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Abstract: This study assessed 3D WO3–TiO2 nanoflowers (WTNF) synthesized by a combined
hydrothermal–ultrasonication–impregnation method for their applicability to the treatment of
aromatic volatile compounds under visible-light illumination. The scanning electron microscopy
exhibited the formation of 3D structures in the prepared WTNF samples. The X-ray diffraction
patterns and energy dispersive X-ray results indicated a successful incorporation of WO3 into TNF
structures. The UV-visible spectroscopy showed that the prepared WTNF samples can be functioned
under visible light irradiation. The output-to-input concentration ratios of toluene and o-xylene
with WTNF samples were lower than those of TiO2 nanoflowers. These findings were illustrated
on the basis of charge separation ability, adsorption capability, and light absorption of the sample
photocatalysts. The input-to-output concentration ratios of the target chemicals were lowest for 10 M
NaOH and highest for 5 M NaOH. The photocatalytic degradation efficiencies of WTNF sample
photocatalysts increased with increasing WO3 content from 0.1% to 1.0%, and dropped gradually
with increasing WO3 content further to 4.0%. Light-emitting-diodes (LEDs) are a more highly
energy-efficient light source compared to a conventional lamp for the photocatalytic degradation of
toluene and o-xylene, although the photocatalytic activity is higher for the conventional lamp.
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1. Introduction

Exposure to aromatic volatile compounds indoors has become an important environmental
issue because it is closely linked to the adverse health risk of building occupants. There are a wide
range of indoor sources of aromatic pollutants, such as building finishing materials, furniture, and
household products, resulting in higher indoor pollution for these pollutants relative to outdoor
concentrations [1]. Most aromatic volatile compounds display high carcinogenic chronic effects
and non-carcinogenic chronic effects such as damage to liver, kidneys, the central nervous system,
and the respiratory system [2,3]. Moreover, many people spend most of their personal time in indoor
environments, thus justifying the application of mitigation strategies for indoor aromatic volatile
compound concentrations to reduce the health risks of building occupants.

The photocatalysis of titanium dioxide (TiO2) is an advanced oxidation method that can
efficiently be applied in the treatment of a variety of environmental pollutants [4–9]. Nevertheless,
the environmental application of TiO2 is obstructed by a wide band gap, which is restricted to the
ultraviolet (UV) region [6,8,10]. Photocatalysis of TiO2 is also hampered by high recombination rates
of charge carriers, thus resulting in a low quantum yield [6]. To solve these problems, a great deal
of techniques have been developed to modify the surface characteristics of TiO2 [11]. The surface
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modification of TiO2 with tungsten trioxide (WO3), which is a narrow-band gap semiconductor
(2.4–2.8 eV), is an interesting technique for expanding the light absorbance capability of TiO2 to
the visible range [12,13]. WO3 can act as an electron acceptor, thus lowering the recombination
rate of photoinduced electrons and holes on the surface and bulk spaces of TiO2 and elevating its
photocatalytic activity [14]. The electron acceptation by WO3 was ascribed to a fast reaction rate
of W6+ to W5+. Additionally, in recent studies, WO3-incorporated TiO2 powders revealed higher
photocatalytic activity compared to pure TiO2 for the destruction of certain water and air pollutants
with visible light or UV exposure [12,14–16].

Conversion of TiO2 structural dimension is also a potential technique for the enhancement of
photocatalytic activity of TiO2 since it affects the movement of electrons and holes, light applicability,
and adsorption capacity [17]. Previous researchers have prepared one-dimensional titanate
nanowires and two-dimensional TiO2 nanosheets to enhance the functional properties of TiO2 [18,19].
Horváth et al. [20] noted that some of titanate compounds are not active as photocatalysts under certain
conditions. In particular, a three-dimensional (3D) photocatalyst exhibits a high surface area-to-volume
proportion, accelerating the movement of charge carriers and the transport of pollutant molecules
to the surface of photocatalyst, and increasing light absorbance capacity [17,21]. Some researchers
have found that 3D TiO2-incorporated architectures had a higher photocatalytic activity relative to
that of zero-dimensional (0D) TiO2-incorporated architectures for the treatment of aqueous-phase
p-chlorophenol, methylene blue, methyl orange, and rhodamine B [22–25].

