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Abstract: A series of alkaline ionic liquids (ILs) including 1-butyl-3-methylimidazolium
benzoate ([BMIM]PHCOO), 1-butyl-3-methylimidazolium carbonate ([BMIM]2CO3), 1-butyl-3-
methylimidazolium acetate ([BMIM]OAc), 1-butyl-3-methylimidazolium hydroxide ([BMIM]OH),
ethanolamine tetrafluoroborate ([MEA]BF4), and 1,1,3,3-tetramethylguanidine (TMG)-based ILs,
etc., were synthesized and utilized as catalysts for the conversion of carbohydrates into 5-HMF.
1,1,3,3-tetramethylguanidine tetrafluoroborate ([TMG]BF4) was confirmed to exhibit excellent
catalytic activity, and was much cheaper than other ILs such as 1-butyl-3-methylimidazolium chloride
([BMIM]Cl) for use as a solvent in the conversion of C6 carbohydrates into 5-HMF. The 5-HMF yields
from fructose, glucose, cellobiose, and microcrystalline cellulose (MCC) were 74.19%, 27.33%, 20.20%,
and 17.73%, respectively. In addition, the possible pathway of carbohydrates (MCC, cellobiose,
glucose, etc.) conversion into 5-HMF with [TMG]BF4 as a catalyst was speculated, and the conversion
of glucose into 5-HMF was determined to likely be the committed step in the transformation of MCC
catalyzed by [TMG]BF4.
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1. Introduction

The continuous depletion of conventional fossil fuel resources and the risk of global climate
change have forced researchers to search for alternative sustainable energy resources [1–3]. Biomass
has emerged as a potential sustainable source of energy and organic chemicals, which can gradually
replace petroleum. Lignocellulosic biomass is mainly composed of monosaccharide and disaccharide
carbohydrates (fructose, glucose, galactose, mannose, sucrose, and cellobiose) and lignin. Several
researchers have investigated the efficient conversion of carbohydrates into high value-added
chemicals, such as 5-hydroxymethylfurfural (5-HMF), levulinic acid (LA), formic acid (FA), acetic
acid, furfural, etc. [4–6]. Of these primary chemicals, 5-HMF is known as one of the most important
platform chemicals of the proposed biomass-derived carbohydrates (Scheme 1). The US Department
of Energy has already declared it to be among the “top 10 bio-based chemicals” [7]. This chemical is
highly reactive and thus can be used as a starting material for a number of products. Studies show
that fructose, as ketose, can more easily be dehydrated to 5-HMF than glucose [8–14]. However,
fructose is an expensive starting material for 5-HMF production compared to glucose. The use of
glucose and cellulose (the most widespread natural polymer materials) cannot only significantly
reduce the production cost of 5-HMF, but will improve the utilization efficiency of biomass. Therefore,
many investigations have been carried out in this field. Recently, ionic liquids (ILs) have emerged
as excellent reaction media due to their nonvolatility, nonflammability, high polarity, and their facile
isolation of products for the synthesis of inorganic compounds, thereby offering an alternative to other
solvents [15,16]. Zhang et al. [17] first observed that ILs resulted in nearly 70% yield of 5-HMF from
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glucose when CrCl2 was used as a catalyst. Since then, halides, H-form zeolites, transition metal ions,
strong acid cation exchange resin, etc. have been used as catalysts for the production of HMF from
glucose, sucrose, cellulose, and other carbohydrates using different ILs as solvents or co-solvents [18].
Meanwhile, Valente et al. [15] carried out a comparative study with ILs as co-solvents in a biphasic
system by adding CrCl3 to investigate the selectivity of glucose dehydration to HMF. Shi et al. [19]
investigated the direct conversion of cellulose into 5-HMF using concentrated NaHSO4 and ZnSO4 as
co-catalysts in a biphasic system, and observed 53 mol % yield of 5-HMF. Zuo [20] investigated the
dehydration of fructose conversion to 5-HMF by using homogeneous and heterogeneous Brönsted
acids, and found that higher 5-HMF yields were produced through lower concentrations of inorganic
acid (extremely-low HCl and H2SO4, 90.3% and 82.8%, respectively); however, the conversion of
5-HMF to byproducts was enhanced in this solvent system [21]. Moreover, the interaction between
DMSO and carbohydrates also benefited the conversion of carbohydrates to 5-HMF [22]. In this case,
higher HMF yields can be easily achieved by only using a small amount of IL catalyst.

