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Abstract: The regulation of the interaction between H2O2 and its catalysts is a promising route
to achieve high productivity and selectivity towards H2O2. Herein, mesoporous anatase/TiO2(B)
whisker (mb-TiO2) modified with heterogeneous carbon was prepared as the support of Pd-based
catalysts for the direct synthesis of H2O2. The morphology and structure of the catalyst
were investigated by transmission electron microscopy, X-ray diffraction, Raman spectroscopy,
Brunner-Emmet-Teller measurements, and X-ray photoelectron spectroscopy. The interaction between
H2O2 and the support was studied by isothermal calorimeter. The carbon heterogeneous modification
can weaken the interaction between H2O2 and the support, then accelerate the desorption of H2O2

and reduce the re-adsorption of H2O2 in the reaction medium. Meanwhile, the synergistic effects
between TiO2 and Pd nanoparticles are not influenced by the heterogeneous carbon distribution.
The catalyst exhibits better performance for the synthesis of H2O2 compared with the corresponding
unmodified catalyst; the productivity of H2O2 increases more than 40%, which can be ascribed to the
decrease of further H2O2 conversion under the weakened interaction.

Keywords: direct synthesis of H2O2; mesoporous anatase/TiO2(B) whisker; carbon modification;
palladium; H2O2 desorption; isothermal microcalorimetry

1. Introduction

As a green and excellent oxidant, hydrogen peroxide (H2O2) has been widely applied in the
pulp/paper industry, water purification, and chemical synthesis [1]. With the increasing demand
for H2O2 in the international market, the direct synthesis of H2O2 from hydrogen and oxygen is
believed to be a promising route because of its remarkable advantages [2–7], such as its lower levels of
environmental pollution and lower cost. However, three inevitable side reactions in the direct synthesis
process, including the combustion of H2 and the hydrogenation/decomposition of H2O2, reduce the
productivity and selectivity towards H2O2, which is the major drawback of this process [2,4,8].

The surface property of the support has been proved to have an important effect on the
performance of H2O2 synthesis. For example, the hydrophilic/hydrophobic moderation of the support
is an efficient approach to improve the catalytic activity. As early as the 1970s, Pd catalysts supported
on more hydrophobic materials were prepared to improve the productivity of H2O2 [9]. Hu et al.
came to similar conclusions; they speculated further that more hydrophilic support might increase the
re-adsorption of H2O2, resulting in the further conversion of H2O2 and the lower selectivity of H2O2

synthesis [8]. In addition, the crystal phase of the support surface can also lead to the enhancement of
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catalytic performance by the suppression of side reactions. TiO2 is a promising candidate support for
H2O2 synthesis and has been widely studied [10–12]. According to our previous work with assistance
from molecular dynamic simulations [13], it has been indicated that introducing the proper amount of
TiO2(B) phase in the catalyst surface can accelerate the desorption of H2O2 from the catalyst due to
the weak interaction between H2O2 and TiO2(B), and consequently improve the productivity of H2O2

over Pd-TiO2(B)/anatase catalyst.
In fact, the interaction between H2O2 and the support is the origin of the support effect according

to the analysis mentioned above, and the selectivity and productivity of H2O2 is thus influenced by
the moderation of the interaction between H2O2 and the support. Carbon-modified TiO2 has been
proved to weaken the adsorption of polar molecules and accelerate their transfer [14]. Meanwhile,
the carbon modification method is facile, inexpensive, and minimally changes the structure of supports.
Herein, we fabricated a heterogeneous carbon-modified catalyst for the direct synthesis of H2O2

on the basis of mesoporous anatase/TiO2(B) whisker (mb-TiO2). mb-TiO2 whisker with excellent
performance in various catalytic systems has been successfully prepared in our previous work [15–18].
Carbon heterogeneous surface modification can regulate the adsorption of H2O2 on the catalyst surface
without changing the strong synergy between active sites and TiO2. The experimental results showed
that the Pd-supported, carbon-modified mb-TiO2 (C-mb-TiO2) catalyst exhibited higher productivity
and selectivity towards H2O2 compared with the unmodified Pd/mb-TiO2 catalyst. X-ray diffraction
(XRD), Raman spectra, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy
(XPS), and isothermal microcalorimeter (IMC) characterization techniques were applied to analyze the
structure–performance relationship.

