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Abstract: We report a facile synthetic strategy for nickel-doped palladium-iron oxide hybrid nanoparticles
with controllable morphology. In this synthetic method, the morphology of the nanoparticles was
regulated by the amount of triphenylphosphine used. When 1 mmol of triphenylphosphine was
used as a capping agent, the main morphology of the nanoparticles was crumpled balls composed
of nanosheets with an average particle size of 215 nm. The nanoparticles showed higher catalytic
activity in the Suzuki–Miyaura coupling reaction than did other nanoparticles at equal amounts of Pd.
This strategy allowed the reduction of the Pd loading in hybrid nanoparticles while still providing
the performance level required for the reaction.
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1. Introduction

In recent years, the fabrication of metal hybrid nanoparticles has been widely accepted as
one method to increase the catalytic activity, selectivity, and stability of metal nanoparticles [1–3].
The catalytic performances of metal hybrid nanoparticles can be tuned by controlling the elemental
distribution in the surface, intermetallic charge transfer, and lattice strain [4]. Hybrid nanoparticles of
non-precious metals and noble metals are especially important from the economic point of view for
reducing production costs. Hybridization of noble and non-precious metals has improved catalytic
activity and increased resistance to poisonous substances [5]. These hybrid nanoparticles have
been successfully synthesized using a variety of methods such as galvanic replacement [6], thermal
annealing [7], templated growth [8], and microwave-assisted reduction [9].

Among these methods, one of the most successful in terms of controlling the morphology and
size of nanoparticles is the solution-phase method [10]. In this method, the use of specific capping
agents can have a significant impact on the morphology and size of nanoparticles. The introduction of
specific capping agents such as Br−, poly(1-vinylpyrrolidin-2-one), and citrate can affect the energy
changes of certain crystal planes and their relative growth rates through chemical interactions with
the metal surface [11–13]. Recent studies on the regulation of void sizes and morphologies using
triphenylphosphine (TPP) have also been reported [14–16].

According to recent studies, Pd can be alloyed with 3d transition metals (Cu, Ni, Co, Fe), and the
catalytic properties of hybrid nanoparticles in various reactions can be superior [17–23]. In particular,
Pd-Ni alloys have shown excellent catalytic efficiency in various reactions owing to a synergistic
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effect [24,25]. This is attributed to the good miscibility between Ni and Pd due to their similar crystal
structures and electron configurations [26,27]. In addition, enhancement of the catalytic activity of a
Pd alloy through d-band shifts has been demonstrated using density functional theory [28].

Pd-catalyzed carbon–carbon cross-coupling reactions—such as the Suzuki–Miyaura, Heck, and
Sonogashira reactions—are important in many types of organic synthesis processes of enormous
interest and applications such as those of the chemical and bio industries [29–31]. In particular,
the Pd-catalyzed Suzuki–Miyaura reaction of aryl halides with arylboronic acids has been widely
used in industry as well as in laboratories owing to its applicability to substrates with a various
functional groups and nontoxic by-products [32,33]. Recently, Wu et al. investigated the use of
Pd-Ni nanoparticles with a controlled size and morphology in the Suzuki–Miyaura reaction [26].
The Pd-Ni nanoparticles showed higher catalytic activity in this reaction than an equal amount of
Pd nanoparticles.

Herein, we report Ni-doped Pd-Fe3O4 hybrid nanoparticles (NPFNPs) with a controlled
morphology, obtained through one-pot synthesis (Scheme 1), as an effective catalyst system for
Suzuki–Miyaura reactions of aryl halides with arylboronic acids. This method enabled the reduction
of the Pd loading in hybrid nanoparticles while still providing the performance level required for
this reaction.
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of individual nanoparticles indicated that the morphology of the nanoparticles is crumpled 
nanosheets with well-defined fringes (Figure 1e,f). They also revealed line spacings of approximately 
0.20 nm for Pd (111) and approximately 0.29 nm for Fe3O4 (220), corresponding to face-centered cubic 
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2. Results and Discussion