Han et al. [10] increased HMF production catalyzed by Lewis acid (SnCl4), using 1-ethyl-3-
methylimidazolium tetrafluoroborate ([EMIM]BF4) as a solvent, with a mass ratio of ILs to glucose
set at 4.34. In addition, Ståhlberg et al. [4] used lanthanides as catalysts in glucose conversion to
5-HMF in dialkylimidazolium chlorides. The highest yield of 5-HMF turned out to be 24% when the
strongest Lewis acids, triflate and ytterbium chloride, were used simultaneously. However, this 5-HMF
yield was much lower than that catalyzed by CrCl2, which was 70% [17]. Additionally, Zhao [23]
studied the dehydration of glucose into 5-HMF using a microwave irradiation environment. ILs
yielded 40% 5-HMF when applied in the presence of Cr-HAP (hydroxyapatite-supported chromium
chloride). On the other hand, Li et al. [24] achieved 5-HMF yields of 24.6% and 30.8% in a
one-pot cellulose-to-HMF conversion process using self-synthesized functional polymeric ILs (FPILs)
by coupling SO3H-functionalized polymeric ILs with different counterpart anions with/without
CrCl3-6H2O. Cr([PSMIM]HSO4)3 was designed and observed to be an effective catalyst in degrading
cellulose with [BMIM]Cl as a solvent [25]. The cellulose conversion of 95% was obtained in a
reaction containing 0.05 g Cr([PSMIM]HSO4)3/2.0 g [BMIM]Cl, with a mass ratio of ILs to MCC
of 20, at 120 ◦C for 5 h, and the maximum yield of 5-HMF and total reducing sugars (TRS) was 53%
and 94%, respectively.
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Scheme 1. Conversion of carbohydrates into 5-HMF. 
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high volume of ILs [15–18]. ILs are expensive compounds and their use in high volumes cause 5-
HMF production to become economically unfeasible. Moreover, 5-HMF recovery from the reaction 
mixture further renders the overall process uneconomical. Besides cost effectiveness, this process 
causes environmental pollution due to the use of chromate as a catalyst in current conversion systems. 

In order to make the process more competitive and feasible, Tong et al. [26] recently used N-
methyl-2-pyrrolidonium methyl sulfonate ([NMP][CH3SO3], 7.5 mol %) as a catalyst in the conversion 
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However, the aforementioned studies mainly used ILs as solvents or co-solvents, which require
high volume of ILs [15–18]. ILs are expensive compounds and their use in high volumes cause 5-HMF
production to become economically unfeasible. Moreover, 5-HMF recovery from the reaction mixture
further renders the overall process uneconomical. Besides cost effectiveness, this process causes
environmental pollution due to the use of chromate as a catalyst in current conversion systems.
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In order to make the process more competitive and feasible, Tong et al. [26] recently used
N-methyl-2-pyrrolidonium methyl sulfonate ([NMP][CH3SO3], 7.5 mol %) as a catalyst in the
conversion of fructose into 5-HMF, and achieved a yield of 72.3%. Unfortunately, the 5-HMF
yield from glucose was only 3.0%, which was much lower than that from the CrCl2/[BMIM]Cl
process [17]. An investigation made by Tian et al. [27] obtained a 5-HMF yield of 69.1% from glucose
with a SnCl4-tetrabutyl ammonium bromide (SnCl4-TBAB)/DMSO system at 100 ◦C for 2 h under
atmospheric pressure. Moreover, SnCl4-TBAB was also used in the conversion of sucrose and cellulose
with 5-HMF yields of 66.4% and 4.3%. The dehydration of monosaccharides (fructose and glucose) to
produce 5-HMF has been systematically investigated by employing ILs as catalysts in our previous
studies [28–30]. Although it has been proved effective, the feedstock was confined to monosaccharides,
and fructose has been identified as the most easily converted feedstock. Since the structure of the
natural biomass is far more complex than that of the monosaccharides, it is not enough to scale up
5-HMF production using biomass as feedstock. It is then necessary to investigate more carbohydrates
with complex structures for their conversion into 5-HMF. In addition, most of the ILs used as catalysts
were limited by their acidic nature. More ILs, particularly neutral and alkaline ones, need to be tested
in this conversion process.