With the merits of WO3 incorporation into TiO2 (WO3-TiO2) and 3D TiO2 for photocatalytic
activities, their combination is proposed to provide a synergistic effect for the treatment of
environmental pollutants. Unfortunately, the applicability of 3D WO3-TiO2 hybrids to gas-phase
pollutant treatments is hardly reported in scientific literature. Accordingly, in this study, 3D WO3-TiO2

nanoflowers (WTNF) were synthesized using a combined hydrothermal–ultrasonication–impregnation
method to examine their applicability to the treatment of aromatic volatile compounds under visible
light illumination. The photocatalytic treatment tests were performed under different conditions by
varying the amount of WO3 content, the concentration of NaOH, and the light source. The amount
of semiconductors incorporated into TiO2 is an important parameter for the photocatalytic activity
of semiconductor-embedded TiO2 hybrids [26]. Additionally, the concentration of NaOH, which is
used during the ultrasonication process, can also influence the formation of 3D architectures and thus
their photocatalytic activities for the degradation of aromatic volatile compounds [27]. Light source
type is another important parameter for the photocatalytic performance of many photocatalysts [28].
For comparison, a reference photocatalyst (3D TiO2 nanoflower sample, TNF) was additionally
prepared, and its characteristics and photocatalytic activity were investigated.

2. Results and Discussion

2.1. Fabricated Photocatalysts

The natures of the fabricated samples were inspected by XRD analysis, SEM/EDX, and UV-visible
spectroscopy. Figure 1 shows the powder XRD results of pure TiO2 nanoflowers (TNF) and
WO3-TiO2 nanoflowers with different WO3 loadings (WTNF-0.1, WTNF-0.5, WTNF-1.0, WTNF-2.0,
and WTNF-4.0). All the samples revealed both anatase and rutile phase peaks with a primary peak at
2θ = 25.34◦ corresponding to the (101) plane and a large peak at 2θ = 27.29◦ corresponding to the (110)
plane, respectively. These patterns are similar to the XRD results obtained from commercial P25 TiO2,
which were reported in previous studies [29,30]. Notably, WTNF-4.0 exhibited additional two peaks
at 2θ = 24.19◦ corresponding to the (110) plane and at 2θ = 49.91◦ corresponding to the (220) plane.
These findings indicate that WO3 was successfully incorporated into TiO2 structures in the WTNF-4.0.
This assertion is supported by EDX images (Figure 2), which display the presence of WO3 in all WTNF
samples. Meanwhile, there were no WO3-associated peaks for TNF. The EDX images shows that
the WTNF samples consist of Ti and WO3 elements, whereas the TNF samples consist only of Ti
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elements. Pt elements shown in the XRD images of all samples are ascribed to a Pt coating for a sample
pretreatment process. However, other WTNF samples with small WO3 concentrations of 2.0% or less
(WTNF-0.1, WTNF-0.5, WTNF-1.0, and WTNF-2.0) did not reveal WO3 peaks in their XRD images.
These results are most likely due to low amounts of WO3 that cannot be detected by the analytical
instrument used in this study. Additionally, Figure 3 depicts the SEM images of the prepared sample
photocatalysts. All samples exhibited 3D nanoflower structures, regardless of the incorporation of WO3

or not. As such, these results suggest that the combined hydrothermal–ultrasonication–impregnation
method employed in this study can be applied for the synthesis 3D WTNF samples.
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The UV-visible absorption spectra of the sample photocatalysts were determined to examine the
characteristics of their electronic structures (Figure 4). Unmodified 3D TiO2 structures (TNF) revealed
a high absorption property in the UV region with a band gap edge at 3.30 eV, but no significant
absorbance in the visible range (Table 1), which was in accordance with the results of TiO2 powder,
which were reported in previous studies [31,32]. On the contrary, the UV-visible spectra of the WTNF
samples revealed broad light absorbance in a band gap range from 2.92 to 2.97 eV (Table 1). Moreover,
the absorption intensities in the visible range became greater for WTNF samples with high WO3

concentrations, which likely is due to the embedded WO3 that changes the electronic and surface
natures of TiO2 structures [14]. For WTNF samples, electrons excited from the valence band of WO3

to its conduction band under visible light illumination are transferred to the conduction band of
TiO2, thus increasing their visible light absorption. Accordingly, the UV-visible absorption results
of the WTNF samples indicate that the fabricated architectures can be efficiently functioned for the
degradation of aromatic volatile compounds with exposure to visible light.
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Table 1. Properties of pure TiO2 nanoflowers (TNF) and WO3-TiO2 nanoflowers with different WO3

loadings (WTNF-0.1, WTNF-0.5, WTNF-1.0, WTNF-2.0, and WTNF-4.0).

