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Abstract: The investigation of the water oxidation mechanism on photocatalytic semiconductor
surfaces has gained much attention for its potential to unlock the technological limitations of
producing H2 from carbon-free sources, i.e., H2O. This review seeks to highlight the available
scientific and fundamental understanding towards the water oxidation mechanism on ZnO surfaces,
as well as present a summary on the modification strategies carried out to increase the photocatalytic
response of ZnO.
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1. Introduction

The oxidation of water on the surface of semiconductor photocatalyst materials has attracted much
attention for its potential contribution towards the development of efficient artificial photosynthesis
and photoelectrochemical (PEC) water-splitting devices. The water oxidation reaction, also known as
the oxygen evolution reaction (OER), is the complementary reaction to the hydrogen evolution reaction
(HER) in the electrolysis of H2O. H2O electrolysis has been considered an attractive source of renewable
H2 [1–4]. PEC water-splitting and artificial photosynthesis devices utilize photocatalytically-active
semiconductor materials to absorb solar energy necessary to break the chemical bonds of H2O. In 1972,
the first account on the H2O photolysis was reported by Fujishima and Honda using n-type titanium
dioxide (TiO2) electrode connected to a platinum black electrode through an external circuit [5].
The innovation by Fujishima and Honda Laboratories produced the first viable PEC water-splitting
cell with an approximate quantum efficiency of 0.1%. To date, solar-to-H2 (STH) efficiencies of 12.7%
have been achieved using a p-GaInP2/GaAs electrode as photoanode [6], and the record has only
recently been surpassed at 14% using a Z-scheme tandem cell comprised of Rh-functionalized AlInPOx

photocathode and RuO2 as photoanode [7].
The decomposition of pure water into H2 and O2 itself is not a thermodynamically-favorable

process (∆E0 = −1.23 V) and requires an external potential bias to drive the uphill reaction. The OER
in an electrolytic cell is a four-electron transfer process (Equation (1)) and has been considered the
bottleneck in the decomposition of water to gaseous O2 and H2 [1]:

2H2O(l)→ O2(g) + 4H+ (aq) + 4e− (E0 = −1.23 V at pH 0) (1)

Commercial electrolyzers rely on external power sources to supply the required overpotential for
water-splitting. The energy consumption of industrial-scale electrolyzers is high due to the energy
barriers imposed by cathodic and anodic overpotentials, as well as IR drop between electrodes [8].
Coupling renewable energy sources with electrolyzers has been proposed to be a sustainable approach
to utilize excess renewable energy produced at low-demand times of the day. Alternatively, in PEC
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water-splitting and artificial photosynthesis devices, the photovoltaic and electrolytic functions are
integrated into a single device. Compared to a photovoltaic-electrolyzer unit, PEC water-splitting and
artificial photosynthesis devices offer the advantage of minimizing energy loss incurred by transfer of
energy between components (i.e., electric supply and electrolyzer). The formation of charged species
(electron–hole pairs) via direct conversion of solar energy at the semiconductor–electrolyte interface
promotes the water oxidation reaction through the interaction between the electron-deficient hole sites
with OH− ions [9]. The application of photocatalytic semiconductor materials such as ZnO to promote
water oxidation reactions have been viewed as a strategy to harvest solar energy directly to operate
the PEC water-splitting device.

In the search for suitable transition metal oxide photocatalysts to promote the water oxidation
reaction, ZnO has emerged as a leading candidate due to its low toxicity, abundance and
straightforward synthesis processes. Nevertheless, the effective implementation of ZnO as water
oxidation photocatalyst still requires improved design and synthesis strategies to overcome the
limitations of ZnO. Therefore, the active investigation of the mechanism of water oxidation on ZnO
surfaces (and metal oxide surfaces in general) is motivated by the opportunity to design and synthesize
photocatalyst materials that can operate at acceptable catalytic activities compared to noble metal
electrodes (Ru, Ir and Pt), but at the fraction of the cost.