In this study, the feasibility of 5-HMF production from glucose, fructose, sucrose, cellobiose,
and microcrystalline cellulose (MCC) was investigated using different ILs as catalysts including
1-butyl-3-methylimidazolium benzoate ([BMIM]PHCOO), 1-butyl-3-methylimidazolium carbonate
([BMIM]2CO3), 1-butyl-3-methylimidazolium acetate ([BMIM]OAc), 1-butyl-3-methylimidazolium
hydroxide ([BMIM]OH), ethanolamine tetrafluoroborate ([MEA]BF4), and 1,1,3,3-tetramethylguanidine
(TMG)-based IL were synthesized. The appropriate ILs were identified and the conversion mechanism
was suggested.

2. Results and Discussion

2.1. Materials and Experimental Methods

MCC (VIVAPUR-105) was provided by JRS Company (Rosenberg, Germany). It was sieved and
MCC with the size of 180–200 µm was employed as feedstock. Glucose, fructose, and cellobiose were
purchased from Sigma Aldrich Company (St. Louis, MO, USA).

1,1,3,3-tetramethylguanidinium, lactic acid, N-methylimidazole were purchased from Beijing
Da Tian Feng Tuo Chemical Reagent Company (Beijing, China). 5-HMF was purchased from
Shanghai Jingchun Chemical Reagent Company (Shanghai, China); Sucrose, KOH, methylbenzene,
dichloromethane, bromobutane, toluene, ether, ethyl acetate, dimethylsulfoxide (DMSO), and
N, N-dimethylacetamide (DMAc) containing lithium chloride (LiCl) were purchased from Beijing
Chemical Reagent Company (Beijing, China). All the reagents were used as received.

The procedure preparing [TMG]BF4 was performed as follows [31]: Tetrafluoroboric acid
(40 wt %, 4.39 g, 20 mmol) was mixed with 1,1,3,3-tetramethylguanidine (2.30 g, 20 mmol) in ethanol
(50 mL). After being agitated vigorously at room temperature for 4 h, the solvent in the mixture
was evaporated and the crude [TMG]BF4 was left as viscous liquid. It was then washed with
diethyl ether (three times with 20 mL/time) and dried at 80 ◦C for 12 h in vacuum to prepare pure
[TMG]BF4 with the yield of 92.3%. Similar procedures were used to prepare other [TMG]-based ILs
as shown in Scheme 2 [32–34]. The synthesis of 1-butyl-3-methylimidazolium acetate ([BMIM]OAc)
and ethanolamine tetrafluoroborate ([MEA]BF4) was completed as described by Liu et al. [35] and
Yuan et al. [36], respectively. The structures of the ionic liquids used in this study were characterized
via 1H NMR using a Bruker spectrometer and the results were listed in the Supplementary Materials.
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2.2. General Procedure for the Conversion of Carbohydrates to 5-HMF

The conversion of carbohydrates into 5-HMF was carried out on 0.5 g carbohydrate mixed with
0.25 g catalyst (ILs) and 60 mL solvent in a 100-mL flask fitted with a condenser for a certain reaction
time at 100 ◦C~160 ◦C in an oil-bath reactor.