Photocatalyst SBET, m2 g−1 Total Pore Volume, cm3 g−1 Band Gap, eV

TNF 102.1 0.30 3.30
WTNF-0.1 122.6 0.37 2.97
WTNF-0.5 133.4 0.31 2.96
WTNF-1.0 135.4 0.36 2.96
WTNF-2.0 107.4 0.25 2.95
WTNF-4.0 104.8 0.22 2.92

2.2. Photocatalytic Activity of Sample Photocatalysts

The photocatalytic activity of the sample photocatalysts was surveyed for the degradation of
selected aromatic volatile compounds under different operating conditions. Using an uncoated
Pyrex reactor with illumination, no discernible degradation of the aromatic volatile compounds were
observed. Equilibrium in the concentrations of toluene and o-xylene on the catalyst surface was
achieved within 1 h after gas flows. Figure 5 depicts the photocatalytic degradation efficiencies of TNF
and WTNF samples with different WO3 loadings, which were obtained after observing equilibrium in
concentrations of the target chemicals. The output-to-input concentration ratios of WTNF samples
were lower than those of TNF, indicating that the degradation efficiencies of the former samples were
higher than those of the latter. These findings are illustrated on the basis of charge separation ability,
adsorption capability, and light absorption of the sample photocatalysts. The PL emission intensity
displayed in Figure 6 shows that the WTNF samples possessed greater charge separation abilities
relative to TNF, because high PL emission intensity typically represents a high recombination rate
of electron and hole pairs [22,33]. The specific surface areas and total pore volumes of some WTNF
samples (WTNF-0.1 and WTNF-0.5) were higher than the corresponding values of the TNF sample,
which leads to higher adsorption capacities for WTNF samples (Table 1). In addition, WTNF samples
displayed a higher absorption intensity in the visible range compared to TNF (Figure 4).
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Figure 5 also shows that the photocatalytic degradation efficiencies of WTNF sample
photocatalysts increased with increasing WO3 content from 0.1% to 1.0%, and dropped gradually with
increasing WO3 content further to 4.0%. These results indicate that there is an optimal WO3 content
for the preparation of WTNF sample photocatalysts. The order of WTNF samples in photocatalytic
degradation efficiency was the same as that of charge separation efficiency (Figure 6). Specifically,
WTNF-1.0 displayed the highest charge separation efficiency, while WTNF-4.0 showed the least
efficiency among the surveyed WTNF samples. Adsorption capacity and light absorption of WTNF
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sample photocatalysts were in the same order of their photocatalytic degradation efficiencies (Table 1
and Figure 4, respectively).
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nanoflowers with different WO3 loadings (WTNF-0.1, WTNF-0.5, WTNF-1.0, WTNF-2.0, and WTNF-4.0).

The effects of photocatalytic operating conditions on the degradation efficiency were investigated
using WTNF-1.0, which exhibited the highest photocatalytic activity among the WTNF samples.
Figure 7 shows the photocatalytic degradation efficiencies of toluene and o-xylene with WTNF-1.0
according to NaOH concentrations used for an ultrasound process. Specifically, the input-to-output
concentration ratios of the target chemicals were lowest for 10 M NaOH and highest for 5 M NaOH,
indicating that the photocatalytic degradation efficiency was highest for the former and lowest for
the latter. These results indicate that there is an optimal WO3 content for the preparation of WTNF
sample photocatalysts. The higher photocatalytic degradation efficiency for WTNF-1.0 prepared using
a higher NaOH concentration (10 M) is attributed to better 3D nanoflower structures, which were
shown in our preliminary study. In addition, Figure 8 shows the photocatalytic degradation efficiencies
of toluene and o-xylene with WTNF-1.0 according to light source (conventional daylight lamp and
white and violet LEDs). The input-to-output concentration ratio of the target chemicals with the
conventional daylight lamp was lower than those of the white and violet LEDs, indicating a higher
photocatalytic efficiency for the former light source. These findings are ascribed to the higher light
power of the conventional daylight lamp (8 W power and 400–720 nm wavelength) compared to the
white (0.32 W and 450 nm wavelength) and violet LEDs (0.32 W and 400 nm wavelength). However,
the photocatalytic degradation efficiencies normalized to supplied electric powers were higher for the
LEDs than for the conventional daylight lamp: white LED, 0.16 and 0.34%/W for toluene and o-xylene,
respectively; violet LED, 0.28 and 1.25%/W for toluene and o-xylene, respectively; conventional
daylight lamp, 0.10 and 0.12%/W for toluene and o-xylene, respectively. These results indicate that
LEDs are a more highly energy-efficient light source for the photocatalytic degradation of toluene
and o-xylene with WTNF-1.0, although the photocatalytic activity is higher for the conventional
daylight lamp.
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A suggested photocatalytic degradation mechanism of toluene and o-xylene with WTNF sample
photocatalysts is further described. Under a light exposure exceeding the band gap of WO3, the electron
generated in the valence band of WO3 is transferred to the conduction band of WO3. This transferred
electron can again be moved to the conduction band of TNF due to the lower band gap position of
TNF. The positive holes in the valence band of WO3 react with OH- and H2O to produce·OH, and the
photoinduced and transferred electrons react with O2 to generate·O2

