Supplementary Materials: Expanding the Scope of Cu(I) Catalyzed "Click Chemistry" with Abnormal-NHCs: Threefold Click to Tris-triazoles

Nga Kim T. Ho^{1,2}, Sven O. Reichmann³, Dennis Rottschäfer^{1,2}, Regine Herbst-Irmer³ and Rajendra S. Ghadwal^{1,2,*}

Contents:

Materials and methods Catalysts screening and optimization Synthesis of triazoles and tris-triazoles 1H and 13C NMR spectra of compounds 3, 4, triazoles, and tris-triazoles X-Ray crystallographic data of compounds 3, 4, and triazoles

Materials and Methods

Catalytic Activity of 2, 3, and 4: Two methods (A and B) were used to elucidate the catalytic activity of

compounds 2, 3, and 4.

Table S1. Scope of the [3+2] cycloaddition of alkynes and azides promoted by complexes 2, 3, and 4.

Entr y	Time	R1	R ²	Cat (mol%)	Method	ΤZ	Yield (%) ^[a]
1	5 min.	PhCH ₂	Ph	(aIPr ^{Ph})CuI (2) (1)	Α	TZ-1	99 (87)
2	5 min	PhCH ₂	Ph	(aIPr ^{ph})CuI (2) (0.5)	Α	TZ-1	100 (70)
3	1h	PhCH ₂	Ph	(aIPr ^{ph})CuI (2) (0.1)	Α	TZ-1	99 (74)
4	3h	PhCH ₂	Ph	(aIPr ^{Ph})CuI (2) (0.05)	В	TZ-1	100 (87)
5	1h	PhCH ₂	Ph	[(aIPr ^{Ph})Cu(IPr)]I (3) (1)	Α	TZ-1	-
6	1h	PhCH ₂	Ph	[(aIPr ^{Ph})2Cu]I (4) (1)	Α	TZ-1	-
7	5h	PhCH ₂	Ph	[(aIPr ^{Ph})Cu(IPr)]I (3) (1)	Α	TZ-1	99 (70)
8	15h	PhCH ₂	Ph	[(aIPr ^{Ph})2Cu]I (4) (1)	Α	TZ-1	80 (62)
9	6h	PhCH ₂	Ph	[(aIPr ^{Ph})Cu(IPr)]I (3) (1)	В	TZ-1	99 (69)
10	48h	PhCH ₂	Ph	[(aIPr ^{Ph})2Cu]I (4) (1)	В	TZ-1	55 (40)