This review seeks to provide the reader with a current understanding of the photocatalytic water
oxidation reaction on ZnO surfaces, leading to the identification of critical features and structure of
photocatalysts for effective and improved catalyst design. An overview of the photocatalytic water
oxidation process specific to ZnO is presented, followed by a summary of current modification approaches
to enhance the light-harvesting, charge transport and electrocatalytic properties of ZnO. The review
concludes with suggestions for research opportunities in the design and development of OER catalysts.

2. The Mechanism of Photocatalytic Water Oxidation on ZnO

2.1. Photoexcitation and Charge Separation

The photocatalytic reaction taking place at the surface of ZnO, and semiconductor photoanodes
in general, involves the absorption of incident photons, the photoexcitation of electron–hole pairs and
long-distance transport of charges. Under illumination, ZnO absorbs photons with energies equal to or
greater than its band gap of 3.37 eV [10]. For every electron that is photoexcited to the conduction band
(CB), an empty state is created in the overlapping oxygen 2p orbitals which make up the valence band
(VB). This means that the concentration of free electrons and holes in an illuminated semiconductor
are larger than that at dark conditions, with the new steady state described by quasi-Fermi levels.

Subsequently, the photoexcited electrons migrate away from the site of excitation towards
the cathode/photocathode in a process called charge separation. The charge separation process is
enabled by the formation of depletion layer at the semiconductor–electrolyte interface, which has been
well-described in a seminal review on solar water splitting cells [11]. Briefly, when a semiconductor
is immersed into an aqueous electrolyte, a potential difference is set up and transfer of charges
occur between the electrode and electrolyte until the Fermi levels reach equilibrium [12]. For ZnO,
which is an n-type semiconductor, the Fermi level is typically higher than the redox potential of the
electrolyte, and hence electrons will be transferred from the electrode into the solution. Therefore,
there is a positive charge associated with the space charge region, and this is reflected in an upward
bending of the band edges [13]. Thus, when an electron is promoted by photoexcitation, the depletion
layer supports the unidirectional flow of photoexcited electrons towards the cathode/photocathode.
The positively-charged holes that remain on the surface of the semiconductor act as active sites for
subsequent water oxidation steps.

The electron mobility properties of a metal oxide supports effective charge separation following
the photoexcitation step. In semiconductors, higher donor concentrations are desirable to allow for
long-distance transport of electrons away from the site of photoexcitation and across the bulk material.
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The high electron mobility of ZnO may be attributed to its filled d10 electron configuration [14,15],
leading to a high donor concentration, up to 4 × 1016 cm−3 [16].

Despite possessing higher electron mobility, several studies have shown that ZnO demonstrated
a lower photo-conversion efficiency compared to TiO2 [17,18]. This observation has been attributed to
the higher rate of recombination in ZnO compared to TiO2 [17]. Two different radiative recombination
processes were found to be involved in the excitonic emission of ZnO–free exciton recombination
(slow) and near surface exciton recombination (fast) [19]. The presence of impurity atoms other than
oxygen defects may also change the charge transport properties of ZnO.

The light absorption, photoluminescence properties and charge carrier properties of ZnO were
found to be influenced by structural defects in the crystal lattice. In one study, oxygen vacancies and
interstitial oxygen defects influenced the photocatalytic activity of ZnO by splitting the IR absorption
band and visible photoluminescence emission peak, reporting enhanced charge separation efficiency
with increasing oxygen defects [20]. The increase in charge separation efficiency may be attributed
to the role of oxygen vacancies as electron acceptors, and interstitial oxygen as a shallow trap for
photogenerated holes [21], preventing the recombination of the photogenerated electron–hole species.
Zn(OH)2 species act as deep trapping sites of photoexcited charges, resulting in poor photocatalytic
activity [22]. The reader is also referred to a comprehensive review on the influence of doping and
native defects on the electrical conductivity and optical properties of ZnO [10].

2.2. Water Oxidation Reactions

The water oxidation process begins with the binding of an OH− ion to the active catalyst site. There
are differing opinions with regards to the actual site of adsorption. The conventional view is that charged
OH− species bind to the metal center. A recent study on iridium-based La2LiIrO6 perovskites as OER
catalyst demonstrated that the Ir-O bond was not responsible for bond-breaking activity; rather, the
oxygen radicals on the surface of the catalyst acted as electrophilic active sites [23]. These surface oxygen
radicals were proposed to participate in the OER mechanism through nucleophilic attack from the water
oxygen lone pairs, followed by the removal of H+ via proton-coupled electron transfer reactions.