-. The reactive OH and·O2
- then

react with limonene and toluene to produce CO2, CO, and other byproducts.

3. Materials and Methods

3.1. Preparation of Samples

The procedure for the synthesis of 3D WO3-TiO2 hybrids with different WO3 concentrations is
summarized as follows: the preparation of TiO2 powder, morphological transformation of TiO2 powder
into TNF (a reference photocatalyst), and embedment of WO3 into 3D TiO2 nanoflowers. For the
preparation of TiO2 powder, 2.0 g of Surfactant P-123 (Sigma-Aldrich, Milwaukee, WI, USA) was mixed
with 400 mL of deionized water and stirred for 30 min, after which 120 mL of titanium IV isopropoxide
(TTIP, Sigma-Aldrich) was added to the mixture and stirred for another 30 min. The suspension was
ultrasonicated for 90 min, conditioned overnight at room temperature, and centrifuged at 2000 rpm
for 20 min. The solid products were dried at 80 ◦C for 15 h and calcined at 550 ◦C for 1 h to provide
TiO2 powders.

The fabricated TiO2 powders were hydrothermally and ultrasonically treated to obtain 3D TiO2

structures. Titanium tetrachloride (TiCL4, Sigma-Aldrich) (50 mL), 70 mL of NaOH (5, 10, 15 or 20 M)
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(Sigma-Aldrich), and 25 mL of H2O2 (30%) (Sigma-Aldrich) was mixed with 300 mL of deionized
water. TiO2 powders (220 mg) were added to this solution, before it was hydrothermally treated in
an autoclave at 90 ◦C for 3 h. Then, this mixture was centrifuged at 10,000 rpm for 15 min, after which
the products were mixed with the 400 mL of HCL (Sigma-Aldrich). This suspension was ultrasonicated
for 40 min using an ultrasonicator (VCX750, Sonics & Materials, Newtown, CT, USA). The precipitates
were cleaned using distilled water and ethanol (Sigma-Aldrich), and the cleaned output was then
dried at 50 ◦C for 20 h and calcined at 550 ◦C for 1 h to obtain 3D TiO2 structures.

WTNFs were fabricated by embedding WO3 into 3D TiO2 structures. A pre-scheduled amount
of pentahydrated ammonium paratungstate ((NH4)10W12O41·5H2O, Sigma-Aldrich) was added to
a solution of C2H5OH (10 mL) and distilled water (30 mL). Three-dimensional TiO2 powder (1 g) was
added to the solution and stirred for 15 h. Then, this mixture was conditioned in a dry oven (110 ◦C)
for 2 h, dried at 380 ◦C for 2 h, and calcined at 550 ◦C for 1 h to produce WTNF samples. During
the drying and calcination processes, WO3 was formed by the reaction of (NH4)10W12O41·5H2O
and incorporated into TiO2 structures. The amounts of ((NH4)10W12O41·5H2O were 0.08, 0.40, 0.80,
0.16, and 0.32 g, which were determined to obtain WTNFs with WO3-to-TiO2 percentages of 0.1%,
0.5%, 1.0%, 2.0% and 4.0%, respectively (They are denoted here as WTNF-0.1, WTNF-0.5, WTNF-1.0,
WTNF-2.0, and WTNF-4.0, respectively).