11	0.5 h	PhCH ₂	C ₂ H ₄ OH	(aIPr ^{Ph})CuI (2) (0.5)	Α	TZ-2	99 (78)
12	6h	PhCH ₂	C ₂ H ₄ OH	(aIPr ^{Ph})CuI (2) (1)	В	TZ-2	100 (58)
13	6h	PhCH ₂	C2H4OH	[(aIPr ^{Ph})Cu(IPr)]I (3) (1)	В	TZ-2	100 (46)
14	15h	PhCH ₂	C ₂ H ₄ OH	[(aIPr ^{Ph})2Cu]I (4) (1)	В	TZ-2	80 (40)
15	0.5 h	PhCH ₂	Bu	(aIPr ^{ph})CuI (2) (0.5)	Α	TZ-3	99 (85)
16	6h	PhCH ₂	Bu	(aIPr ^{Ph})CuI (2) (1)	В	TZ-3	100 (85)
17	15h	PhCH ₂	Bu	[(aIPr ^{ph})Cu(IPr)]I (3) (1)	В	TZ-3	26
18	15h	PhCH ₂	Bu	[(aIPr ^{Ph})2Cu]I (4) (1)	В	TZ-3	8
19	0.5 h	PhCH ₂	C ₃ H ₆ OH	(aIPr ^{Ph})CuI (2) (0.15)	А	TZ-4	100 (92)
20	6h	PhCH ₂	C ₃ H ₆ OH	(aIPr ^{ph})CuI (2) (1)	В	TZ-4	99 (92)
21	15h	PhCH ₂	C3H6OH	[(aIPr ^{Ph})Cu(IPr)]I (3) (1)	В	TZ-4	99 (76)
22	48h	PhCH ₂	C ₃ H ₆ OH	[(aIPr ^{ph})2Cu]I (4) (1)	В	TZ-4	3
23	0.5 h	PhCH ₂	C5H4N	(aIPr ^{Ph})CuI (2) (0.5)	В	TZ-5	100 (80)
24	6 h	PhCH ₂	C5H4N	(aIPr ^{ph})CuI (2) (0.5)	В	TZ-5	99 (80)
25	15h	PhCH ₂	C5H4N	[(aIPr ^{Ph})Cu(IPr)]I (3) (1)	В	TZ-5	99 (78)
26	15h	PhCH ₂	C5H4N	[(aIPr ^{Ph})2Cu]I (4) (1)	В	TZ-5	83 (68)
27	4h	PhCH ₂	Me2NCH2	(aIPr ^{ph})CuI (2) (0.05)	Α	TZ-6	99 (76)
28	4h	PhCH ₂	PhOCH ₂	(aIPr ^{Ph})CuI (2) (0.05)	В	TZ-7	100 (98)
29	4h	Ph	Ph	(aIPr ^{Ph})CuI (2) (0.05)	Α	TZ-8	99 (57)
30	4h	4-tolyl	Ph	(aIPr ^{Ph})CuI (2) (0.05)	Α	TZ-9	98 (44)
31	1h	4-Br- C6H4CH2	Ph	(aIPr ^{Ph})CuI (2) (0.05)	Α	TZ-10	99 (55)

 $\ensuremath{\,^{\mbox{\tiny [a]}}}\xspace$ Conversion by $\ensuremath{^{\mbox{\tiny 1}}}\xspace$ H NMR analysis (Isolated yield).

I. Synthesis of Triazoles

Synthesis of 1-benzyl-4-phenyl-1H-1,2,3-triazol (TZ-1).

Method A. To a neat solution of phenyl acetylene (0.41 mL, 3.75 mmol) and benzyl azide (0.50 g, 3.75 mmol) was added compound **2** (25 mg, 1 mol%). The reaction mixture was stirred at room temperature (23 °C), which turned into an off-white solid after 5 minutes. The ¹H NMR analysis of the crude product indicated 100% conversion. The residue was washed with pentane and dried under vacuum to obtain the triazole **TZ-1**.

Catalyst loading:	Conversion	Time (h)	Isolated yield:
(aIPr ^{Ph})CuI (2), 25 mg, 1 mol%	100 %	0.08	87%.
(aIPr ^{Ph})Cu(IPr)I (3), 39 mg, 1 mol%	0 %	1	-
(aIPr ^{Ph})2CuI (4), 42 mg, 1 mol%	0 %	1	-
(aIPr ^{Ph})Cu(IPr)I (3), 39 mg, 1 mol%	99 %	5	70%
(aIPr ^{Ph})2CuI (4), 42 mg, 1 mol%	0 %	5	-

Method B. Phenylacetylene (0.41 mL, 3.75 mmol) and benzyl azide (0.5 g, 3.75 mmol) was added to a solution of the appropriate catalyst in DCM (10 mL). The reaction mixture was stirred for 3 or 48 h. The conversion of the reactants was monitored by ¹H-NMR spectroscopy. The reaction mixture was filtered and all volatiles were removed under vacuum to obtain the product. Catalyst loadings, ¹H-NMR conversion, and isolated yields are shown in the tables below.