H2O was also found to interact with ZnO through dissociative adsorption [24]. There are two types
of sites available for H2O physisorption on the surface of ZnO, i.e., heterogeneous and homotattic
character [25]. The physisorption sites on ZnO possess energies less than 21 kJ/mol H2O, and
chemisorption sites with energies of 84–96 kJ/mol, whereas the enthalpy of H2O chemisorption on
ZnO is −150 ± 10 kJ/mol [26]. The hydroxylated metal oxide surface increases the likelihood to
catalyze the dissociation of H2O, but also affects the material’s proton transfer reactivity [27].

Subsequently, a series of proton-coupled electron transfers transform the adsorbed OH− species to
O2. In the conventional view on the water oxidation process (Table 1), The M-OH complex (M referring
to a metal active site) may decompose to form adsorbed atomic O (Bockris oxide path). Alternatively,
the M-OH complex may undergo nucleophilic attack by a hydroxyl, OH− ion, leading to the formation
of either adsorbed species on the active site: (1) atomic O (Krasil’shchikov, Bockris electrochemical
oxide path and Kobussen mechanisms); or (2) H2O2 (Damjanovic and Hoare mechanisms). H2O2

adsorbed on active sites are proposed to decompose to superoxide anions (M-O2
−). The Kobussen

mechanism features both the formation of atomic O and H2O2 as a result of the M-O species being
subjected to multiple nucleophilic attack reactions.

For semiconductor electrodes, the mobility of adsorbed species is restricted and the formation of
M-O2

− species is favored in order to circumvent the need for atomic rearrangement leading to O-O
bond formation. A recent discovery has been made on the mechanism of OER at hematite surfaces: the
Fe3+-OH complex undergoes dehydrogenation to form a Fe4+=O species before interacting with H2O
to form the Fe3+-O-O-H species [28]. This finding suggests that the formation of Zn-O-O-H species on
ZnO may include a dehydrogenation reaction as well. For a summary on the techniques for measuring
catalytic activity and kinetics of the OER process, the reader is referred to a review by Fabbri et al. [29].
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O2 may be produced either via: (1) the formation of O-O bond between two M-O species
(Damjanovic, Krasil’shchikov, Bockris oxide and Bockris electrochemical oxide mechanisms); or (2) the
dissociation of O2 from the M-O2

− complex (Hoare and Kobussen mechanisms). The former
termination mechanism is favored at the surface of metal electrodes as the M-O species is mobile and
free to rearrange itself at the surface. As the M-O species on semiconductor surfaces are not mobile,
the termination mechanism on semiconductor surfaces follows the latter mechanism.

Table 1. Proposed mechanisms of the oxygen evolution reaction.

Mechanism Initiation Intermediate Reactions Termination

Damjanovic [30] M + OH− →MOH + e−
MOH + OH− →MO-H-OH−

MO-H-OH− →MO-H-OH + e−

MO-H-OH→MO + H2O
MO + OH− →MHO2 + e−

MHO2 + OH− →M + O2 + H2O + e−

Or: 2MO→ O2 + 2M

Krasil’shchikov [31] M + OH− →MOH + e− MOH + OH− →MO− + H2O
MO− →MO + e− 2MO→ O2 + 2M

Hoare [32] M + OH− →MOH + e− MOH + OH− →MH2O2
−

2MH2O2
− →M + MO2

− + 2H2O MO2
− →M + O2 + 2e−

Bockris oxide path [33] M + OH− →MOH + e− 2MOH→MO + M + H2O 2MO→ 2M + O2

Bockris electrochemical
oxide path [33] M + OH− →MOH + e− MOH + OH− →MO + H2O + e− 2MO→ 2M + O2

Kobussen [34] M + OH− →MOH + e−
MOH + OH− →MO + H2O + e−

MO + OH− →MO2H−

MO2H− + OH− →MO2
− + H2O + e−

MO2
− →M + O2 + e−

Based on the available understanding of the OER mechanism, the following steps in the OER
process have been identified as the rate-determining step, and catalysis of either step is expected to
significantly enhance the rate of OER:

• Ionization of water to OH−

• Conversion of OH− to O-O-H species on catalytically-active surface sites
• Desorption of O2 from catalyst surface

The semiconductor photocatalyst should favor the formation of the M-O-O−/M-O-O-H complex
rather than the M-O species for two reasons: (1) the formation of O2 from the combination of M-O is
restricted by the mobility of M-O on the surface of the non-pure metal catalysts; and (2) to suppress
the back reaction of H2 and O2 recombination.