The properties of the synthesized samples were examined using X-ray diffraction (XRD, Rigaku
D/max-2500 diffractometer, Rigaku Corp., Tokyo, Japan), scanning electron microscopy/energy
dispersive X-ray (SEM, Hitachi S-4300 & EDX-350 FE, Hitachi, Tokyo, Japan), photoluminescence
emission spectroscopy (PL, SpectraPro 2150i, Acton Research, Princeton, NJ, USA), UV-visible
spectroscopy (Varian CARY 5G, Varian, Cary, NC, USA), and N2 physisorption (ASAP 2020,
Micromeritics, Norcross, GA, USA).

3.2. Photocatalysis of Aromatic Compounds

The experimental setup for the photocatalytic tests of the prepared photocatalysts is shown in
Figure 9. Major components of the experimental system include an air cylinder for clean air supply,
rotameters for flow measurements, a water bath for humidification, a heated chamber for mixing of
air and standard substrates, a syringe pump for automatic injection of target compounds, a 3-way
valve for gas sampling, and a photocatalytic reactor with a conventional lamp or a photocatalytic
reactor with white or violet LEDs. A dipping method was applied for the coating of the reactor with
individual photocatalyst samples. Clean air supplied from the air cylinder was passed through the
water bath unit for humidification at a specified relative humidity. The humidified air was delivered
into the reactor with a direction perpendicular to the reactor in order to increase the mass transport of
incoming gas to the catalyst surface. The photocatalytic operating conditions were adjusted as follows:
sample amounts coated onto the inner wall of the reactor, 0.45 mg cm−2; input concentration of target
chemicals, 0.1 ppm; relative humidity, 40%; gas flow rate, 1.0 L min−1.
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Before conducting main photocatalytic experiments, the experimental system was cleaned using
clean air overnight while light illumination to degrade any compounds attached to the system.
An uncoated reactor was exposed to visible light in order investigate the effect of light on the
degradation of the target chemicals. Adsorption equilibrium of aromatic volatile compounds between
the photocatalyst and gas was checked by examining if the chemical concentrations were equal in
input and output air. Once the adsorption equilibrium was identified, the light source was turned on
to start the main photocatalytic experiments.

Air samples for the measurements of aromatic volatile compounds and other organic vaporous
compounds were obtained at upstream and downstream sampling ports of the photocatalytic reactor.
Air sampling was carried out by drawing air from the sampling ports to Tenax GC-contained tube to
concentrate target chemicals. A thermal desorption unit (ATD 350, Perkin Elmer, Waltham, MA, USA)
was employed to transfer sampled compounds to a gas chromatograph/mass spectrometer (GC/MS)
(Clarus 680, Perkin Elmer, Waltham; Clarus SQ8 T, Perkin Elmer, Waltham) for analysis. The adsorbent
tube was thermally treated at 260 ◦C for 12 min, and the chemical species were concentrated at −30 ◦C
on an internal trap. Subsequently, the internal trap was heated to 250 ◦C to deliver the chemical species
to the analytical system. The initial temperature in the GC oven was adjusted at 40 ◦C for 6 min and
ramped at 5 ◦C/min to 220 ◦C for 3 min. A contro analysis showed no co-eluting compounds during
entire analytical processes. The quantitative determination of chemical species was done based on the
calibration equations established using at least five different concentrations. For the quality control for
sample analyses, blank samples were examined to check sample contamination, and spiked samples
were investigated to check any analysis variation. The minimum detection thresholds varied between
0.5 and 1.3 ppb, depending on compound.

4. Conclusions

In the present study, WTNF composites with different WO3 concentrations were fabricated
and their photocatalytic activity for treatment of toluene and o-xylene at an indoor concentration
under visible light exposure was surveyed. The spectral results demonstrated the formation of 3D
structures in the prepared WTNF samples, the incorporation of WO3 into TNF structures, and the
potential activity of WTNF sample photocatalysts under visible light irradiation. WTNF samples
exhibited superior photocatalytic function to the reference TNF sample for degradation of indoor-level
toluene and o-xylene with visible light exposure. The photocatalytic degradation efficiencies
of WTNF composites depended upon the WO3-to-TiO2 ratios. There was an optimal NaOH
concentration for the preparation of WTNF photocatalysts using an ultrasound treatment process.
LEDs are suggested as an energy-efficient light source for the photocatalytic degradation of toluene
and o-xylene with WTNF samples. Overall, WTNF photocatalysts prepared by the combined
hydrothermal–ultrasonication–impregnation method can be applied for the treatment of indoor level
aromatic volatile pollutants.
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