Catalyst loading:	Conversion after 3 h	Isolated yield:
(aIPr ^{Ph})CuI (2), 25 mg, 1 mol%	83 %	570 mg, 2.42 mmol, 65%.
(aIPr ^{Ph})Cu(IPr)I (3), 39 mg, 1 mol%	0 %	-
(aIPr ^{Ph}) ₂ CuI(4), 42 mg, 1 mol%	0 %	-

Catalyst loading:	Conversion after 48 h	Isolated yield:
(aIPr ^{Ph})CuI (2), 25 mg, 1 mol%	100 %	758 mg, 3.33 mmol, 89%.
(aIPr ^{Ph})Cu(IPr)I (3), 39 mg, 1 mol%	100 %	610 mg, 2.59 mmol, 69%
(aIPr ^{Ph}) ₂ CuI(4), 42 mg, 1 mol%	55 %	350 mg, 1.48 mmol, 40%

¹**H NMR** (300.13 MHz, 298 K, CDCl₃): δ 5.57 (s, 2H, CH₂C₆H₅), 7.28-7.42 (m, 8H, CH₂C₆H₅, *m*-C₆H₅, *p*-C₆H₅), 7.67 (s, 1H, CN₃CH), 7.80 (dd, *J* = 8.3 Hz, 2H, *o*-C₆H₅) ppm.

¹³C NMR (75.47 MHz, 298 K, CDCl₃): δ 54.32 (CH₂C₆H₅), 119.61 (CN₃CH), 125.80, 128.15, 128.25, 128.87, 128.90, 129.25, 130.66, 134.81 (CH₂C₆H₅, C₆H₅), 148.32 (CN₃CH) ppm. Reference^[1]

Synthesis of 2-(1-benzyl-1H-1,2,3-triazol-4-yl)ethanol (TZ-2).

Method B. 3-Butyne-1-ol (0.29 mL, 3.75 mmol) and benzyl azide (0.5 g, 3.75 mmol):

Catalyst loading:	Conversion after 15 h	Isolated yield:
(aIPr ^{Ph})CuI (2), 25 mg, 1 mol%	100 %	445 mg, 2.19 mmol, 58%
(aIPr ^{Ph})Cu(IPr)I (3), 39 mg, 1 mol%	100 %	350 mg, 1.73 mmol, 46%.
(aIPr ^{Ph}) ₂ CuI (4), 42 mg, 1 mol%	80 %	304 mg, 1.50 mmol, 40%

¹**H NMR** (300.13 MHz, 298 K, CDCl₃): δ 3.37 (dt, 4H, *J* = 11.5, 6.0 Hz C₂*H*₄OH), 5.46 (s, 2H, CH₂C₆H₅), 7.22–7.26 (m, 2H, *o*-C₆H₅), 7.31–7.36 (m, 4H, *p*-C₆H₅, *m*-*p*-C₆H₅, CN₃CH) ppm.

¹³C NMR (75.47 MHz, 298 K, CDCl₃): δ 28.84 (C₂H₄OH), 53.95 (CH₂C₆H₅), 61.22 (C₂H₄OH), 121.88 (CN₃CH), 127.97, 128.57, 128.98 (CH₂C₆H₅), 134.73 (CN₃CH) ppm. Reference:^[2]

Synthesis of 1-benzyl-4-butyl-1H-1,2,3-triazol (TZ-3).

Method B. 1-Hexyne (0.43 mL, 3.75 mmol) and benzyl azide (0.5 g, 3.75 mmol):

Catalyst loading:	Conversion after 15 h	Isolated yield:
(aIPr ^{Ph})CuI (2), 25 mg, 1 mol%	100 %	690 mg, 3.21 mmol, 85%.
(aIPr ^{Ph})Cu(IPr)I (3), 39 mg, 1 mol%	26 %	96 mg, 0.45 mmol, 12%
(aIPr ^{Ph}) ₂ CuI (4), 42 mg, 1 mol%	8 %	-

¹**H** NMR (300.13 MHz, 298 K, CDCl₃): δ 0.90 (t, *J* = 7.3 Hz, 3H, C₄H₆Me), 1.35 (sext, 2H, *J* = 7.3 Hz, C₄H₆Me), 1.61 (pent, 2H, *J* = 7.3 Hz, C₄H₆Me), 2.67 (t, *J* = 8.1 Hz, 2H, C₄H₆Me), 5.47 (s, 2H, CH₂C₆H₅), 7.17 (s, 1H, CN₃CH), 7.22–7.26 (m, 2H, *o*-CH₂C₆H₅), 7.32–7.39 (m, 3H, *m*-*p*-CH₂C₆H₅) ppm.