2. Results and Discussion

2.1. Structural Characterization of the Catalysts

Figure 1 shows the XRD and Raman patterns of mb-TiO2, C-mb-TiO2, and the corresponding
Pd-supported catalysts. Five distinct diffraction peaks are assigned to anatase phase of TiO2

(JCPDF 21-1272) [19]. Meanwhile, the weak observed peaks at 2θ of 14.3◦, 28.7◦ and 43.6◦ correspond
to (001), (002) and (003) of TiO2(B) phase (JCPDF 35-0088) [20]. Evidently, no extra diffraction
peaks of carbon can be found in C-mb-TiO2, which implies that either the amount of carbon is
too little or the generated carbon is amorphous [21]. In addition, the diffraction peaks for Pd
are indistinguishable, which may be caused by the low content or good dispersion, as previously
reported [22]. The bicrystalline structure was also confirmed by Raman spectra. Peaks at 234 cm−1,
431 cm−1 and 469 cm−1 are all indexed to the TiO2(B) phase [13]. The specific crystal structure
has been explored in our previous work [15]. As shown in Figure 1b, two Raman bands located at
1300–1450 cm−1 (D-band) and 1500–1650 cm−1 (G-band) are only observed in C-mb-TiO2 rather than
mb-TiO2, which verifies the existence of carbon species on the surface of C-mb-TiO2 [8]. The TG
analysis shows that the content of carbon species of C-mb-TiO2 is less than 1 wt % (seen in Figure S2),
and only about one third of mb-TiO2 surface is covered by the introduced carbon species according to
our previous calculation [14].

N2 adsorption-desorption isotherms were measured at 77 K to characterize the physical and
chemical properties of supports and corresponding catalysts, as shown in Figure 2. The typical type IV
isotherms according to IUPAC classification are observed for all samples, indicating the presence of
a mesoporous structure [17]. The corresponding pore size distribution curves (seen in Figure 2) show
a narrow distribution ranging from 5 to 9 nm with a maximum around 7 nm for all samples. Details
about the BET surface area and average pore volume/size are summarized in Table 1. It can be seen
that the surface area and pore volume of C-mb-TiO2 are nearly identical to that of mb-TiO2, indicating
that almost nothing has changed in the initial structure of mb-TiO2 after the carbon modification.
Both the average pore size and the pore volume decrease after loading with Pd, which can be ascribed
to the adhesion of metallic Pd nanoparticles inside the pores.
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Figure 1. (a) XRD pattern and (b) Raman spectra of the samples. (□ anatase, ● TiO2(B)). 

 
Figure 2. N2 adsorption-desorption isotherms and the pore-size distribution of the samples. 

Table 1. Structural properties of the supports and catalysts. 

Sample Surface Area (m2·g−1) Pore Volume (cm3·g−1) Average Pore Size (nm)
mb-TiO2 82.2 0.22 10.5 

C-mb-TiO2 81.8 0.22 10.4 
Pd/mb-TiO2 78 0.20 10.2 

Pd/C-mb-TiO2 79 0.19 10.1 

To obtain more information about the surface morphology, the samples were characterized by 
SEM and HRTEM. Figure S1 shows the SEM images of C-mb-TiO2, which is fibrous whisker with a 
uniform width of 300–400 nm, and the morphology shows little change from the mb-TiO2. The 
structure of Pd-supported C-mb-TiO2 was further studied by HRTEM and ED mapping. 
Well-crystallized TiO2(B) can be observed in Figure 3a; the nanocrystal with lattice fringes of 0.38 
nm is assigned to d003 of TiO2(B) facet, and the lattice fringe spacing of 0.35 nm corresponds to d101 
of anatase [15], with the majority being the anatase phase. Furthermore, we find that the evident 
anatase phase is covered by a thin area without crystal lattice fringes (see the two yellow dot lines 
in Figure 3b), which can be ascribed to the generated amorphous carbon species [21], and is 
consistent with the results of the Raman analysis. Figure 3c shows that the Pd particles are closed to 
the carbon and anatase phases, but it is difficult to obtain the accurate positioning of Pd from 
HRTEM images. The loading of Pd is confirmed by elemental mapping, as shown in Figure 3d. The 
blue regions represent the presence of Pd on the surface of TiO2 in the TEM maps. The relatively 
low levels of carbon cannot be distinguished due to the external introduction of the carbon source 
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Figure 2. N2 adsorption-desorption isotherms and the pore-size distribution of the samples.

Table 1. Structural properties of the supports and catalysts.

