Supplementary Materials: Stereoselective Chemoenzymatic Synthesis of Optically Active Aryl-Substituted Oxygen-Containing Heterocycles

Paola Vitale, Antonia Digeo, Filippo Maria Perna, Gennaro Agrimi, Antonio Salomone, Antonio Scilimati, Cosimo Cardellicchio and Vito Capriati

Table S1. Screening of biocatalysts for the stereoselective reduction of 3-chloro-1-aryl-propanones a.

Entry	Biocatayst	Ar (1a-d)	Product 2 (Yield %) ^b	Conversion %	er c	Abs. Conf. d
1	Baker's yeast (RC)	C ₆ H ₅ (1a)	2a (44)	50	94:6	S
2	Saccharomyces cerevisiae (GC) e	C_6H_5 (1a)	2a (48)	55	75:25	S
3	Kluyveromyces marxianus (GC) f	C ₆ H ₅ (1a)	2a (31) g	70	58:42	S
4	Lactobacillus reuteri (RC) h,i	C ₆ H ₅ (1a)	2a (–) ^j	40	$ND^{\;k}$	ND k
5	Baker's yeast (RC)	4-FC ₆ H ₄ (1b)	2b (13)	15	63:37	S
6	Lactobacillus reuteri (RC) h,i	4-FC ₆ H ₄ (1b)	2b (–) ¹	28	$ND^{\;k}$	ND k
7	Baker's yeast (RC)	4-BrC ₆ H ₄ (1c)	2c (5) m	85	95:5	S
8	Lactobacillus reuteri (RC) h,i	4-BrC ₆ H ₄ (1c)	2c (-) n	12	ND^{k}	ND k
9	Baker's yeast (RC)	4-MeOC ₆ H ₄ (1d)	2d (-) °	12	$ND^{\;k}$	ND k

^a Typical reaction conditions: orbital incubator (200 rpm); temperature: 30 °C; (GC): inoculum after 24 h growth in a sterile medium containing glucose (1%), peptone (0.5%), yeast extract (0.3%), and malt extract (0.3%) in sterile water; (RC): 0.1 g/L of cell wet mass in 0.1 M KH2PO4 buffer (pH = 7.4) enriched with 1% glucose, halo-ketone (2 mM final concentration); b Isolated yield after column chromatography; ^c Enantiomeric ratio (er) determined by HPLC analysis; ^d Absolute configuration (abs. conf.) of halohydrins (2a-d) determined by comparing optical rotation sign and retention time (HPLC analysis) with known data; e CBS 7536; f CBS 6556; g Propiophenone (35%) and 1-phenylpropan-1-ol (33%) have been detected by ¹H NMR analysis of the reaction crude; ^h DSM 20016; Typical reaction conditions: cells were suspended in PBS at pH 7.4 supplemented with 1% glucose; then, ketone was added at the final concentration of 1 g/L (50 mL total volume), anaerobiosis; temperature: 37 °C; orbital incubator: 200 rpm; j 1-Phenylprop-2-en-1-one (24%), 1-phenylprop-2-en-1-ol (5%), propiophenone (3%) and 3-hydroxypropiophenone (7%) have been detected by 1H NMR analysis of the reaction crude; k ND means not determined because of the trace content; 1 1-(4-Fluorophenyl)prop-2-en-1-one (17%), 1-(4-fluorophenyl)prop-2-en-1-ol (5%), 1-(4-fluorophenyl)propanone (1%), and 3-hydroxy-1-(4-fluorophenyl)propanone (4%) have been detected by ¹H NMR analysis of the reaction crude; ^m Propiophenone (75%) was isolated as the main product, together with 4-bromophenyloxetane (9%, er = 96:4%); ⁿ 1-(4-Bromophenyl)prop-2-en-1-one (5%), 1-(4-bromophenyl)prop-2-en-1-ol (5%), and 3-hydroxy-1-(4-bromophenyl)propanone (1%) have been detected by ¹H NMR analysis of the reaction crude; ^o Propiophenone (5%) has also been detected together with the starting material (88%) in the reaction crude.

Table S2. Screening of biocatalysts for the stereoselective reduction of 4-chloro-1-aryl-1-butanones a.

Entry	Biocatayst	Ar (1e-h)	Product 2 (yield %) b	Conversion (%)	er c	Abs. Config. d
1	Baker's yeast (RC)	C ₆ H ₅ (1e)	2e (44)	49	95:5	S
2	Saccharomyces cerevisiae (GC) e	C ₆ H ₅ (1e)	2e (65)	70	49:51	S
3	Kluyveromyces marxianus (GC) ^f	C ₆ H ₅ (1e)	2e (4)	7	42:58	S
4	Lactobacillus reuteri (RC) g,h	C ₆ H ₅ (1e)	2e (-) i	15	ND j	ND j
5	Baker's yeast (RC)	4-FC ₆ H ₄ (1f)	2f (-) k	40	ND j	ND j
6	Lactobacillus reuteri (RC) g,h	4-FC ₆ H ₄ (1f)	2f (-) 1	14	ND j	ND j
7	Baker's yeast (RC)	4-BrC ₆ H ₄ (1g)	2g (-) m	_ m	ND j	ND j
8	Baker's yeast (RC)	4-CH3OC6H4 (1h)	2h (–) ⁿ	5	ND j	ND j
9	Lactobacillus reuteri (RC) ^{g,h}	4-CH3OC6H4 (1h)	2h (–) °	42	ND j	ND j

^a Typical reaction conditions: orbital incubator at 200 rpm; temperature: 30 °C; (GC): inoculum after 24 h cell growth in a sterile medium containing glucose (1%), peptone (0.5%), yeast extract (0.3%), and malt extract (0.3%) in sterile water; (RC): 0.1 g/L of cell wet mass in 0.1 M KH2PO4 buffer (pH = 7.4) enriched with 1% glucose, haloketone (2 mM final concentration); b Isolated yield after column chromatography; ^c Enantiomeric ratio (er) determined by HPLC analysis; ^d Absolute configuration (abs. conf.) of halohydrins (2e-h) determined both by comparing optical rotation sign and retention time (HPLC analysis) with known data; e CBS 7336; f CBS 6556; g DSM 20016; h Typical reaction conditions: cells were suspended in PBS at pH 7.4 supplemented with 1% glucose; then, ketone was added at the final concentration of 1 g/L (50 mL total volume), anaerobiosis; temperature: 37 °C; orbital incubator: 200 rpm; i 4-Hydroxy-1-phenylbutan-1-one (13%) has been detected by IH NMR analysis of the reaction crude; ^j ND means not determined because of the trace content; ^k The corresponding butyrophenone (37%) has been detected by ¹H NMR analysis of the reaction crude; ¹ 4-Hydroxy-1-(4-fluorophenyl)butan-1-one (13%) has been detected by GC-MS and ¹H NMR analysis of the reaction crude; ^m No reaction. ⁿ Chlorohydrin 2h (5%) has been detected by GC-MS analysis of the reaction crude; o 4-Hydroxy-1-(4-methoxyphenyl)butan-1-one (32%) and 4-(4-methoxyphenyl)butan-2-one (9%) have been detected by ¹H NMR analysis of the reaction crude.