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Abstract: A sulphated tin ion-exchanged montmorillonite (SO4
2−/Sn-MMT) was successfully prepared

by the ion exchange method of montmorillonite (MMT) with SnCl4, followed by the sulphation.
This catalysis was applied as a solid acid catalyst for the heterogeneous catalytic transformations
of xylose and xylan into furfural in the bio-based 2-methyltetrahydrofuran/H2O biphasic system.
These prepared catalysts were characterized by X-ray powder diffraction (XRD), Fourier transform
infrared spectroscopy (FTIR), temperature programmed desorption of ammonia (NH3-TPD),
pyridine adsorbed Fourier transform infrared spectroscopy (Py-FTIR), element analysis (EA) and
Brunauer-Emmett-Teller (BET) method. Their catalytic performance for xylose and xylan into furfural
was also investigated. The reaction parameters such as the initial xylose and xylan concentration,
the amounts of catalyst, the organic-to-aqueous phase volume ratio, the reaction temperature and time
were studied to optimize the reaction conditions. Results displayed that SO4

2−/Sn-MMT contained
both Brønsted acid and Lewis acid sites, and SO4

2− ions were contributive to the formation of stronger
Brønsted acid sites, which could improve the reaction efficiency. Reaction parameters had significant
influence on the furfural production. The substitution of water by the saturated NaCl solution in the
aqueous phase also had an important effect on the xylose and xylan conversion. The highest furfural
yields were achieved up to 79.64% from xylose and 77.35% from xylan under the optimized reaction
conditions (160 ◦C, 120 min; 160 ◦C, 90 min). Moreover, the prepared catalyst was stable and was
reused five times with a slight decrease (10.0%) of the furfural yield.

Keywords: solid acid catalyst; xylan; xylose; conversion; furfural; biphasic system

1. Introduction

With the rapid development of industrialization in the world, toxic pollutant in water remains a great
concern to the environment. Especially in many chemical reactions, the conventional homogeneous
catalyst, such as mineral acids, could produce a large amount of acid wastewater, which is toxic and
corrosive in nature. Moreover, the homogeneous catalyst can also lead to an extra neutralization step,
a tedious purification process and an increase of production cost. Thus, the heterogeneous catalyst,
which generally appears in solid form, acts in a dissimilar phase in the liquid reaction mixture [1],
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and is strongly desired to be developed due to its outstanding advantages such as environmental
benefits, reusability, efficient conversion, easy separation and purification of the product [2].

The heterogeneous catalyst was widely applied in the production of furfural, which is
a renewable bio-based chemical derived from the pentosan-rich lignocellulosic biomass with an annual
production capacity of more than 200,000 tons [3], and which can be advantageous in many fields,
such as oil refining, plastics and agrochemical industries. Solid acid catalysts, such as functionalized
partially hydroxylated MgF2 [4], SBA-15-SO3H [5] and silica-poly (styrene sulphonic acid) [6] with
micro/mesoporous, are highly effective in the furfural production.

It has been proposed that the conversion of xylose to furfural involves two steps: the first isomerization
of xylose to xylulose using Lewis acid catalysts, and then followed by the dehydration of xylulose
to furfural catalyzed by Brønsted acid (Scheme 1) [7,8]. Metal cations such as Sn4+, Cr3+, Al3+

acting as Lewis acids were beneficial for the conversion of xylose to xylulose, and our group found
that SnCl4 was the most effective catalyst for the furfural production, compared with other metal
chlorides [9]. However, the chromium ion is toxic and these homogeneous catalysts are unable to
recycle, thus a desirable heterogeneous catalyst containing Sn4+ need to be designed. Montmorillonite
(MMT) is composed of regular layers, and holds exchangeable cationic species, which are easy to be
substituted by metal cations and designated as X-MMT (X = metal). Sn-MMT was widely used in
many organic reactions [10,11], and our previous study found that Sn-MMT rapidly prepared under
microwave irradiation demonstrated the excellent catalytic performance in the conversion of xylose,
water-insoluble hemicelluloses and water-soluble fraction of corncob. In that study, a 76.79% furfural
yield was directly obtained from xylose in a new biphasic system with 2-s-butylphenol (SBP) as the
organic extracting layer and dimethyl sulfoxide (DMSO) as the co-solvent in contact with an aqueous
phase saturated with NaCl (SBP/NaCl-DMSO) [12]. Additionally, it was found that the acidity of
a solid catalyst can be modified by the treatment with sulfuric acid to form the solid super acid catalyst,
because the SO4

2− ions can intensely draw the electrons around the metal ions to lead to the formation
of strong Brønsted acid sites [13], promoting the catalyst activity.
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Scheme 1. Two steps of the conversion of xylose to furfural.