Sample Surface Area (m2·g−1) Pore Volume (cm3·g−1) Average Pore Size (nm)

mb-TiO2 82.2 0.22 10.5
C-mb-TiO2 81.8 0.22 10.4

Pd/mb-TiO2 78 0.20 10.2
Pd/C-mb-TiO2 79 0.19 10.1

To obtain more information about the surface morphology, the samples were characterized by SEM
and HRTEM. Figure S1 shows the SEM images of C-mb-TiO2, which is fibrous whisker with a uniform
width of 300–400 nm, and the morphology shows little change from the mb-TiO2. The structure of
Pd-supported C-mb-TiO2 was further studied by HRTEM and ED mapping. Well-crystallized TiO2(B)
can be observed in Figure 3a; the nanocrystal with lattice fringes of 0.38 nm is assigned to d003 of
TiO2(B) facet, and the lattice fringe spacing of 0.35 nm corresponds to d101 of anatase [15], with the
majority being the anatase phase. Furthermore, we find that the evident anatase phase is covered
by a thin area without crystal lattice fringes (see the two yellow dot lines in Figure 3b), which can
be ascribed to the generated amorphous carbon species [21], and is consistent with the results of the
Raman analysis. Figure 3c shows that the Pd particles are closed to the carbon and anatase phases,
but it is difficult to obtain the accurate positioning of Pd from HRTEM images. The loading of Pd is
confirmed by elemental mapping, as shown in Figure 3d. The blue regions represent the presence of
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Pd on the surface of TiO2 in the TEM maps. The relatively low levels of carbon cannot be distinguished
due to the external introduction of the carbon source during the testing process. The average particle
size of Pd on C-mb-TiO2 (11.2 nm) is very close to that on mb-TiO2 (10.5 nm), indicating that the size
effect of the Pd particles can be ignored.
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Figure 3. TEM images of the samples: (a–e) Pd/C-mb-TiO2 and (f) Pd/mb-TiO2; (d) Elemental Pd and
Ti maps of Pd/C-mb-TiO2.

Figure 4 shows the Pd3d core-level spectra of the fresh catalysts. The binding energies at 336.6
and 341.9 eV are ascribed to Pd2+3d5/2 and Pd2+3d3/2, respectively [23]. The binding energy position
of Pd0 and Pd2+ is unchanged between the two catalysts. The presence of Pd2+ in the fresh reduced
sample is caused by TiO2-assisted partial oxidation of Pd0 when exposed to air. As shown in Table S1,
the ratio of Pd2+/Pd0 of the two catalysts is very similar, indicating that the property of active sites is
not affected by the carbon heterogeneous modification [11,13]. According to the literature focusing on
carbon riveted supported catalysts, the electronic structure of the supported metal would be altered
obviously when the generated carbon species are in intimate contact with metallic particles [24,25].
Therefore, it can be deduced that most of the Pd particles deposit onto the TiO2 phase.
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2.2. The Adsorption Properties of H2O2 on the Supports

Isothermal calorimeter was used to investigate the adsorption properties of H2O2 on the supports.
The adsorption thermodynamic data was calculated from the calorimetric profile recorded through
in situ monitoring; the actual amount of adsorbed H2O2 was confirmed by the colorimetric method.
Finally, their ratio (the adsorption energy of H2O2) can be used to represent the interaction strength
between H2O2 and the support. The detailed process is described in Electronic Supplementary
Information (ESI). Figure 5 shows the data of the adsorption properties of H2O2 on the support. It can
be seen that the adsorption heat of H2O2 on C-mb-TiO2 is obviously lower than that on mb-TiO2,
meaning that the adsorption of H2O2 on C-mb-TiO2 is weaker. The value of adsorption heat of
H2O2 indicates a reversible physical adsorption. In other words, the generated H2O2 is more easily
desorbed from the C-mb-TiO2 surface and H2O2 in the reaction medium is more difficult to re-adsorb
on the support.
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2.3. The Catalytic Activity of the Catalysts