¹³C NMR (75.47 MHz, 298 K, CDCl₃): δ 13.84 (C₄H₆Me), 22.35 (C₄H₆Me), 25.45 (C₄H₆Me), 31.55 (C₄H₆Me), 53.98 (CH₂C₆H₅), 120.57 (CN₃CH), 127.97 (*m*-C₆H₅), 128.59 (*p*-C₆H₅), 129.05 (*o*-C₆H₅), 135.09 (*ipso*-C₆H₅), 148.98 (CN₃CH) ppm.

Reference: [2]

Synthesis of 2-(1-benzyl-1H-1,2,3-triazol-4-yl)propan-2-ol(TZ-4).

Method B. 2-Methyl-3-butyne-2-ol (0.37 mL, 3.75 mmol) and benzyl azide (0.5 g, 3.75 mmol):

Catalyst loading:	Conversion after 15 h	Isolated yield:
(aIPr ^{Ph})CuI (2), 25 mg, 1 mol%	100 %	740 mg, 3.48 mmol, 92 %.

(aIPr ^{Ph})Cu(IPr)I (3), 39 mg, 1 mol%	100 %	620 mg, 2.85 mmol, 76 %.
Catalyst loading:	Conversion after 48 h	Isolated yield:
(aIPr ^{Ph})2CuI (4), 42 mg, 1 mol%	3 %	-

¹**H NMR** (300.13 MHz, 298 K, CDCl₃): δ 1.60 (s, 6H, C(OH)*Me*₂), 2.73 (s, 1H, OH), 5.48 (s, 2H, CH₂C₆H₅), 7.24–7.30 (m, 2H, *o*-CH₂C₆H₅), 7.34–7.39 (m, 4H, *m*-*p*-CH₂C₆H₅, CN₃CH) ppm.

¹³**C NMR** (75.47 MHz, 298 K, CDCl₃): δ 30.51 (CMe₂OH), 54.16 (CH₂C₆H₅), 68.55 (CMe₂OH), 119.22 (NCHC), 128.19 (*o*-C₆H₅), 128.76 (*p*-C₆H₅), 129.15 (*m*-C₆H₅), 134.74 (NCHC) ppm. Reference: ^[3]

Synthesis of 2-(1-benzyl-1H-1,2,3-triazol-4-yn)pyridine (TZ-5).

Method B. 2-Ethynylpyridine (0.41 mL, 3.75 mmol) and (azidomethyl)benzene (0.5 g, 3.75 mmol):

Catalyst loading:	Conversion after 15 h	Isolated yield:
(aIPr ^{Ph})CuI (2), 25 mg, 1 mol%	100%	710 mg, 3.00 mmol, 80%.
(aIPr ^{Ph})Cu(IPr)I (3), 39 mg, 1 mol%	100%	690 mg, 2.92 mmol, 78%
(aIPr ^{Ph})2CuI (4), 42 mg, 1 mol%	83 %	600 mg, 2.54 mmol, 68%

¹**H NMR** (300.13 MHz, 298 K, CDCl₃): δ 5.50 (s, 2H, CH₂C₆H₅), 7.13 (m, 1H, *J* = 7.4, 4.9, 1.1 Hz, *p*-C₅H₄N), 7.23–7.34 (m, 5H, CH₂C₆H₅), 7.68 (dt, *J* = 7.7, 1.7 Hz, 1H, *m*-NC₅H₄), 7.98 (s, 1H, CN₃CH), 8.08 (d, 1H, *J* = 8.0 Hz, *o*-NC₅H₄), 8.45 (d, *J* = 4.9 Hz, 1H, *m*-NC₅H₄) ppm.