To improve the furfural yield in a green way, different solvent systems have been developed.
Monophasic systems such as dimethyl sulfoxide (DMSO) [14], tetrahydrofuran (THF) [15], 1-butanol [16],
and ionic liquids [17] have been investigated for the furfural preparation. Biphasic systems consisting
of water and the organic solvent are more efficient, in which furfural produced in the aqueous phase
can be immediately extracted into the organic phase. Thus the undesired side reaction between furfural
and intermediate or other compounds could be suppressed [18]. The commercially available solvent
2-Methyltetrahydrofuran (2-MTHF) is derived based on lignocellulose. It is only partially miscible
with water, and the separation temperature at 60 ◦C is desirable because the solubility of 2-MTHF
in water drops from 14.5% at 20 ◦C to 6.6% at 60 ◦C [19]. It is also stable in acid or base conditions
with other excellent advantages such as low toxicity, easy recycling and environmentally friendly
features [9].

To further improve the catalytic performance of Sn-MMT and enhance the furfural yield in a green
way, SO4

2− ions were loaded on Sn-MMT by the impregnation method and 2-MTHF was used as
the organic solvent for the furfural production from xylose and xylan in this work, aiming to reduce
the amount of catalyst used and to achieve high furfural yields at more moderate conditions in the
green catalytic process. The prepared catalyst was characterized by X-ray powder diffraction (XRD),



Catalysts 2017, 7, 118 3 of 14

Fourier transform infrared spectroscopy (FTIR), temperature programmed desorption of ammonia
(NH3-TPD), pyridine adsorbed Fourier transform infrared spectroscopy (Py-FTIR), element analysis
(EA) and Brunauer-Emmett-Teller (BET) method. This solid acid catalyst was also employed for the
transformation of xylose and xylan into furfural in the biphasic system with 2-MTHF as the organic
solvent. Furthermore, the reaction parameters such as the initial xylose and xylan concentration,
the amounts of catalyst, the volume ratio of the organic phase and the aqueous phase, the reaction
temperature and time were investigated to optimize the reaction conditions. The reusability of this
catalyst was also discussed.

2. Results and Discussion

2.1. Characterization of Catalyst

MMT is able to intercalate various ions into the interlayer spaces, which would influence
the interlayer distance [20]. The 001 reflection of the XRD patterns showed the basal spacing of
MMT (Figure 1). The ‘d001’ values of MMT and Sn-MMT were 14.76 Ǻ and 14.93 Ǻ, respectively,
which confirmed that the structure of MMT was still maintained and the ion-exchanging process
had no influence on the structure of the MMT material [21]. On the other hand, the ‘d001’ value
of SO4

2−/Sn-MMT increased to 17.13 Ǻ, indicating that the intercalation of SO4
2− ions into the

layered Sn-MMT, and the multilayered regularity of Sn-MMT, might be slightly damaged during
the impregnation due to the high polarizability of SO4

2− ions. The sharp peak at 2θ = 27.94◦ of
MMT was broadened in Sn-MMT and SO4

2−/Sn-MMT due to the formation of Sn(OH)4 species [22].
It was reported that partially hydrolyzed Sn-OH groups acted as Brønsted acid and Sn4+ ions acted
as Lewis acid for the glucose conversion [21], which implied that SO4

2−/Sn-MMT contained both
Brønsted acid and Lewis acid sites, and the role of SO4

2− ions could be intensely drawing the electrons
around the Sn4+ ions of Sn-OH groups to form stronger Brønsted acid sites, consequently leading to
improvement in the reaction efficiency [13].
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Figure 1. XRD patterns of (a) montmorillonite (MMT); (b) Sn-MMT; (c) SO4
2−/Sn-MMT.

