirred at 80 °C for 12 h. After usual work-up, purification by silica
gel column (petroleum/ethyl acetate = 9/1) afforded 4a as a colorless oil (99% yield, 35% ee).
The spectral data were comparable to those reported [38]. The ee was determined by HPLC analysis
with Daicel Chiralcel OD-H (hexane/ PriOH = 90/10, flow rate = 0.8 mL/min, (minor) = 19.03 min,
t; (major) = 22.46 min).

Analogous compounds 4b—1 were prepared according to the similar procedure for 4a.
4b: 97% yield, 43% ee. The spectral data were comparable to those reported [24]. The ee was determined
by HPLC analysis with Daicel Chiralcel AD-H (hexane/ Pr'OH = 90/ 10, flow rate = 0.8 mL/min,
t (minor) = 15.0 min, ¢ (major) = 16.5 min). 4c: 99% yield, 37% ee. The spectral data were
comparable to those reported [36]. The ee was determined by HPLC analysis with Daicel Chiralcel
AD-H (hexane/Pr'OH = 90/10, flow rate = 0.8 mL/min, ¢, (minor) = 11.9 min, ¢, (major) = 12.8 min).
4d: 85% yield, 46% ee. The spectral data were comparable to those reported [24]. The ee was determined
by HPLC analysis with Daicel Chiralcel AD-H (hexane/Pr'OH = 90/10, flow rate = 0.8 mL/min,
tr (major) = 14.0 min, {, (minor) = 15.1 min). 4e: 94% yield, 40% ee. The spectral data were
comparable to those reported [24]. The ee was determined by HPLC analysis with Daicel Chiralcel
AD-H (hexane/Pr'OH = 90/10, flow rate = 0.8 mL/min, ¢, (major) = 7.5 min, t; (minor) = 8.8 min).
4f: 99% yield, 28% ee. The spectral data were comparable to those reported [36]. The ee was determined
by HPLC analysis with Daicel Chiralcel OD-H (hexane/ Pr'OH = 90/ 10, flow rate = 0.8 mL/min,
t; (minor) = 10.6 min, f, (major) = 12.4 min). 4g: 99% yield, 36% ee. The spectral data were
comparable to those reported [36]. The ee was determined by HPLC analysis with Daicel Chiralcel
OD-H (hexane/Pr'OH = 90/10, flow rate = 0.8 mL/min, ¢, (minor) = 9.8 min, ¢, (major) = 10.2 min).
4h: 93% yield, 38% ee. The spectral data were comparable to those reported [36]. The ee was determined
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by HPLC analysis with Daicel Chiralcel OD-H (hexane/ PriOH = 90/ 10, flow rate = 0.8 mL/min,
t; (major) = 8.6 min, f; (minor) = 9.2 min). 4i: 88% yield, 28% ee. The spectral data were comparable
to those reported [36]. The ee was determined by HPLC analysis with Daicel Chiralcel OD-H
(hexane/Pr'OH = 90/10, flow rate = 0.8 mL/min, # (major) = 11.2 min, f; (minor) = 13.2 min).
4j: 94% yield, 28% ee. The spectral data were comparable to those reported [36]. The ee was determined
by HPLC analysis with Daicel Chiralcel OD-H (hexane/ PriOH = 90/10, flow rate = 0.8 mL/min,
tr (major) = 21.5 min, f; (minor) = 23.8 min). 4k: 99% yield, 18% ee. The ee was determined
by HPLC analysis with Daicel Chiralcel OD-H (hexane/ Pr'OH = 90/ 10, flow rate = 0.8 mL/min,
t; (minor) = 11.8 min, ¢, (major) = 12.6 min). 4l: 98% yield, 19% ee. The ee was determined
by HPLC analysis with Daicel Chiralcel OD-H (hexane/ Pr'OH = 85/15, flow rate = 0.8 mL/min,
ty (minor) = 8.6 min, t; (major) = 9.9 min).

4. Conclusions

In conclusion, seven NHC-Rh complexes (2a—f) have been prepared. Their applicability in
the asymmetric arylation of aromatic aldehydes has been demonstrated, and the corresponding
diarylmethanols were obtained with high yields and moderate enantiomeric excesses (up to 46%).
Further work is in progress to utilize these complexes in asymmetric 1,2-addition reactions of
arylboronic acids with ketones, as well as their applications in fields of nanoscience [39,40].

Supplementary Materials: The following are available online at www.mdpi.com/2073-4344/6/9/132/s1,
Figure S1: 'H and 3C NMR Spectra of compounds 2a-g, Figure S2: HR-MS Spectra for Compounds 2a-g,
Figure S3: HPLC data of 4a-1.
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