¹³C NMR (75.47 MHz, 298 K, CDCl₃): δ 54.46 (CH₂C₆H₅), 120.30 (*p*-C₅NH₄), 122.01 (NCHC), 122.92 (*p*-C₅NH₄), 128.39 (*o*-C₆H₅), 128.92 (*p*-C₆H₅), 129.25 (*m*-C₆H₅), 134.45 (NCHC), 136.95 (*m*-C₅NH₄), 148.83 (*ipso*-C₆H₅), 149.42 (*m*-NC₅H₄), 150.34 (*ipso*-NC₅H₄) ppm. Reference: ^[4]

Synthesis of 1-(1-benzyl-1H-1,2,3-triazol-4-yl)-N,N-dimethylmethanamine (TZ-6).

1-(1-benzyl-1H-1,2,3-triazol-4-yl)-N,N-dimethylmethanamine

Method A.

¹**H NMR** (500 MHz, 298 K, CDCl₃): δ 2.20 (s, 6H, CH3), 3.53 (s, 2H, NCH₂) 5.47 (s, 2H, PhCH₂), 7.21 (m, 2H, C₆H₅), 7.30 (m, 3H, C₆H₅), 7.36 (s, 1H NCH) ppm.

¹³C NMR (125 MHz, 298 K, CDCl₃): δ 44.73 (CH₃), 54.13 (NCH₂), 54.31 (PhCH₂), 123.24 (C₆H₅), 128.18 (C₆H₅), 128.84 (C₆H₅), 129.20, 134.65, 144.23.

Synthesis of 1-benzyl-4-(phenoxymethyl)-1H-1,2,3-triazole (TZ-7).

1-benzyl-4-(phenoxymethyl)-1H-1,2,3-triazole

Method A.

¹H NMR (500 MHz, 298 K, CDCl₃): δ 5.24 (s, 2H, CH₂), 5.55 (s, 2H, CH₂), 7.29 (m, 5H, C₆H₅), 7.39 (m, 5H, C₆H₅), 7.59 (s, 1H NCH) ppm.
¹³C NMR (125 MHz, 298 K, CDCl₃): δ 54.27 (CH₂), 62.09 (CH₂), 114.78 (C₆H₅), 121.25 (C₆H₅), 122.53

(NCH), 128.12, 128.82, 129.15, 129.52, 134.47, 144.74, 158.20 (C6H5) ppm.

Synthesis of 1,4-diphenyl-1H-1,2,3-triazole (TZ-8).

1,4-diphenyl-1H-1,2,3-triazole

Method A.

¹**H NMR** (500 MHz, 298 K, CDCl₃): δ 7.38 (t, *J* = 7.41 Hz, 1H, C₆H₅), 7.47 (t, *J* = 7.61 Hz, 3H, C₆H₅), 7.56 (t, *J* = 7.85 Hz, 2H, C₆H₅), 7.80 (d, *J* = 8.45 Hz, 2H, C₆H₅), 7.92 (d, *J* = 8.30 Hz, 2H, C₆H₅), 8.20 (s, 1H, NCH) ppm.

¹³**C NMR** (125 MHz, 298 K, CDCl₃): δ 117.72 (NCH), 120.70 (*C*₆H₅), 126.01 (*C*₆H₅), 128.58 (*C*₆H₅), 128.93 (*C*₆H₅), 129.08, 129.94 (*C*₆H₅), 130.41, 137.25, 148.58 ppm.

Synthesis of 4-phenyl-1-(p-tolyl)-1H-1,2,3-triazole (TZ-9).

4-phenyl-1-(p-tolyl)-1H-1,2,3-triazole

Method A.