The direct synthesis of H2O2 from H2 and O2 over Pd/mb-TiO2 and Pd/C-mb-TiO2 catalysts were
investigated at 283 K and ambient pressure. As shown in Figure 6a, the conversion of H2 shows little
variation over time, while the selectivity and productivity of H2O2 decrease along with the time for
both catalysts. The Pd/C-mb-TiO2 catalyst exhibits better activity for H2O2 synthesis. The conversion
of H2 over Pd/C-mb-TiO2 is approximately 35% higher than that over Pd/mb-TiO2. The Pd/mb-TiO2

catalyst shows H2O2 productivity of 1933 and 1717 mmol/gPd/h after 0.5 h and 1h, respectively, while
the corresponding productivity on Pd/C-mb-TiO2 is 2848 and 2411 mmol/gPd/h with an improvement
of more than 40%. Meanwhile, the H2O2 selectivity over Pd/C-mb-TiO2 is also promoted by 9% when
compared with that over Pd/mb-TiO2. The analysis above indicates that the catalyst performance
is significantly improved due to the carbon modification. Notably, the catalytic performance of both
the Pd/mb-TiO2 and Pd/C-mb-TiO2 are superior to the Pd/P25 catalyst [4,8,11], which is widely
investigated for the direct synthesis of H2O2.

To further unveil the effect of the support, we also performed the decomposition and
hydrogenation of H2O2 under N2 and N2/H2 atmospheres, respectively, which are the two main side
reactions in the direct synthesis of H2O2. As illustrated in Figure 6b, neither of the catalysts showed
activity for the decomposition of H2O2 in pure N2 flow. When the H2/N2 mixture was fed into the
reactor, the H2O2 was catalytically hydrogenated to form H2O, demonstrating that the hydrogenation
of H2O2 is mainly responsible for the productivity and selectivity in this system. Similar results
have also been observed for Pd/P25 [26]. Furthermore, it is observed that Pd/C-mb-TiO2 exhibits
much lower hydrogenation rate than Pd/mb-TiO2. Willock et al. suggested that the production of
H2O2 takes place at the interface between the particle and TiO2 [27]. Therefore, it is reasonable for
us to assume that the properties of both active sites and supports have great impact on the catalytic
synthesis of H2O2. Additionally, in our previous work, we confirmed that the accelerated desorption of
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H2O2 from the support can decrease the hydrogenation rate of H2O2 and then improve the selectivity
towards H2O2 over the corresponding catalyst [13]. As mentioned above, the presence of carbon
species can significantly weaken the interaction between H2O2 and the catalyst under the premise
of similar property of active sites. Therefore, it can be concluded that the weaker interaction can
reduce the concentration of H2O2 on the surface of the catalyst and then decrease the hydrogenation
rate of H2O2. In addition, the improvement of H2O2 desorption can provide more reactive sites for
H2O2 formation. As a result, the enhanced selectivity of H2O2 and the conversion of H2 improve the
productivity of H2O2.
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3. Materials and Methods

3.1. Synthesis of Carbon-Modified TiO2 Whisker

First, the mesoporous and bicrystalline TiO2 whisker was prepared according to our previous
report [15]. Briefly, K2Ti2O5 was suspended in 0.1 M H2SO4 solution with vigorous stirring to form
H2Ti2O5. The suspension was filtered and washed, following which it was dried at 353 K under
vacuum and then calcinated at 723 K for 2 h in muffle to obtain mesoporous and bicrystalline TiO2

whisker. The final catalyst was denoted as mb-TiO2.
The carbon-modified mb-TiO2 was prepared as follows [14]. 1 g of mb-TiO2 was dispersed in

20 mL of dichloromethane containing 0.377 g of benzenephosphonous acid. After stirring for 24 h,
the precipitation was filtered and washed with water/acetone (50/50 by volume) solution, and then
dried in an oven at 373 K. The dried sample was treated at 673 K in Ar gas flow for 4 h and denoted as
C-mb-TiO2.

3 wt % Pd-supported catalysts were prepared by incipient wetness impregnation. A certain
amount of PdCl42− solution was slowly dropped into the support under stirring. The paste was left in
natural environment for 4 h, following which it was dried at 383 K overnight. Prior to the reaction,
all the catalysts were reduced at 573 K in H2 (40 mL·min−1) for 1 h. For comparison, commercial
titania (P25, Degussa Co., Frankfurt am Main, Germany) was loaded with Pd using the same method.