3. Modifications of ZnO for Enhanced Photocatalytic Water Oxidation Activity

Two main research approaches have emerged in the development of photocatalytic materials
with improved photon-to-current conversion efficiency (PCE). The first approach is to tune the
electronic structure of ZnO in order to extend its ability to harvest photons in the visible region
of the light spectrum (band gap engineering). The light-harvesting ability can be enhanced by
controlling the morphology of the ZnO crystal (quantum confinement effect), modifying the carrier
concentration within the ZnO crystal lattice (doping), or by functionalizing the surface of ZnO with
photosensitizer molecules. The second approach is to promote effective photogenerated charge
separation by controlling the defects in the crystal lattice or incorporating electron transfer agents [35].
Alternatively, hybridizing ZnO with metallic or semiconductor co-catalysts has proven successful in
accelerating water oxidation reactions. A summary of the various strategies used to enhance the PCE
of ZnO is presented in Table 2.

The selection and optimization of ZnO synthesis methods take into consideration the ability to
control the size, morphology, and defects within the crystal lattice. Many synthesis methods have been
proposed for the synthesis of ZnO nanostructures, with a goal to increase the control of crystal growth
at mild operating conditions (e.g., ambient pressure and temperature). Techniques which are able to
control the growth of ZnO at the atomic-level include metal-organic chemical vapor deposition
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(MO-CVD) [36–38], atomic layer deposition [39,40], laser ablation [41,42] and molecular beam
epitaxy [43,44]. Template based synthesis allows for the formation of well-defined structures [45,46].
The wet chemical methods include hydrothermal synthesis [14,47], sol-gel spin-coating [48–51],
electrochemical deposition [52–55] and anodization [56].

A variety of ZnO morphologies (nanowires, nanorods, core/shell, nanoflowers) have been
encountered in literature. The role of particle morphology on the water oxidation activity and
photoabsorption characteristics of ZnO may be attributed to the type and amount of exposed
crystal facets, i.e., a greater proportion of exposed polar surfaces were found to enhance the
photocatalytic activity of the ZnO [57,58]. It was reported that OH− ions adsorb preferentially onto
the positively-charged [0001]-Zn surface, increasing the rate of interaction between OH− and holes
for accelerated water oxidation reactions [59]. As such, it was postulated that preferential crystal
growth leading to a high degree of exposure of the [0001] facets would enhance its catalytic activity.
It was found that ZnO nanostructures with a higher exposure of [0001] facet exhibited stronger
absorption in 400–450 nm range [60]. In addition, branched structures greatly enhances their surface
area, leading to improved light harvesting [61]. ZnO nanostructures with higher aspect ratio show
significantly higher photocatalytic performances [62], which indicates that nanoparticles with high
aspect ratio, i.e., nanowires, nanotubes and nanorods most likely facilitate charge transport along
metal oxide materials with nanometer resolution across micrometer-scale distances [63]. The electron
transport through the nanostructure is a crucial aspect to achieve a good photon-to-electron quantum
efficiency [64]. Thus, vertically-aligned nanowire or nanorod arrays remain the preferred structural
configuration for efficient electron transport in PEC water-splitting.

The carrier concentration of ZnO, and thus photocatalytic activity, may be controlled by
manipulating the amount of oxygen defects as well as impurity atoms in the structure. The formation
of oxygen vacancies in ZnO were reported to occur as follows [65]: the oxygen atoms escape from the
lattice sites due to the low oxygen partial pressure and the high annealing temperature. Subsequently,
the escaped oxygen is reduced by H2 and released in the form of H2O. The amount of oxygen vacancies
was also influenced by the structure of the ZnO crystal, e.g., a greater amount of oxygen vacancies
were observed at the surfaces of rod-structured ZnO [66]. Accordingly, the concentration and type
of oxygen defects vary according to the synthesis technique and reaction parameters, e.g., choice of
solvent [67], synthesis temperature [66], and pressure.