Pd-Fe3O4 hybrid nanoparticles were synthesized according to a procedure reported in our previous
papers [34,35]. Then, the NPFNPs were synthesized according to a modification of the procedure
described by Lee et al. [36]. A mixture of Pd(OAc)2 and completely dissolved TPP in 1-octadecene
and oleylamine was heated at 160 ◦C with vigorous magnetic stirring for 30 min. Then, nickel (II)
acetylacetonate (Ni(acac)2) in oleylamine was syringed dropwise into the mixture. The resultant
mixture was further heated at 200 ◦C for 30 min. The mixture was cooled down to RT and then
centrifuged with hexane and ethanol.

The synthesized nanoparticles took the form of crumpled balls composed of nanosheets (Figure 1).
In this method, the morphology of the nanoparticles was regulated by the amount of TPP. When
0.5 mmol of TPP was used for the synthesis, the main morphology of the products (NPFNP-1) was
spherical with a rough surface (average particle diameter = 244 ± 38 nm), as shown in Figure 1a,d.
When the amount of TPP was increased to 1 mmol, the main morphology of the products (NPFNP-2)
changed to a more remarkable nanosheet shape at the corners (average particle diameter = 215 ± 17 nm),
as shown in Figure 1b,c. High-resolution transmission electron microscopy (HR-TEM) images of
individual nanoparticles indicated that the morphology of the nanoparticles is crumpled nanosheets
with well-defined fringes (Figure 1e,f). They also revealed line spacings of approximately 0.20 nm
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for Pd (111) and approximately 0.29 nm for Fe3O4 (220), corresponding to face-centered cubic Pd and
Fe3O4 structures, respectively. Recently, Wu et al. reported tuning the amount of trioctylphosphine
to control the morphology of PdCu nanoparticles [16]. The amount of capping agent can play an
important role in the morphology-controlled synthesis of nanoparticles. Under thermodynamically
controlled growth, the capping agent is selectively adsorbed on different facets of the metals, resulting
in changes in the surface energy and growth rate of the nanoparticles [37]. When an excess amount
was used, however, the crumpled ball morphology of the nanoparticles gradually collapsed. Hence,
it was concluded that a proper concentration of TPP is essential for the control of the morphology of
the NPFNPs, since the surface coverage of TPP changes with the concentration.
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Figure 1. FE-SEM images showing (a,b) NPFNP-2; (c) NPFNP-1 and HRTEM image of NPFNP-2
showing (d) an individual particle; (e) the Pd (111) lattice spacing (0.20 nm) and (f) the Fe (311) lattice
spacing (0.25 nm).

The high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM)
micrographs and their corresponding energy dispersive X-ray spectroscopy (EDS) mappings show that
Pd and the 3d transition metals (Fe, Ni) were well distributed in individual nanoparticles (Figure 2).
The metal contents of the fabricated nanoparticles were also measured using inductively coupled
plasma atomic emission spectroscopy (ICP-AES) (Table 1). The Pd and Ni contents in NPFNP-2
were slightly higher than those in NPFNP-1. X-ray photoelectron spectroscopy (XPS) was carried
out to further measure the chemical composition of NPFNP-2. The XPS spectrum of Pd in Figure 3a
shows double peaks at binding energies (BEs) of 335.1 and 340.3 eV, corresponding to Pd 3d5/2 and
Pd 3d3/2, respectively. The BEs of the doublet for Pd 3d5/2 and Pd 3d3/2 are characteristic of Pd0.
Figure 3b shows the XPS signals of the Fe 2p regions, which indicate that Fe2+ and Fe3+ formed Fe3O4.
The spectrum of Fe shows two peaks at around 710.9 and 724.8 eV, which could be attributed to Fe
2p3/2 and Fe 2p1/2, respectively. The presence of satellite peaks for γ-Fe2O3 at around 719 eV indicated
that the Fe3O4 nanoparticles were partially oxidized. Furthermore, the BE of 2p3/2 (855.4 eV), shown
in Figure 3c, is characteristic of Ni0 and Ni2+. This indicated that the Ni nanoparticles were partially
oxidized owing to exposure to air.
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Table 1. ICP-AES data of the fabricated nanoparticles.