¹**H NMR** (500 MHz, 298 K, CDCl₃): δ 2.44 (s, 3H, CH₃), 7.36 (m, 3H, C₆H₅), 7.46 (t, *J* = 7.63 Hz, 2H, C₆H₅), 7.67 (d, *J* = 8.42 Hz, 2H, C₆H₄), 7.91 (d, *J* = 7.88 Hz, 2H, C₆H₄), 8.15 (s, 1H, NCH) ppm. ¹³**C NMR** (125 MHz, 298 K, CDCl₃): δ 21.28 (CH₃), 117.75 (NCH), 120.62 (C₆H₄), 126.00 (C₆H₄), 128.51 (C₆H₅), 129.06 (C₆H₅), 130.42 (C₆H₅), 130.52, 139.05, 148.44 ppm.

Synthesis of 1-(4-bromobenzyl)-4-phenyl-1H-1,2,3-triazole (TZ-10).

1-(4-bromobenzyl)-4-phenyl-1H-1,2,3-triazole

Method A.

¹**H** NMR (500 MHz, 298 K, CDCl₃): δ 5.54 (s, 2H, CH₂), 7.19 (d, *J* = 8.55 Hz, 3H, *o*-C₆H₅), 7.33 (t, *J* = 7.40 Hz, 1H, *p*-C₆H₅), 7.41 (t, *J* = 7.40 Hz, 2H, *m*-C₆H₅), 7.52 (d, *J* = 8.48 Hz, 2H, C₆H₄), 7.66 (s, 1H, NCH), 7.80 (d, *J* = 7.08 Hz, 2H, C₆H₄) ppm.

¹³C NMR (125 MHz, 298 K, CDCl₃): δ 53.70 (CH₂), 119.52 (NCH), 123.13, 125.87 (C₆H₄), 128.44 (C₆H₅), 128.99, 129.79 (C₆H₅), 130.52, 132.50 (C₆H₄), 133.85, 148.59 (C₆H₅, C₆H₄) ppm.

II. Synthesis of Tris-triazoles

Synthesis of 1,1'-(2-methyl-2-((4-phenyl-1H-1,2,3-triazol-1-yl)methyl)propane-1,3-diyl)bis(4-phenyl-1H-1,2,3-triazole) (TT-1)

Method B. Phenylacetylene (0.84 mL, 7.68 mmol) and 1,3-diazido-2-(azidomethyl)-2-methylpropane (0.5 g, 2.54 mmol) was added to a solution of the appropriate catalyst in DCM (10 mL). The reaction mixture was stirred for 5 h. The solution was halved under vacuum and cold pentane was added. The product precipitates as a white solid. The solution was filtered and dried under vacuum to yield the pure product.

Catalyst loading:	Isolated yield:
(aIPr ^{Ph})CuI (2),, 17 mg, 1 mol%	1,27 g, 2.53 mmol, 99%.
aIPr ^{Ph})Cu(IPr)I (3), 26 mg, 1 mol%	1,28 g, 2.55 mmol, 99.7%
(aIPr ^{Ph})2CuI (4), 29 mg, 1 mol%	1.02 g, 2.03 mmol, 79 %

¹**H** NMR (300 MHz, 298 K, THF-*ds*): δ 0.96 (s, 3 H, CH₃), 4.64 (s, 6 H, (CH₂)₃), 7.27 (t, *J* = 7.4 Hz, 3H, *p*-C₆H₅), 7.38 (t, *J* = 7.4 Hz, 6H, *m*-C₆H₅), 7.91 (d, *J* = 7.0 Hz, 6H, *o*-C₆H₃), 8.54 (s, 3 H, C₂HN₃) ppm. ¹³**C** NMR (75.47 MHz, 298 K, THF-*ds*): δ 19.43 (CH₂)₃CM*e*), 42.21 ((CH₂)₃CM*e*), 54.46 ((CH₂)₃CM*e*), 123.76 (*ipso*-C₆H₅), 126.37 (*o*-C₆H₅), 128.65 (*p*-C₆H₅) 129.56 (*m*-C₆H₅), 132.23 (NCHC), 147.92 (NCHC) ppm. **ESI-MS** m/z [%]: 524.2 [M+Na]⁺.