An increase in photocatalytic activity of ZnO with increasing oxygen defects has often been
attributed to the role of the oxygen defect to increase charge separation, although the type of
oxygen defect has not always been defined specifically. A previous study reporting the synthesis
of graphene-hybridized ZnO triangles attributed its increased output photocurrent density of
1.26 mA·cm−2 (compared to 0.321 mA·cm−2) to an increase of oxygen defects in the ZnO triangle
nanostructure [68]. Other studies have indicated that the presence of oxygen vacancies narrows the
band gap of ZnO [69,70], leading to reduced overpotential for photoexcitation of electrons. Thus, the
light absorption properties of ZnO is tunable by controlling the intrinsic defect states [71]. The amount
of hydroxylated groups terminating at the ZnO surface should be controlled to allow for optimal water
dissociation as well as efficient light harvesting.

Other attempts to narrow the band gap of ZnO include doping with metal impurities such
as Cu and Mn [72]. The impurities incorporated into the semiconductor can be located at the
surface (inhomogeneous doping), or dispersed throughout the electrode material as a solid solution
(homogeneous doping). The incorporation of dopant atoms into the semiconductor crystal lattice
introduces intermediate energy levels within the intrinsic semiconductor, which lowers the energy
requirement for photoexcitation of electrons. Thus, band gap modification can be achieved via creation
of oxygen vacancies, non-metal doping, co-doping of non-metals and transition metal doping [73].
Non-metal doping, e.g., nitrogen, carbon or sulfur into ZnO, has been extensively studied with a
view to narrowing the bandgap [74]. The narrowing of the band gap using non-metal dopants was
previously attributed to the mixing of O 2p states with the dopant’s 2p states, thereby forming occupied
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states with higher energy in the valence band [75]. The amount of doping and the location of dopants
within the crystal structure must be well-controlled in order to achieve high photoelectrochemical
performance; overdoping and inappropriate selection of dopants will lead to a reduction in Auger
recombination lifetime and the formation of compensating centers, respectively [10].

The addition of photosensitizer nanoparticles to the surface of the semiconductor has been found
to effectively improve the photocurrent response of ZnO photoelectrodes. Photosensitizers adsorbed
on the photocatalyst utilize visible light to excite electrons, then the excited electrons are injected into
the conduction band of the photocatalyst. The photoexcited electrons can then be transferred from
the photosensitizer to the active sites on the semiconductor material surface for reaction with redox
species to form O2. Conventional photosensitizers, e.g., dyes, possess poor stability but are valued
for their low cost of fabrication. On the other hand, advanced photosensitizers such as CdSe possess
broad absorption band and photostability, but with high material and synthesis costs [76].

The second approach to improve the STH efficiency of ZnO photoanodes involves the suppression
of electron–hole recombination in ZnO on semiconductor surfaces and improving the capability for
instantaneous charge collection, separation, and transportation. Heterostructures formed using metal
oxide co-catalysts [77,78] or carbon-based electron transfer agents such as graphene are the most
widely investigated materials for improving carrier transport in semiconductors.

The co-catalyst is typically a noble metal or metal oxide or a combination of them, loaded onto the
surface of photocatalyst to suppress recombination, enhance charge separation, increase the number of
reactive sites and reduce activation energy for gas evolution. In co-catalyst-ZnO hybridized materials,
the water oxidation reactions may take place either directly on the surface of ZnO, and/or on the
co-catalyst material. The hybridization of two semiconductor materials also leads to the formation of
heterojunctions which provide additional advantages in charge transport [79].

The bonding strength between the active site and reactants determines the catalytic activity of a
material; interactions that are too strong prevents the desorption of O2 from the photocatalyst surface
and interactions that are too weak prevent the binding of OH− to the photocatalyst. For this reason,
an optimal binding energy is crucial. The strength of interaction between the active site and the
reactant may be tuned by changing the composition of the material, leading to changes in the filling
of the bonding and antibonding states, e.g., changing the composition of the material changes the
strength of coupling between oxygen 2p states and metal d states [80]. A stronger bond interaction
may also be achieved by shifting the energy of antibonding states upwards, relative to the Fermi level.

