Supplementary Materials: Well-Shaped Sulfonic Organosilica Nanotubes with High Activity for Hydrolysis of Cellobiose

Jing Sun, Xiao Liu, Xinli Zhu, Hua Wang, Sadegh Rostamnia and Jinyu Han

Figure S1. TEM images of mercaptopropyl organosilica nanotubes with different sulfur contents. (a) SH_{0.2}-Et-SNT; (b) SH_{0.3}-Et-SNT; (c) SH_{0.1}-Ph-SNT; (d) SH_{0.2}-Ph-SNT and (e) SH_{0.3}-Ph-SNT.

Figure S2. TEM images of (a) SH0.5-Ph-SNT and (b) SH-SNT.

Figure S3. Nitrogen adsorption-desorption isotherms of SH0.1-Et-SNT, SH0.2-Et-SNT, SH0.3-Et-SNT, SH0.1-Ph-SNT, SH0.2-Ph-SNT and SH0.3-Ph-SNT.

Figure S4. Nitrogen adsorption isotherms of SH-SNT, SO₃H-SNT, SH_{0.5}-Ph-SNT and SO₃H_{0.5}-Ph-SNT.

Table S1. Physicochemical properties of SH_x-Et-SNT and SH_x-Ph-SNT.

Sample	BET Surface Area (m ² ·g ⁻¹) ^a	Pore Volume (cm ³ ·g ⁻¹) ^b	Pore Size (nm) ^c
SH0.1-Et-SNT	799	2.6	5.5
SH0.2-Et-SNT	625	2.2	5.2
SH0.3-Et-SNT	490	1.4	4.6
SH0.1-Ph-SNT	834	2.1	6.5
SH0.2-Ph-SNT	560	1.6	4.4
SH0.3-Ph-SNT	530	1.2	5.4
SH0.5-Ph-SNT	365	-	-
SH-SNT	540	1.6	6.3

^a Surface area was determined using the Brunauer-Emmett-Teller (BET) model; ^b Pore volume was obtained at the relative pressure of 0.8; ^c Pore size was estimated Barrett-Joyner-Halenda (BJH) method with adsorption branch.

Figure S5. XPS spectrum of SH0.1-Et-SNT.

Figure S6. Liquid chromatography spectra of mixture including cellubiose (green square) and glucose (orange circle) after reaction using SO₃H_{0.3}-Ph-SNT as catalyst.

Figure S7. Temperature effect on hydrolysis of cellubiose using SO₃H_{0.1}-Ph-SNT as catalyst. Hydrolysis of cellubiose by using SO₃H_{0.1}-Ph-SNT as catalysts at 130 °C, 140 °C, 150 °C and 160 °C, respectively. Reaction conditions: 50 mL autoclave, 20 mL deionized water, substrates: acid active sites = 14, 0.2 g cellubiose, 2.5 MPa Nitrogen, 800 rpm, 2 h.