After the reaction, the mixture was filtered through a 0.45-µm pore size membrane and decanted
into a volumetric flask using water as a diluent. 5-HMF and furfural were analyzed by HPLC
(Agilent LC1260 infinity, Santa Clara, CA, USA) with a UV detector using a C18 column at 35 ◦C
with methanol/water (40/60, v/v) as an eluent at a flow rate of 0.6 mL/min. Glucose, cellobiose,
levulinic acid (LA), formic acid (FA), and acetic acid were also analyzed by HPLC using a refractive
index detector and a PL Hi-Plex H column at 65 ◦C with 5 mM H2SO4 as an eluent at a flow rate of
0.6 mL/min. Fructose was determined by HPLC equipped with a refractive index detector and a PL
Hi-Plex Pb column at 65 ◦C. The mobile phase was water at a flow rate of 0.6 mL/min.

The conversion of carbohydrates (mass%) and the yield of 5-HMF (mass%) were calculated on
carbon basis as shown below:

Carbohydrates conversion (X, mass%):

X =

(
1 − Carbohydrates mass

Starting mass of carbohydrates

)
× 100% (1)

5-HMF yield (Y, mass%):

Y =
Mass of 5 − HMF

Starting mass of carbohydrates
× 100% (2)

2.3. 5-HMF Production from Carbohydrates with Different ILs as Catalysts

As for glucose, the highest conversion of carbohydrate and yield of 5-HMF (58.32% and 25.19%,
respectively) were obtained in the reaction catalyzed by [TMG]BF4. With [BMIM]BF4 as a catalyst,
the conversion and yield were 5.15% and 3.44%, respectively. These results demonstrate that with
the same anion BF4

−, [TMG]+ ion results in better catalytic activity compared to [BMIM]+. Although
the glucose dehydration with [MEA]BF4 as a catalyst gave a good conversion of glucose (50.12%),
the yield of 5-HMF was only 10.15%, suggesting that glucose was probably converted into products
other than 5-HMF. Furthermore, the transformation of other carbohydrates catalyzed by [TMG]BF4

under the same conditions are also listed in Table 1. In the previous study, the maximum yield of
5-HMF was 99.1% obtained with 1-(3-sulfonicacid)propyl-3-methyl imidazolium phosphotungstate
([MIMPS]3PW12O40) as a catalyst at 120 ◦C after 2 h, using 2-butanol as a solvent [29]. In this
study, 5-HMF yield increased quickly to 90% after 30 min and decreased rapidly at 160 ◦C in
DMSO (conversion process not shown), which might have been caused by the polymerization and
cross-polymerization of 5-HMF and intermediates forming tarry substances at a higher temperature
and/or for a longer reaction time catalyzed by acidic ILs. Furthermore, a 5-HMF yield of 22.34% from
sucrose with [MIMPS]3PW12O40 was higher than that with [TMG]BF4 under the same conditions, but
lower than those from other carbohydrates. The different between [MIMPS]3PW12O40 and [TMG]BF4

in carbohydrates conversion might due to the fact that acidic ILs exhibit much higher catalytic activity
in fructose dehydration than alkaline ILs.
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Table 1. Dehydration of carbohydrates with different ILs a.

Substrate ILs Conv. (%) 5-HMF Yield (%)