The application of carbon nanostructures has been a subject of interest, due to the tunable properties,
chemical stability (in contrast to metal-based promoters, which suffer from corrosion) and low cost of
production. The ability to tune the properties of graphene between a semiconductor and semimetal
makes this material such an attractive subject of investigation as a non-metal promoter for electro- and
photocatalytic applications [81]. The enhanced photocurrent response in ZnO hybridized with graphene
and its derivatives have been variously attributed to its activity as photosensitizer [82] or electron transfer
agent [77,83]. Pristine, defect-free graphene is able to behave like a semimetal, making it useful as
co-catalyst and electron transfer agent. In this situation, the enhanced performance of ZnO-rGO can be
attributed to enhanced charge separation [71]. On the other hand, when graphene is tuned to behave like
a semiconductor, it was proposed that it could exhibit photocatalytic or photosensitizer properties [81].

One major challenge in the development of ZnO-based photoanodes for water oxidation is related
to its chemical stability. Electrolyte solutions containing alkaline electrolytes, e.g., KOH and NaOH
promote the rate of water oxidation reaction by providing an excess of OH− ions, thereby reducing the
IR drop caused by ion transport. When immersed in alkaline solutions, the ZnO surface is transformed to
Zn(OH)2 and the rate of transformation increases with increasing pH. Zn(OH)2 will further dissolve into
Zn2+ ions due to the presence of OH− ions to reduce Zn(OH)2. Additionally, ZnO experiences a decrease
in the photostability of ZnO under prolonged light irradiation, due to photocorrosion mechanisms [84,85].
Therefore, to enhance its photocatalytic efficiency, it is of crucial importance to design strategies which
can suppress the recombination of electron–hole pairs and photocorrosion of ZnO.
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Table 2. Summary of modification strategies to enhance ZnO photocurrent density. SCE, Saturated Calomel Electrode; RHE, Reversible Hydrogen Electrode; MWCNT,
Multi-Walled Carbon Nanotubes.

Structure Preparation Method Enhancement Strategy Electrolyte Reference
Electrode

Photocurrent Density (mA·cm−2)
Reference

Applied
Potential (V)

Control
Electrode

Modified
Electrode

ZnO nanorods Electrochemical deposition +
photochemical deposition Cobalt phosphate co-catalyst 0.1 M K3PO4 Ag/AgCl 0 0.009 0.023 [86]

ZnO nanorod
@nanoplatelet

core-shell array
Hydrothermal + photoreduction Au co-catalyst 0.5 M Na2SO4 SCE 0.6 0.01 0.06 [87]

ZnO film Electron-beam glancing
angle deposition Crystal growth method 0.5 M NaClO4 Ag/AgCl 1 0.045 0.142 [88]

ZnO nanowires Hydrothermal + sol-gel TiO2 heterojunction 0.1 M NaOH RHE 0.85 0.08 0.19 [89]

ZnO nanorods Hydrothermal MWCNT hybridization 0.5 M Na2SO4 Ag/AgCl 0 0.06 0.25 [83]

ZnO nanorods Hydrothermal + electron
beam evaporation Ag co-catalyst 0.5 M Na2SO4 Ag/AgCl 0 0.089 0.325 [90]

ZnO nanowires Hydrothermal Graphene quantum dot
photosensitizer 0.5 M Na2SO4 - 0.6 0.11 0.34 [82]

ZnO film Spray pyrolysis Cu-doping 0.5 M NaOH SCE 0.6 0.05 0.35 [91]

ZnO nanowires Hydrothermal N-Doping 0.5 M NaClO4 Ag/AgCl 1 0.017 0.4 [92]

ZnO nanowires Hydrothermal MWCNT hybridization 0.1 M Na2SO4 Ag/AgCl 0 0.05 0.4 [93]