3.2. Catalyst Characterization

X-ray diffraction (XRD) Spectrogram was collected on a D8 Advance X-ray diffractometer
operating at a 40 kV with a current of 100 mA with Cu-Kα radiation. The data was collected in the 2θ
range from 5◦ to 60◦ at a rate of 0.2 s step−1. Raman spectroscopy (Horiba HR 800) with a multichannel
air-cooled CCD camera detector was employed to determine the surface crystal phases of supports
using a 514.5 nm He-Cd laser beam. Nitrogen adsorption/desorption at −196 ◦C were achieved by
using the TriStarII 3020M machine (Micromeritics Instrument Co., Atlanta, GA, USA). Surface area was
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calculated by the BET method; pore volume was determined by N2 adsorption at a relative pressure of
0.99. The Pd content of the catalysts was confirmed by ICP-AES (PerkinElmer Co., Waltham, MA, USA).
SEM for the morphology of catalyst samples was taken by an America Quanta200 environmental
scanning electron microscope. The information of dispersion and size of Pd nanoparticles were
obtained by high-resolution transmission electron microscopy (HRTEM) performed on a Japan
JEM-2100 at 200 kV. XPS was recorded by an AXIS UltraDLD spectrometer with the monochromatic
Al Ka X-ray source. The interaction between H2O2 and the support was characterized on a TAM air
Calorimeter from TA Instruments.

3.3. Catalytic Reaction

The direct synthesis of H2O2 was performed under atmosphere pressure in a glass tri-phase reactor.
The reagent gases (H2/O2/N2 = 9:36:15) with a total flow rate of 60 mL/min were premixed in a steel
mixer, and then introduced into the reactor via a frit fixed at the bottom. The temperature of 60 mL slurry
containing 50 mg catalyst and 0.38 mL H2SO4 was controlled at 10 ◦C through the water circulated
jacket. Vigorous stirring (950 rpm) was adopted to minimize mass transfer resistance. The outlet of
the reactor was linked to a gas chromatography equipped with a 5A molecular sieve packed column
and a thermal conductivity detector (SP-6890, Rainbow Chemical Instrument Co., Jinan, China), which
helped to continuously analyze the conversion of H2. The concentration of H2O2 in the medium
was determined by the colorimetric method after the complexation with a TiOSO4/H2SO4 reagent
using a UV-vis spectrophotometer (UV-2802S, Unico (Shanghai) Instrument Co., Shanghai, China) at
a wavelength of 400 nm. The selectivity of H2O2 (SH2O2) was calculated from the following formula:

SH2O2 =
rate of H2O2 formation (mol/min)
rate of H2 conversion (mol/min)

× 100% (1)

The reaction of H2O2 hydrogenation and decomposition was also implemented. The process was
similar to that described above except for the initial composition of reaction medium. H2O2 was added
to ethanol solution with the concentration of 0.25 wt %, then the decomposition and hydrogenation
of H2O2 were tested under a flow of pure N2 (60 mL/min) and a flow of H2/N2 (9:51 mL/min),
respectively. The same tests using bare supports or the absence of catalysts were also performed under
the conditions mentioned above.

4. Conclusions

In this work, a simple heterogeneous carbon modification was applied to introduce carbon species
on the surface of mb-TiO2. Pristine mb-TiO2 and carbon-modified mb-TiO2 were used as the supports
of Pd-based catalysts for the direct synthesis of H2O2. The interaction between H2O2 and the supports
was characterized by isothermal microcalorimetry. It was demonstrated that the carbon-decorated
TiO2 exhibited weaker interaction with H2O2 than that achieved with the pristine TiO2. Therefore,
the carbon-modified catalyst can effectively accelerate the desorption of H2O2 from the catalyst surface
and reduce the re-adsorption of H2O2 in the reaction medium, which benefits the decrease of side
reaction and the improvement of H2O2 productivity. Meanwhile, the properties of metallic active
sites are not influenced by the carbon modification. As a result, the Pd/C-mb-TiO2 shows better
performance for the direct synthesis of H2O2 compared with Pd/mb-TiO2. More than 40% increase
in the productivity of H2O2 was achieved, and the selectivity of H2O2 improved by 9%. In addition,
the catalytic performance of both Pd/mb-TiO2 and Pd/C-mb-TiO2 are superior to Pd/P25, which
is widely investigated for the direct synthesis of H2O2. Hence, heterogeneous carbon modification
represents a promising approach to tune the properties of the catalysts, as demonstrated here with
TiO2-supported Pd catalyst for H2O2 synthesis.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4344/7/6/175/s1,
Figure S1: SEM images of (a,b) mb-TiO2 and (c,d) C-mb-TiO2, Figure S2: TG and DSC curves of C-mb-TiO2,
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Figure S3: The scheme of reaction process, Table S1: Quantified XPS data for the surface Pd atoms, Table S2:
Calorimetric measurement of H2O2 adsorption, Table S3: The performance of Pd catalysts for H2O2 synthesis,
decomposition and hydrogenation.
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