Glucose

Control 3.14 0.34
[BMIM]OH 17.48 1.40

[BMIM]2CO3 18.48 0.51
[BMIM]PHCOO 16.15 3.57

[BMIM]3PW12O40
b 35.63 1.12

[MIMPS]3PW12O40
b 71.34 4.23

[BMIM]OAc 2.14 0.11
[BMIM]BF4 5.15 3.44
[TMG]BF4 58.32 25.19

[TMG]L 30.14 19.15
[TMG]OAc 26.44 16.24
[MEA]BF4 50.14 10.15

Fructose
[TMG]BF4 96.41 39.84

[MIMPS]3PW12O40 99.68 19.56

Sucrose
[TMG]BF4 78.75 16.71

[MIMPS]3PW12O40 71.34 22.34

Cellobiose [TMG]BF4 76.48 13.58

Microcrystalline
cellulose c

[TMG]BF4 - 10.45
[MIMPS]3PW12O40 - 4.84

a Conditions: substrate (0.5 g), ILs (0.25 g), dimethylsulfoxide (60 mL), 160 ◦C, 2 h; b [BMIM]3PW12O40 and
[MIMPS]3PW12O40 were synthesized as in Reference [29]; c 5 wt % LiCl-N, N-dimethylacetamide.

2.4. Alkaline IL [TMG]BF4-Catalyzed Conversion of Fructose and Glucose

The conversion of fructose and glucose catalyzed by the alkaline IL ([TMG]BF4) is demonstrated
in Figure 1. It was obvious that all five products were increased as the reaction time was extended.
Compared to furfural, levulinic acid (LA), formic acid, and acetic acid, 5-HMF was the major product
as can be seen from Figure 1A,B. The highest yield of 5-HMF from fructose (Figure 1A) and glucose
(Figure 1B) was 74.19% and 27.33%, respectively. This is probably due to the basic property of the
[TMG]+ group, which may enhance the transformation from ketose form (fructose) more so than
from aldose form (glucose) [30]. Additionally, the 5-HMF yield from glucose increased rapidly in the
first 120 min and then remained essentially constant for a longer reaction time. On the other hand,
the yield of formic acid enhanced obviously, indicating that the balance was achieved between the
generation of 5-HMF and the degradation of glucose/5-HMF to formic acid and other byproducts as
the reaction time increased. Formic acid might be the major degradation product of 5-HMF in this
conversion system.
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Figure 1. Reaction results of fructose (A) and glucose (B) catalyzed by [TMG]BF4. Conditions: fructose
or glucose (0.5 g), [TMG]BF4 (0.25 g), dimethylsulfoxide (60 mL), 160 ◦C.

2.5. Conversion of MCC to 5-HMF with Different ILs as Catalysts

Although the yield of 5-HMF from fructose is higher than that from glucose, fructose is much
more expensive than glucose. If 5-HMF can be obtained from glucose or glucose-based saccharides
such as cellulose, the most abundant biomass component in the nature, then the production cost will
drop significantly. In the present study, MCC was tested, and Figure 2A illustrates the ILs containing
different cations and anions that were used as catalysts in the conversion of MCC to 5-HMF. It is
evident that the BF4