The wave number and assignment of the main vibration modes in the FTIR spectra of MMT,
Sn-MMT and SO4

2−/Sn-MMT (Figure 2) were obtained (Table 1) based on a previous report [23].
The FTIR spectrum of Sn-MMT was nearly identical in the FTIR skeleton of MMT, because the
ion-exchanging process had no influence on the structure of the MMT material. Compared with MMT
and Sn-MMT, the characteristic bands at ~3630, 1104, 909, 835, 619, 519, 461 cm−1 in the FTIR spectrum
of SO4

2−/Sn-MMT were distinctly weakened, which was attributed to the break of the multilayered
and regular structure of clay. This result was well supported by the XRD analysis. The water can be
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polarized by exchanged cations in the interlayer space of MMT, and the vibration bands centered
at ~3429 and 1637 cm−1 were attributed to the stretching and bending vibrations of adsorbed water,
respectively. The reduction at ~3429 and 1637 cm−1 in the FTIR spectra of SO4

2−/Sn-MMT implied
the loss of interlayer water, which indirectly proved the destruction of the MMT structure.
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Table 1. Position and assignment of the FTIR vibration bands.

Position (cm−1) Assignment

3630 Structural Al–OH stretching
3429 H–OH stretching of adsorbed water
2365 O=C=O stretching
1637 H–OH bending of adsorbed water
1104 Si–O stretching
1036 Si–O–Si stretching
909 Al–OH bending
835 Al–Mg–OH deformation
788 Si–O stretching of quartz
619 Coupled Al–O and Si–O out-of-plane
519 Al–O–Si deformation
461 Si–O–Si deformation

The acid properties of this catalyst were examined by NH3-TPD (Figure 3). In the NH3-TPD
curves of the catalyst, peaks are generally observed in five temperature regions. The peaks appearing
at ≤150 ◦C corresponded to the physically adsorbed and hydrogen-bound NH3 [24,25], and the
regions at 150–250 ◦C, 250–350 ◦C, 350–500 ◦C, and >500 ◦C were defined as weak, medium, strong and
very strong acid sites, respectively. The stronger acid sites corresponded to a higher desorption
temperature of NH3 adsorbed on the acid sites [26], thus weak acid sites existed in SO4

2−/Sn-MMT
and Sn-MMT. NH3-TPD revealed that total acidity of SO4

2−/Sn-MMT and Sn-MMT catalysts were
0.58 and 0.35 mmol of NH3 desorbed g−1.

Py-FTIR is a powerful surface analytical technique for discernment of Brønsted and Lewis acid sites.
The adsorbed pyridine probe molecules tend to couple with aprotic (Lewis) and/or protonic (Brønsted)
catalytic centers through the nitrogen lone-pair electrons to form coordinative bonded pyridine
complexes and/or pyridium ions, and hence can be detected by monitoring their ring vibrations [27].
Figure 4 illustrates Py-FTIR spectra of Sn-MMT and SO4

2−/Sn-MMT, in which these characteristic
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bands are in the range of 1400–1700 cm−1. The coexistence of Brønsted acid sites (at 1542 and 1636 cm−1)
and Lewis acid sites (at 1453 and 1614 cm−1) are evident for SO4

2−/Sn-MMT catalyst. In addition,
another peak at about 1489 cm−1 was characteristic of pyridine absorbed on both Lewis and Brønsted
acid sites. A minor peak at 1542 cm−1 (B) and the disappeared peak at 1636 cm−1 (B) of Sn-MMT
indicated that small amount of Brønsted acid sites existed on Sn-MMT. The intensity of all peaks was
increased after loading of SO4

2− ions, implying the stronger acid site of SO4
2−/Sn-MMT catalyst.
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Figure 4. Pyridine-adsorbed FTIR spectra on Sn-MMT and SO4
2−/Sn-MMT.

Elemental analysis by inductively coupled plasma (ICP) (Table 2) showed that the content of
Sn in Sn-MMT was 15.32 wt %, indicating that tin ions were successfully intercalated into the MMT
framework by replacing calcium and sodium ions. Additionally, the S content of SO4

2−/Sn-MMT
increased promptly, suggesting that the successful introduction of SO4

2− ions on the catalyst.
The nitrogen sorption data showed that the BET surface area greatly increased from 42.38 m2 g−1 of
MMT to 178.94 m2 g−1 of Sn-MMT with a porous structure. Moreover, the BET surface area, micropore
volume and pore diameter of SO4

2−/Sn-MMT had a slight decrease, due to loading of SO4
2− groups

on the surface of pore channels, causing the slight structural destruction and collapse [28].



Catalysts 2017, 7, 118 6 of 14

Table 2. Properties of catalysts.