Nanoparticles Pd (wt %) Fe (wt %) Ni (wt %)

NPFNP-1 26.68 44.47 11.23
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Pd-Fe3O4 28.5 51.11 -
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Next, we examined the catalytic properties of the nanoparticles in the Suzuki–Miyaura coupling
reaction. The Suzuki–Miyaura coupling reaction was carried out using bromobenzene and phenylboronic
acid in a mixture of ethanol and water (1:1) at 50 ◦C. Potassium carbonate was used as a base to serve
as a bridge to connect the substrates and NPFNPs. Figure 4 shows the yields of the products and
turnover frequencies (TOFs, defined as the number of molecules produced at each mole of Pd in the
nanoparticles per unit time) for the reactions involving NPFNP-1, NPFNP-2, and Pd-Fe3O4 as the
catalyst under the above conditions. The amount of NPFNP-1 used as a catalyst was 0.25 mol % of
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nickel relative to the substrate. The amounts of the other nanoparticles were equal to that of NPFNP-1,
in terms of their weights. As shown in Figure 4b, NPFNP-2 exhibited relatively high catalytic activity
compared to NPFNP-1 and Pd-Fe3O4 with the same amount of Pd. The superior catalytic performance
of NPFNP-2 can be attributed to a higher number of surface defects due to changes in morphology [38]
and synergistic effects of the individual components [39,40]. Additionally, the reaction was carried out
using 4-bromoanisole instead of bromobenzene as a substrate to prove that the reaction of catalyzed
by NPFNP-2 occurred by cross coupling (Table S1). In this reaction, conversion was lower than that of
bromobenzene due to the effect of methoxy, which is an electron donating group. Whether the reaction
proceeded by homo coupling or cross coupling was confirmed through the products, and most of the
reaction proceeded by cross coupling reaction (selectivity: 97%). Scheme 2 shows a plausible reaction
mechanism for the NPFNP-2-catalyzed Suzuki–Miyaura coupling reaction based on previous works.
The surface defects of the nanocatalysts acting as active sites have a significant effect on adsorption
and activity during the reactions. Furthermore, since Pd is negatively charged owing to charge transfer
from Ni to Pd (electronegativity of Ni = 1.91, Pd = 2.20) [40], the oxidative addition of the aryl halide
is facilitated and the catalytic activity for the reaction is enhanced. For this reason, the morphology
changes and the introduction of Ni led to a reduction in the Pd loading in the hybrid nanoparticles.
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3. Materials and Methods

3.1. Materials

Palladium(II) acetate (Pd(OAc)2, 98%), 1-octadecene (ODE, 90%), oleylamine (OAm, 70%), iron
pentacarbonyl (Fe(CO)5), bromobenzene (99% pure), and phenylboronic acid (95%) were purchased
from Sigma-Aldrich Inc. (St. Louis, MO, USA). TPP was purchased from Yakuri Pure Chemicals Co.
Ltd. (Uji, Japan). Ni(acac)2 was purchased from Fluka Chemical Corp. (Buchs, Switzerland).