Synthesis of 2,2'-(1,1'-(2-((4-(2-hydroxypropan-2-yl)-1H-1,2,3-triazol-1-yl)methyl)-2-methylpropane-1,3-diyl)bis(1H-1,2,3-triazole-4,1-diyl))bis(propan-2-ol) (TT-2)

Method B. 2-Methyl-3-butyne-2-ol (0.86 mL, 7.68 mmol) and 1,3-diazido-2-(azidomethyl)-2methylpropane (0.5 g, 2.56 mmol) was added to a solution of the catalyst **2** (17 mg, 1 mol%) in DCM (20 mL). The reaction mixture was stirred for 5 h. The solution was halved under vacuum and cold pentane was added. The product precipitates as a white solid. The solution was filtered and dried under vacuum to yield the pure product.

Yield: 850 mg, 1.89 mmol, 74%.

¹H NMR (300 MHz, 298 K, THF-*ds*): δ 7.97 (s, 3 H, C₂HN₃), 4.39 (s, 6H, (CH₂)₃), 4.30(s, 3H, OH), 1.53 (s, 18H,C₃H₆OH), 0.79 (s, 3 H, CH₃) ppm.
¹³C NMR (75.47 MHz, 298 K, THF-*ds*): δ 19.49 (CH₂)₃CM*e*), 31.29 ((CH₃)₂COH), 42.07 ((CH₂)₃CMe₃), 54.16 (CH₂)₃CMe₃), 68.46 ((CH₃)₂COH), 123.15 (NCHC), 157.21 (NCHC) ppm.
ESI-MS m/z [%]: 470.3 [M+Na]⁺.

Synthesis of 2,2'-(1,1'-(2-((4-(2-hydroxyethyl)-1H-1,2,3-triazol-1-yl)methyl)-2-methylpropane-1,3-diyl)bis(1H-1,2,3-triazole-4,1-diyl))diethanol (TT-3).

Method B. 3-Butyne-1-ol (0.58 mL, 7.68 mmol) and 1,3-diazido-2-(azidomethyl)-2-methylpropane (0.5 g, 2.56 mmol) was added to a solution of the catalyst **2** (17 mg, 1 mol%) in DCM (20 mL). The reaction mixture was stirred for 5 h. The solution was halved under vacuum and cold pentane was added. The product precipitates as a white solid. The solution was filtered and dried under vacuum to yield the pure product.

Yield: 680 mg, 1.68 mmol, 65%.

¹**H NMR** (300 MHz, 298 K, DMSO-*d*₆): δ 7.93 (s, 3 H, NCHC), 4.56 (br, 3H, OH), 4.36 (br, 6H, (*CH*₂)₃CCH₃), 3.76 (br, 6H, (*CH*₂CH₂OH)₃), 2.90 (br, 6H, (*CH*₂CH₂OH)₃), 0.79 (s, 3H,(CH₂)₃CCH₃) ppm.

¹³**C** NMR (75.47 MHz, 298 K, DMSO-*d*₆): δ 18.66 (CH₂)₃CM*e*), 28.83 ((CH₂CH₂OH)₃), 40.58 (CMe₃), 52.75((CH₂)₃CCH₃), 60.36 ((CH₂CH₂OH)₃), 124.38 (NCHC), 144.61 (NCHC) ppm.

ESI-MS m/z [%]: 428.2 [M+Na]+.

Synthesis of 1,1'-(2-methyl-2-((4-neopentyl-1H-1,2,3-triazol-1-yl)methyl)propane-1,3-diyl)bis(4-(tert-butyl)-1H-1,2,3-triazole) (TT-4).

