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The intensive human activities in chemical industry and environmental purification urge the
development of advanced protocols for green production and waste management. In environmental
science, developing highly efficient and environmentally-friendly catalytic materials and systems
are very favourable approaches to green chemical synthesis and remediation of contaminated air,
soil, and wastewater. Therefore, unveiling the relationship between material structure/chemistry
and performances in heterogeneous catalysis would provide valuable guidance for rational catalyst
design as well as addressing the challenges in potential applications in environmental science.
Here, we dedicate this special issue to showcasing the recent progress in fabrication and evaluation
of state-of-the-art carbon/metal catalysts for green chemistry, photocatalysis, advanced oxidation
processes (AOPs), and other applications in environmental technologies.

Advanced oxidative processes have been demonstrated as a powerful technique for activating
superoxides producing oxidative species (free radicals) for complete degradation of organic pollutants
in aqueous systems. Wang et al. [1] synthesized magnetic carbon supported manganese oxides
(Fe3O4/C/Mn), which could effectively activate peroxymonosulfate (PMS) for phenol mineralization.
The redox Mn4+/Mn3+ couple is the catalytic site for radical generation and the magnetic Fe3O4

counterpart not only serves as a support but also results in easy separation of the catalyst from the
water by an external magnetic field. Zhu et al. [2] developed a Co-Fe alloy catalyst which outperformed
CoFe2O4 for triggering PMS to evolve sulfate radicals, while the formation of Co-Fe nitride crystallites
significantly improved the stability in the aqueous oxidative environment. Chen et al. [3] reported
a Ce-Mg/Al2O3/ozone system that exhibited great oxidative efficiency for decomposition of resistant
petroleum organic wastes from the petroleum refinery industry.

Chemical synthesis usually requires a green and robust catalyst to transfer hydrocarbons to
target products with desired conversion efficiency, selectivity, and stability. Zhao et al. [4] synthesized
a Cu-g-C3N4/activated-carbon composites to replace the toxic mercury-based catalysts for acetylene
hydrochlorination which yielded a high conversion of acetylene and great selectivity of vinyl chloride.
Meanwhile, the catalyst maintained superb stability in resistance to coke deposition. Lin et al. [5]
discovered that sulphated tin ion-exchanged montmorillonite (SO4

2−/Sn-MMT), with both Brønsted
and Lewis acid sites, could catalytically convert xylose and xylan into furfural. Chung et al. [6] revealed
that the acid strength and porous structure of microporous zeolites could be manipulated to achieve
selective glucose conversion to decyl glucoside.

Carbon monoxide (CO) and nitrogen oxides (NOx) generated from industrial production and
human activities are hazardous gases that would cause severe air pollution. The nanocomposites such
as mesoporous CuO-TiO nanotubes (Zedan et al. [7]) and CuO nanorods-reduced graphene oxide
(Wang et al. [8]) were developed for catalytic oxidation of CO to CO2 at low temperatures. Di and
co-workers [9] discovered that the thermal activation atmosphere dramatically impacted the catalytic
activity of CuBTC MOF for CO oxidation. Besides, mixed metal oxides of Fe-W-Ce (Stahl et al. [10])
and V2O5-WO3/TiO2 (Qi et al. [11]) could be utilized for selectively converting NOx with NH3 into
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harmless N2 and water. The reduction of nitrous oxide (N2O) and oxidative dehydrogenation of ethane
to ethylene could be simultaneously achieved on Cr/Al2O3 (Zhang et al. [12]). It was also discovered
that N2O could be directly decomposed on Cu-Zn/ZuAl2O4 (Zeng et al. [13]) and Cu-Zn/γ-Al2O3

(Zhang et al. [14]).
Developing photocatalysts for efficient utilization of solar energy would contribute to a sustainable

future for the human race. Truppi et al. [15] conducted a comprehensive review of the recent progress
in novel TiO2-based nanocomposites as visible-light-driven photocatalysts for versatile environmental
applications. The mesoporous TiO2/SiO2 composites from a biotemplating method (Yan et al. [16])
and TiO2-impregnated porous silica tubes (Hayashi et al. [17]) have been demonstrated as outstanding
photocatalysts for dye purification under UV irradiation. Two/three-unit hybrid nanomaterials of
MoS2/TiO2 nanobelts (Liu et al. [18]), three-dimensional WO3-TiO2 nanoflowers (Lee et al. [19]) and
TiO2/RGO/Ag (Tian et al. [20]) were constructed for photocatalytic Cr(VI) reduction, photo-oxidation
of toxic aromatic volatile compounds, and photodegradation of methylene blue, respectively.
The superior photocatalytic activity of the composites compared with the single compounds was
due to the enhanced light absorption, improved charge separation efficiency, and optimized band
structure of the semiconductors. Photocatalysts beyond TiO2 were also explored in this special
issue. Shu et al. [21] reported that immobilized ZnO/Vis could be applied for decomposition of
orange G in wastewater. Meng et al. [22] prepared ZnCr layered double hydroxides (LDHs) with
salen-metal complex (M = Co or Ni) intercalation which exhibited much better photocatalytic activity
than traditional LDHs. Additionally, layered perovskite K2La2Ti3O10 was modified with a Cu2+

iron-exchange (Pang et al. [23]) for mineralization of chlorobenzene in the presence of CO2 under
simulated solar light irradiation.

Overall, this special issue covers state-of-the-art heterogeneous catalysis for applications in
environmental science which would contribute to addressing technical problems for material design
as well as underpinning the mechanistic insights of environmental catalysis. The guest editors would
like to express their appreciation for the professional assistance from the editorial team and for the
excellent research findings from all the authors which made this issue a great success.
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