Samples
Elemental Content (wt %) BET Surface

Area (m2 g−1)
Micropore

Volume (cm3 g−1)
Pore Diameter

(nm)Ca Na Sn S

MMT 3.44 0.54 - - 42.38 0.18 9.15
Sn-MMT 0.94 0.16 15.32 - 178.94 0.27 12.37

SO4
2−/Sn-MMT 0.65 0.12 11.20 2.79 153.52 0.10 8.61

2.2. Furfural Production from Xylose and Xylan

2.2.1. Effect of Substrate Concentration

Substrate concentration had a significant influence on the furfural yield for heterogeneous catalytic
reactions. Figure 5a shows the effect of initial xylose and xylan concentrations including 5 g/L to
100 g/L on the conversion of xylose and xylan to furfural. The furfural yields first increased and then
decreased for xylose conversion. When the xylose concentration was 20 g/L, the highest furfural yield
was achieved up to 45.36%. When the xylose concentration was above 20 g/L, the furfural yields were
decreased, which were 44.21%, 40.27%, 38.64%, 33.14% and 32.98%, respectively, correspondingly
at the xylose concentration of 25, 30, 35, 40 and 45 g/L. The similar trend occurred for the xylan
conversion. The highest furfural yield was 42.34% at the xylan concentration of 10 g/L. The further
increase of the initial substrate concentration had a negative influence on the furfural yield. When the
substrate concentration was increased to 100 g/L, the furfural yields of xylose and xylan declined to
27.81% and 23.61%, respectively. The partial loss of furfural might be attributed to the higher substrate
concentration leading to higher rates of side reactions such as the reaction of xylose and furfural to
form humins [9,29]. The desirable initial xylose and xylan concentrations were kept at 20 g/L and
10 g/L, respectively.

2.2.2. Effect of the Catalyst Amount

The catalyst amount ranging from 0.05 to 1.5 g/g substrate was investigated in this case (Figure 5b).
The furfural yield first increased for both xylose and xylan. The maximum furfural yields were achieved
up to 44.95% from xylose and 46.58% from xylan when the amounts of catalyst were 0.5 g/g substrate
and 1.0 g/g substrate, respectively. After the optimal catalyst amount, there was an obvious decline
for furfural yield. The reaction took place on the surface of the catalyst where the acid sites existed and
the acid sites were proportional to the amount of catalyst [13]. When excessive catalyst was added,
superfluous active sites led to the occurrence of side reactions [30]. The optimum amounts of catalyst
were 0.5 g/g substrate for xylose and 1.0 g/g substrate for xylan, respectively.

2.2.3. Effect of the 2-MTHF/Water Volume Ratio

The formation of furfural occurs in the aqueous phase, and the organic solvent can immediately
extract furfural into organic phase, inhibiting the undesired side reaction. A stable solvent, 2-MTHF
can be derived from renewable resources has a low miscibility with water and a high extraction ability
for furfural [9]. As shown in Figure 5c, comparing the volume ratio of 0 with the volume ratio of 2:5,
the addition of 2-MTHF markedly improved the furfural yield. Subsequently, with the increase of
the 2-MTHF/water volume ratio from 2:5 to 4:5, furfural yield steadily increased. However, further
increasing the ratio, the decrease in furfural yield occurred, which was due to the decrease in extracting
power of solvent [31]. Therefore, the appropriate volume ratio needs to be determined, and a ratio of
4:5 was required in this biphasic system for both xylose and xylan. Moreover, the furfural yield from
xylan was entirely higher than xylose in Figure 3, which was possibly attributed to the gradual release
of xylose from the xylan chain, reducing the side reaction of xylose with furfural.
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2.2.4. Effect of Saturated NaCl Solution in the Aqueous Phase

The addition of NaCl in the aqueous phase of the biphasic systems could improve the furfural
formation rate in some catalytic systems [12,32] because of its effective separation and the improvement
of extracting efficiency of the organic layer [33]. Thus, the saturated NaCl aqueous solution substituted
for water phase in the biphasic system was investigated (Figure 5d). The furfural yields of xylose and
xylan in the 2-MTHF/water system were 67.02% (10.47%/56.55%, aqueous (A)/organic (O) phase)
and 75.71% (15.06%/60.65%, A/O), respectively. For xylose, there was a 12.62% (2.62%/77.02%, A/O)
increase when replaced H2O with saturated NaCl solution, revealing that the addition of NaCl can
greatly improve the partitioning of furfural into the organic phase. This result was consistent with
the reported in literatures [12,32]. On the other hand, the furfural yield of xylan in the saturated
NaCl medium decreased to 62.28% (1.04%/61.24%, A/O), which may be attributed to the high
concentration of Cl− ions. Cl− ions acted as catalysts in the enolization reaction of xylose and thus
favoring the subsequent dehydration reactions of xylose to furfural [34]. In the absence of NaCl,
the catalytic performance of SO4