− ion resulted in a better reactivity compared to L− and OAc− with the same
cation ([TMG]+). Meanwhile, the 5-HMF yield increased with the increasing alkalinity of IL, such as
[TMG]BF4 compared to [MEA]BF4. As shown in Figure 2B, in the conversion of MCC into 5-HMF
catalyzed by [TMG]BF4, glucose and cellobiose as the basic components of MCC were detected.
Moreover, the contents of glucose and cellobiose approached a maximum and then decreased. The
reason for this could be that the generation of gluconic-based small molecules (glucose and cellobiose)
as reaction intermediates in the conversion of MCC into 5-HMF catalyzed by [TMG]BF4 was probably
more rapid than the transformation in the initial stage. The maximum glucose content was found to be
13.42% at 20 min, followed by a sharp decrease after 20 min. The glucose detected after 60 min was
only 2.03%, suggesting that the conversion of glucose into 5-HMF is the committed step compared to
the transformation of MCC into glucose-based small molecules in this IL-solvent system, similar to
the result reported by Liu et al. [37]. Although the change in cellobiose content had a similar trend to
that of glucose, as indicated in Figure 2B, the absolute quantity of cellobiose detected was much lower
than that of glucose. However, this did not mean that there was only a small amount of cellobiose
produced from MCC, since cellobiose can be hydrolyzed into glucose in the conversion process as
shown in Figure 3.
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The hydrolysis of cellobiose and cellulose requires an acid medium, and the active hydrogen
atom of imidazole can provide the acid medium as well as the acid hydrolyzate. In fact, in the
transformation of cellobiose into 5-HMF, two steps are probably involved, namely the hydrolysis
of the disaccharide into glucose and the dehydration of glucose. As described in Figure 3A, the
conversion of cellobiose increased as the reaction time was prolonged. In the initial stage, glucose
and 5-HMF yield increased rapidly as the reaction time was extended, with the maximum glucose
content reaching 29.11% at 30 min. It then decreased significantly with further reaction time, which
was consistent with the results of the MCC conversion, as shown in Figure 2B. However, the detected
glucose content in the cellobiose conversion process was much higher than that in the MCC conversion
process. Furthermore, the intermediates generated trends similar to those reported in the literature [2].
In addition, formic acid was observed as the major product from cellobiose with the yield of 29.05%,
shown in Figure 3B. The 5-HMF yield continued to increase in all of the reaction times, and reached
20.20% at 480 min. It is worth noting that the maximum yield of formic acid from fructose (Figure 1A),
glucose (Figure 1B), and cellobiose (Figure 3B) obtained with the same reaction time were 30.52%,
25.60%, and 29.05%, respectively, indicating that formic acid could be another potential product other
than 5-HMF. Although according to Scheme 1, the amounts of levulinic and formic acids must be
equimolar, γ-valerolactone may be produced by the hydrogenation of levulinic acid, which would
result in a higher yield of formic acid than that of levulinic acid after HPLC detection.

2.6. Possible Pathway of Conversion of Carbohydrates to 5-HMF with Alkaline ILs as Catalysts

A possible pathway of the conversion of carbohydrates to 5-HMF catalyzed by [TMG]BF4 was
suggested and is shown in Figure 4. During the conversion of MCC, glucose can be produced either by
the direct hydrolysis of MCC, or by the catalysis degradation of cellobiose which was formed as an
intermediate from MCC, which was why glucose and cellobiose were detected at the same time, as
shown in Figure 2B. Additionally, in the conversion of MCC, glucose was found to be much higher
than cellobiose. The maximum glucose level of 13.42% at 20 min was obtained, followed by a sharp
decrease in the next 20 min, indicating that the conversion of glucose into 5-HMF is probably the
committed step in the transformation of MCC catalyzed by [TMG]BF4. Moreover, 5-HMF was the triple
dehydration product of hexose. An alkaline catalyst can promote glucose to be isomerized to fructose,
which is known as the Lobry-de Bruyn-van Ekenstein transformation. Thus, [TMG]BF4 is clearly an
effective catalyst, regarded as a key step in the conversion of glucose into 5-HMF [38–40]. On the
other hand, compared to glucopyranose (α-D-glucopyranose and β-D-glucopyranose), the structure
of glucofuranose (α-D-glucofuranose and β-D-glucofuranose) is more suitable for the synthesis
of 5-HMF. Moderate alkalinity of a system can contribute to the formation of hydrogen bonding
between [TMG]BF4 and the isomeride, which facilitates the nucleophilic attack of the nitrogen on the
electrophilic carbon of the cyano group to give an intermediate, further converted into 5-HMF [19].
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3. Conclusions

In summary, several platform chemicals were produced in the conversion of carbohydrates
catalyzed by ILs in normal organic solvents. Compared to the conventional IL system catalyzed by
salt, this IL self-catalyst dehydration process showed higher efficiency and yield in carbohydrates
conversion, which could be attributed to the synergy of the cation/anion presenting in the ionic
liquid. Of the alkaline ILs employed, [TMG]+-based exhibited better activity and 5-HMF was the major
product achieved through the reaction. Moreover, the conversion of glucose into 5-HMF is probably
the committed step in the transformation of MCC catalyzed by [TMG]BF4.
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