3.2. Typical Synthetic Method of Ni Doped Pd-Fe3O4 Hybrid Nanoparticles (NPFNPs)

NPFNPs were synthesized using a thermal decomposition and reduction method in a solution-phase
system. We added 0.131 (for the fabrication of NPFNP-1) or 0.262 g (for the fabrication of NPFNP-2) of
TPP to 10 mL of ODE, and the mixture was heated at 80 ◦C with vigorous magnetic stirring under an Ar
atmosphere to dissolve the TPP completely. The solution was then cooled down to 60 ◦C and a mixture
of 0.114 g of Pd(OAc)2 and 10 mL of OAm was added. Then, the mixture was heated to 120 ◦C with
vigorous magnetic stirring with a heating rate of 6 ◦C min−1 and was maintained at this temperature
for 30 min. Afterwards, 0.15 mL of Fe(CO)5 was put into the mixture under an Ar atmosphere. Then,
the mixture was heated to 160 ◦C with vigorous magnetic stirring with a heating rate of 4.2 ◦C min−1

and was maintained at this temperature for 30 min. For the doping of Ni on Pd-Fe3O4, 0.121 g of
Ni(acac)2 in 10 mL of OAm was syringed dropwise into the mixture. The resultant mixture was further
heated to 200 ◦C with a heating rate of 2.8 ◦C min−1 and was maintained at this temperature for
30 min. The resultant mixture was cooled down to room temperature (R.T.), centrifuged with hexane
and ethanol twice, and then dried in vacuum.

3.3. General Procedure for Suzuki–Miyaura Coupling Reactions

To a 10-mL pressure Schlenk tube we added 1.3 mg of NPFNPs (0.3 mol % with respect to
the Pd content of NPFNP-1), 0.10 mL of bromobenzene (1.0 mmol), 0.14 g of phenylboronic acid
(1.2 mmol), 0.28 g of potassium carbonate (2.0 mmol), and 6.0 mL of a mixture of ethanol and
water (1:1). The mixture was stirred vigorously at 50 ◦C. After 1 h, the catalyst was removed and
the reaction mixture was extracted with diethyl ether. Water was removed using MgSO4, and the
filtrate was evaporated to give the reaction products. The reaction products were analyzed using gas
chromatography/mass spectrometry (GC/MS, QP-2010 SE, Shimadzu, Kyoto, Japan).

3.4. Catalyst Characterization

The morphologies and structures of the nanoparticles were examined using high resolution-
transmission electron microscopy (HR-TEM, Tecnai TF30 ST and a Titan3 G2 60–300, FEI Company,
Hillsboro, OR, USA) and field emission scanning electron microscopy (FE-SEM, CZ/MIRA I LMH,
TESCAN, Brno, Czech Republic). Energy-dispersive X-ray spectroscopy (EDS) elemental mapping
data were collected using a high-efficiency detection system (Super-X detector). The structural
and chemical properties of the nanoparticles were studied using X-ray photoelectron spectroscopy
(XPS, Theta Probe, Thermo, Waltham, MA, USA). An inductively coupled plasma-atomic emission
spectrometer (ICP-AES, iCAP 6300, Thermo, Waltham, MA, USA) was employed to determine the
actual metallic element contents.

4. Conclusions

In conclusion, Ni-doped Pd-Fe3O4 hybrid nanoparticles (NPFNPs) whose morphologies were
controlled by tuning the amount of TPP were synthesized through one-pot synthesis. When 1 mmol of
TPP was used as a capping agent, the main morphology of the product, NPFNP-2, was prominent
crumpled balls composed of nanosheets with an average particle size of 215 nm. NPFNP-2 exhibited
higher catalytic activity than did other nanoparticles at the same amount of Pd. The superior
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catalytic performance of NPFNP-2 can be attributed to a higher number of surface defects due to
changes in morphology and synergistic effects of the individual components. These results are
expected to contribute to the development of economical and effective nanocatalysts that can reduce
production costs.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4344/7/9/247/s1,
Figure S1: STEM-EDS elemental maps of the NPFNP-1, Figure S2: STEM-EDS elemental maps of the Pd-Fe3O4,
Table S1: Suzuki-Miyaura coupling reactions of 4-bromo anisole with phenylboronic acid catalyzed by NPFNP-2.
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