2−/Sn-MMT at different reaction times was also studied (Figure S1).
It was demonstrated that in the absence of NaCl, the furfural yield was close to 70% at a long reaction
time, proving that the addition of NaCl made the reaction system more efficient.
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Figure 5. Effects of different reaction parameters on the furfural yield. Reaction conditions: All samples
reacted in a hydrothermal reactor at 160 ◦C for 2 h. (a) 0.5 g/g substrate of catalyst; (b) 20 g/L of xylose,
10 g/L of xylan; (c) 20 g/L of xylose, 0.5 g/g substrate of catalyst; 10 g/L of xylan, 1.0 g/g substrate
of catalyst; (d) 20 g/L of xylose, 0.5 g/g substrate of catalyst, volume ratio (organic:aqueous) = 4:5;
10 g/L of xylan, 1.0 g/g substrate of catalyst, volume ratio (organic:aqueous) = 4:5.

2.2.5. Effect of Reaction Temperature and Time

The effect of temperature and time on the transformation of xylose and xylan into furfural in the
biphasic system using SO4

2−/Sn-MMT as catalysts was studied by conducting the experiments at
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different temperatures (150, 160 and 170 ◦C) in a time range of 30–150 min in Figure 6. For Figure 6a,d,
when prolonging the reaction time, the curves of furfural yields had similar appearances: initially
increasing to the highest value and then decreasing. The reason of the curves slump was due to the
formation of soluble degradation products and black insoluble solids [12]. At lower temperature
(150 ◦C), the lower reaction rate caused the incomplete conversion of xylose to furfural. At higher
temperature (170 ◦C), the side reaction is the major factor leading the reduction of furfural yield [35,36].
The highest furfural yield of xylose and xylan under the investigated conditions were 79.64% at 160 ◦C
for 120 min and 77.35% at 160 ◦C for 90 min. Figure 6c shows that the furfural selectivity had the similar
trend with the furfural yield and the highest furfural selectivity was 80.84% at 160 ◦C for 120 min.
However, the increased temperature and time led to the high consumption rate of xylose and the
xylose conversion was increased firstly and then flattened out (Figure 6b). With prolonging the reaction
time, the xylose conversion increased from 78.90% at 150 ◦C for 30 min to 98.73% at 150 ◦C for 150 min.
Moreover, high temperature also led to the high xylose conversion. For example, when the reaction
time reached 60 min, the xylose conversion of 98.42% at 170 ◦C was higher than samples at 160 ◦C
(92.54%) and 150 ◦C (84.54%). For the reactor time of 150 min, all the samples reacted almost completely.
Consequently, the tougher reaction conditions led to the higher xylose conversion. Compared with the
Sn-MMT catalyst at the same reaction condition (Supplementary Materials), the furfural yield was
increased when SO4

2−/Sn-MMT was used as the catalyst (79.64% vs. 61.22%), which indicated that
SO4

2− loading on Sn-MMT significantly improved the catalytic efficiency.
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Table 3 displays the comparison of different procedures for the furfural production. In general,
high furfural yields could be easily achieved using mineral acids as catalyst such as sulfuric acid [37]),
but it is toxic and corrosive. Other homogeneous catalysts containing Lewis acid such as CrCl2
and LiBr [38] gave a furfural yield about 60%, but there were disadvantages of homogeneous
catalysts, such as the difficulty of separation and recycle, and these limitations provoked the focus on
heterogeneous catalysts because they are recyclable and environmentally friendly. Lessard et al. [39]
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got a 98% furfural yield, but the required temperature was really high (260 ◦C). Agirrezabal et al. [40]
and Bhaumik et al. [41] also achieved a high furfural yield (more than 80%) but it required a long
reaction time. The reaction conditions used in this work were relatively moderate with the furfural
yield of 79.64% from xylose and 77.35% from xylan.

Table 3. The comparison of different procedures for the furfural production.

No. Substrate Catalyst Solvent Temperature Time Yield Refs.

