## Supplementary Materials: A Comparison Reduction of 4-Nitrophenol by Gold Nanospheres and Gold Nanostars

Tao Ma, WenshuoYang, Simin Liu, Haijun Zhangand Feng Liang

| Gold Nanostructures | Concentration of Au<br>Atoms (mg/L) | Concentration of<br>AgAtoms (mg/L) |
|---------------------|-------------------------------------|------------------------------------|
| 4 nm Au-NPs         | 45.23                               | _b                                 |
| 16 nm Au-NPs        | 147.27                              | -                                  |
| 40 nm Au-NPs        | 53.61                               | -                                  |
| 40 nm Au-NSs        | 33.34                               | 2.18                               |
| 117 nm Au-NSs       | 42.20                               | 2.76                               |
| 117 nm Au-NSs+CB[7] | 42.20                               | 2.76                               |

Table S1. Concentration of Au/Ag atoms in different colloidal solution of Gold nanostructures<sup>a</sup>.

<sup>a</sup>Au contents were measuredby inductively coupled plasma optical emission spectroscopy (ICP-OES, IRIS Advantage Duo ER/S spectrometer, Thermo Jarrell Ash, MA, USA). Regular nanoparticles samples were suspended in freshly prepared aqua regia (trace metal grade 70% nitric acid HNO3:36% hydrochloric acid HCl, 1:3/v:v) and heated until completely dissolved, and then diluted with doubledistilled water; <sup>b</sup> Not determined. Au-NP: gold nanosphere; Au-NS: gold nanostar; CB[7]: cucurbit[7]uril.



**Figure S1.** UV-vis-NIR (ultraviolet–visible–near infrared) absorption spectra of gold nanoparticles in this work. The absorption spectra were acquired with a UV-3600 UV-vis-NIR spectrometer (Shimadzu, Kyoto, Japan).



**Figure S2.** Typical UV-vis absorption spectra of the systems containing 4-NP and NaBH<sub>4</sub> in the presence of gold nanostructures for various durations. The absorption spectra were acquired with a UV-3600 UV-vis-NIR spectrometer (Shimadzu, Kyoto, Japan).



**Figure S3.** The relationships between  $\ln(A_o/A_t)$  and the reaction time at three different temperatures in the presence of: (**a**) Au-NPs at 16 °C; (**b**) Au-NSs at 16 °C; (**c**) Au-NPs at 24 °C; (**d**) Au-NSs at 24 °C, (**e**) Au-NPs at 43 °C, and (**f**) Au-NSs at 43 °C. The error bars represent standard deviations obtained from three or more trials. These plots were then used to determine the apparent reaction rate constant ( $k_{app}$ ).



**Figure S4.** The Arrhenius plots for reactions catalyzed by (**a**) Au-NPs; (**b**) Au-NSs. The apparent activation energy (*E*a) can be calculated from the slope of the linear fitting in each case.



**Figure S5.** Representative high-resolution transmission electron microscopy (HRTEM) image of gold nanostars (Au-NSs), which clearly shows the presence of Au and Ag atoms.