ZnO nanorods Ammonia-assisted hydrolysis Surfactant mediated
crystal growth

0.1 M LiI
0.05 M I2

0.5 M TBP
- 0 0.37 0.47 [94]

ZnO nanowires Hydrothermal + atomic
layer deposition TiO2 heterojunction 0.1 M KOH Ag/AgCl 0.25 0.4 0.5 [95]

ZnO nanosheets Electrodeposition Exposed polar facet 0.5 M Na2SO4 Ag/AgCl 1 0.2 0.51 [96]

ZnO nanotubes Anodization Control of morphology 0.5 M Na2SO4 SCE 0.25 0.25 0.52 [97]

ZnO nanorods Chemical bath deposition +
photodeposition Cobalt phosphate co-catalyst 0.1 M KH2PO4 SCE 0.5 0.36 0.54 [98]

ZnO nanorods Spin-coating Cu-doping 0.1 M NaOH SCE 0 0.312 0.752 [99]

Fe3O4-ZnO
core-shell Hydrothermal Fe3O4 heterojunction + rGO

hybridization 0.1 M KOH RHE 1.23 0.52 0.85 [78]
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Table 2. Cont.

Structure Preparation Method Enhancement Strategy Electrolyte Reference
Electrode

Photocurrent Density (mA·cm−2)
Reference

Applied
Potential (V)

Control
Electrode

Modified
Electrode

ZnO
nanotetrapods

Thermal evaporation + chemical
bath deposition Morphology + N-doping 0.5 M Na2SO4 RHE 0.92 0.046 0.99 [100]

ZnO triangles Hydrothermal Control of morphology + graphene
oxide hybridization 1.0 M NaOH RHE 1.23 0.321 1.29 [68]

ZnO
nanoparticles Spin coating Effect of annealing temperature 0.1 M NaOH SCE 0 0.105 1.321 [101]

ZnO nanowires/
RGO/ZnIn2S4

Hydrothermal Heterojunction + ZnIn2S4
photosensitizer 1.0 M Na2SO4 Ag/AgCl 0.5 0.6 1.41 [102]

ZnO nanopencil
arrays Hydrothermal + photoreduction Au photosensitiser 0.5 M Na2SO4 Ag/AgCl 1 0.7 1.5 [103]

ZnO nanorod Electrodeposition rGO hybridization 0.1 M KOH Ag/AgCl 1 1 1.8 [104]

ZnO nanowires Hydrothermal + wet chemical
impregnation CdTe quantum dot photosensitiser 0.5 M Na2SO4 Ag/AgCl 1 0.7 2 [105]

ZnO nanowires Sol-gel spin coating +
electrochemical deposition Au co-catalyst 0.1 M NaOH SCE 0.5 1.5 2.6 [106]

ZnO nanorods Hydrothermal + ion exchange AgSbS2 co-catalyst 1.0 M Na2S Ag/AgCl
+0.212

(Control)+0.096
(Modified)

0.41 5.08 [77]

ZnO nanorod Electrodeposition Effect of applied potential
1.0 M NaOH

1 wt % ethylene
glycol

SCE 1 5.74 12.94 [107]
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4. Conclusions

Various modification strategies have been proposed to enhance the activity of ZnO
(and semiconductor metal oxides in general) towards photocatalytic water oxidation. Nevertheless,
the challenge remains to identify affordable synthesis techniques that can provide fine control over the
morphology, carrier concentration and bonding between ZnO and extrinsic modifiers (photosensitizers
and co-catalysts). The modifications made to ZnO need to be optimized such that the catalyst achieves
the following goals:

1. Increased solar harvesting and photon-to-current conversion efficiency
2. The position of the valence band is more negative compared to the OH−/O2 redox couple

potential (so that an external potential bias would not be necessary)
3. The OER proceeds at minimum overvoltage
4. Corrosion is suppressed

Research that can further elucidate the OER mechanism and conclusively identify the nature
of the catalytically active site on ZnO remains in great demand. Thus, it becomes necessary
to develop innovative analytical in-situ techniques that can detect transient intermediate species.
The insights gained from the study of photocatalytic water oxidation on the surface of ZnO will
undoubtedly contribute towards the overall growth of sustainable technologies to obtain H2 from
carbon-free sources.
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