1 Xylose CrCl2, LiBr N,N-dimethylacetamide 100 ◦C 4 h 56% [38]

2 Xylose MCM-41-SO3H toluene/water 140 ◦C 24 h 75.5% [42]

3 Xylose PSZ-MCM-41 toluene/water 160 ◦C 4 h 42.8% [43]

4 Xylose Dealumin. HNu-6 (2) toluene/water 170 ◦C 4 h 47% [44]

5 Xylose H-mordenite 13 toluene/water 260 ◦C 0.05 h 98% [39]

6 Xylose Arenesulfonic SBA-15 toluene/water 160 ◦C 20 h 86% [40]

7 Hydrolysates
from corncob

Tin-loaded
montmorillonite SBP/NaCl-DMSO 190 ◦C 10 min 57.80% [45]

8 Isolated
hemicellulose Silicoaluminophosphate toluene/water 170 ◦C 10 h 82% [41]

9 Bagasse Silicoaluminophosphate toluene/water 170 ◦C 8 h 93% [41]

10 Maple wood Sulfuric acid methyl isobutyl
ketone/water 170 ◦C 50 min 85.3% [37]

11 Xylose SO4
2−/Sn-MMT 2-MTHF/water-NaCl 160 ◦C 2 h 79.64% In this work

12 Xylan SO4
2−/Sn-MMT 2-MTHF/water 160 ◦C 1.5 h 77.35% In this work

2.3. Catalyst Recyclability

Catalyst stability is an important factor that could affect the overall reaction process.
Thus, the catalyst prepared in this work was recycled five times to study the recyclability under
the optimized reaction conditions in Figure 7. After each cycle, catalyst was washed with ethanol and
distilled water, dried at 105 ◦C and reused. In comparison to the catalytic performance of the fresh
catalyst, the furfural yields were decreased by 1.5%–10.0% after the one to five recycles, which indicated
that the catalytic performance decreased to a slight extent after the fifth regeneration and this catalyst
had the excellent reusability. The element analysis of used catalysts (Table S1) showed that after
five recycles, the contents of sulfur and tin had a very slight reduction, which meant that the activity of
SO4

2−/Sn-MMT still remained efficient.
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3. Materials and Methods

3.1. Materials

Beechwood xylan (AR, ≥90%) and standard reagents such as D-xylose and furfural were provided
by Sigma-Aldrich (Saint Louis, MO, USA). SnCl4·5H2O (AR, ≥99.0%) was purchased from Lingfeng
Chemical Regent Co., Ltd. (Shanghai, China). MMT (GR, 98%) was obtained from Chengdu Gracia
Chemical Technology Co., Ltd., (Chengdu, China). The 2-MTHF (AR, ≥99.5%), H2SO4 (AR, 98%)
and NaCl (AR, 99.5%) were supplied by Tianjin Kermel Chemical Regent Co., Ltd., (Tianjin, China).
All reagents were used without any purification.

3.2. Preparation of the Catalyst

The Sn-MMT was synthesized according to the methods described in literature [12] with slight
modifications. Four grams of MMT was dispersed in ultrapure water (196 mL) and intensely stirred for
30 min at room temperature, followed by standing for 24 h to make it fully swell. Then aq. SnCl4·5H2O
(6.8 mmol, 20 mL) was added slowly. The mixture was treated at 85 ◦C for 2 h under microwave
irradiation (600 W, XH-300UL, Beijing Xiang-Hu Science and Technology Development Reagent Co.,
Ltd., Beijing, China) at atmospheric pressure. The collected clay was washed with ultrapure water till
a neutral pH value was achieved and then the clay was dried at 110 ◦C over night to form Sn-MMT.
Then Sn-MMT was impregnated with 1.0 M H2SO4 at the proportion of 20 mL/g for 6 h, then filtrated
and oven-dried at 105 ◦C for 12 h and milled to get the targeted catalyst SO4

2−/Sn-MMT.

3.3. Characterization of Catalyst

XRD patterns of samples were recorded on a Bruker D8 ADVANCE X-ray diffractometer with Cu
Kα radiation (Bruker Corporation, Karlsruhe, Germany). The tube voltage was 40 Kv and the current
was 40 mA. The selected 2θ range was 5◦–90◦, scanning at a step of 0.02◦. The Fourier transform
infrared (FTIR) spectra were recorded on a spectrophotometer (Tensor 27, Bruker Corporation,
Karlsruhe, Germany).

The TPD analysis was performed using a TP 5000-II multiple adsorption apparatus
(Tianjin Xianquan Corporation of Scientific Instruments, Tianjin, China). Approximately 100 mg
of catalyst was pretreated in a nitrogen atmosphere at 150 ◦C for 30 min. When the mass baseline was
stable, the nitrogen flow was stopped, and NH3 was introduced until adsorption of the samples was
saturated. Then, the samples were cooled to 50 ◦C and purged with the nitrogen to remove residual
NH3 from the surface of samples. Subsequently, the samples were heated from 50 to 700 ◦C at a rate of
10 ◦C/min for NH3 desorption.

The IR spectrum of the pyridine-adsorbed samples was obtained in the transmission mode using
a Nicolet Model 710 spectrometer (Thermo Nicolet Corporation, Madison, WI, USA). The catalyst was
grounded into fine powders and pretreated at 250 ◦C for 2 h under evacuation, then cooled to room
temperature when pyridine vapor was introduced into the oven for 24 h. The physically adsorbed
pyridine was removed by evacuating for 1 h and a spectrum was subsequently recorded.

The element compositions of MMT, Sn-MMT and SO4
2−/Sn-MMT were measured by ICP-AES

(Optima 7000DV, PerkinElmer, Waltham, MA, USA). N2 adsorption/desorption isotherms of catalysts
at 77 K were collected on a Micromeritics ASAP 2010 instrument (Micromeritics Instrument
Corporation, Atlanta, GA, USA). The specific surface area was calculated using the BET method.

3.4. Procedure for the Transformation of Xylose and Xylan into Furfural

Experiments for the catalytic conversion of xylose and xylan to furfural were implemented in
a hydrothermal reactor. Xylose or xylan and catalysts were mixed in a desired ratio, and 2-MTHF
was added as the organic layer and water as the aqueous layer. The hydrothermal reactor was put in
an oven and heated. In the reaction analyses, zero time was taken to be when the temperature reached
to the desired temperature. After the reaction, the reactor was cooled quickly to room temperature
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with flowing water. The aqueous phase and the organic phase were separated with a separatory funnel.
All the samples were filtered with 0.22 µm syringe filter prior to analysis. Every experiment was
replicated at least three times and the average of results was chosen for the analysis. The deviations
were lower than 5%.

3.5. Product Analysis

Furfural yields in the water phase and organic phase were measured by high-performance liquid
chromatography (HPLC) (Waters Corporation, Milford, CT, USA) with a reversed-phase C18 column
and a refractive index detector after dilute with deionized water. A volume ratio of 0.1 wt % acetic
acid aqueous solution to acetonitrile (85/15, v/v) was employed as a mobile phase with a flow rate of
1.0 mL/min.

Xylose in the water phase was determined by HPLC system (Waters 2414) equipped with
a refractive index detector and a Bio-rad Aminex® HPX-87H (300 mm × 7.8 mm) column. 5 mM of
H2SO4 was employed as the eluent with a 0.5 mL/min flow rate at room temperature.

Calibration curves were established for quantitative calculation based on the following equations:

Furfural yield (for xylose, mol%) =
moles of furfural produced

moles of starting xylose
× 100 (1)

Xylose conversion (for xylose, mol%) =
moles of xylose reacted
moles of starting xylose

× 100 (2)

Furfural selectivity (for xylose, mol%) =
moles of furfural produced

moles of xylose reacted
× 100 (3)

Furfural yield (for xylan, mol%) =
moles of furfural produced

moles of starting xylose in xylan
× 100 (4)

4. Conclusions

The conversions of xylose and xylan to furfural were achieved using SO4
2−/Sn-MMT as a solid

acid catalyst in a biphasic system (2-MTHF/NaCl-water). The results showed that SO4
2−/Sn-MMT

contained both Brønsted acid and Lewis acid sites, and was more effective than Sn-MMT due to
the intercalation of SO4

2− ions. This catalyst had high catalytic activity and excellent recyclability.
The substitution of water by saturated NaCl solution in aqueous phase obviously improved the
furfural yield from xylose, but had a negative influence on the xylan conversion. A highest furfural
yield of 79.64% was achieved from xylose at 160 ◦C for 120 min, and 77.35% from xylan at 160 ◦C
for 90 min. After a few recycles, the catalytic performance decreased to a small extent and this
catalyst displayed the excellent reusability. Hence, the SO4

2−/Sn-MMT catalyst, easily prepared,
with remarkable efficiency, could have promising application for biomass conversion.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4344/7/4/118/s1.
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