Method B. 3,3-Dimethyl-1-butyne (0.95 mL, 7.68 mmol) and 1,3-diazido-2-(azidomethyl)-2methylpropane (0.5 g, 2.56 mmol) was added to a solution of the catalyst **2** (17 mg, 1 mol%) in DCM (20 mL). The reaction mixture was stirred for 5 h. The solution was halved under vacuum and cold

pentane was added. The product precipitates as a white solid. The solution was filtered and dried under vacuum to yield the pure product.

Yield: 830 mg, 1.82 mmol, 71%.

¹**H NMR** (300 MHz, 298 K, THF-*ds*): δ 7.91 (s, 3 H, C₂*H*N₃), 4.38 (s, 6H, (CH₂)₃), 1.35(s, 27H, CM*e*₃), 0.77 (s, 3H, CH₃) ppm.

¹³C NMR (75.47 MHz, 298 K, THF-*d*⁸): δ 19.33 (CH₂)₃CMe), 30.88 (CMe₃), 31.52 (CMe₃), 42.12 (CH₂)₃CMe), 54.09 ((CH₂)₃CMe), 122.46 (NCHC), 157.34 (NCHC) ppm. ESI-MS m/z [%]: 464.3 [M+Na]⁺.

Synthesis of 1,1'-(2-methyl-2-((4-propyl-1H-1,2,3-triazol-1-yl)methyl)propane-1,3-diyl)bis(4-propyl-1H-1,2,3-triazole) (TT-5).

Method B. 1-Pentyne (0.76 mL, 7.68 mmol) and 1,3-diazido-2-(azidomethyl)-2-methylpropane (0.5 g, 2.56 mmol) was added to a solution of the catalyst **2** (17 mg, 1 mol%) in DCM (20 mL). The reaction mixture was stirred for 5 h. The solution was halved under vacuum and cold pentane was added. The product precipitates as a white solid. The solution was filtered and dried under vacuum to yield the pure product.

Yield: 886 mg, 2.21 mmol, 87%.

¹**H NMR** (300 MHz, 298 K, THF-*ds*): δ 7.93 (s, 3 H, C₂*H*N₃), 4.39 (s, 6H, (CH₂)₃), 2.67(t, *J* =7.5 Hz, 6H, C₂*H*₄Me), 1.76–1.64 (m, 6H, C₂*H*₄Me), 0.97 (t, 9H, C₂H₄Me), 0.77 (s, 3H, Me) ppm.

¹³**C NMR** (75.47 MHz, 298 K, THF-*ds*): δ 14.17 (C₂H₄*Me*), 19.36 ((CH₂)₃C*Me*), 23.63 (C₂H₄Me), 28.50 (C₂H₄Me), 42.16 ((CH₂)₃CMe), 53.98 ((CH₂)₃CMe), 124.58 (NCHC), 147.95 (NCHC) ppm. **ESI-MS** m/z [%]: 422.3 [M+Na]⁺.

N ₃ =	+ R	Cat. DCM 5 h, rt R = alkyl, aryl		
Entry	Cat.	Loading	Alkyne	Yield
1	2	1	Phenylacetylene	99
2	2	0.5	Phenylacetylene	91
3	3	1	Phenylacetylene	79
4	4	1	Phenylacetylene	76
5	2	1	3-Butyne-1-ol	65
6	2	1	2-Methyl-3-butyne- 2-ol	74
7	2	1	3,3-Dimethyl-1- butyne	71
8	2	1	1-Pentyne	87

NMR Plots

Plot P1: 1H NMR (in THF-ds) spectrum of compound 3

Plot P2: ¹³C NMR (in THF-d₈) spectrum of compound 3.

Plot P3: ¹H NMR (in THF-d₈) spectrum of compound 4.

Plot P4: ¹³C NMR (in THF-d₈) spectrum of compound 4.

Plot P1: 1H NMR (in CDCl3) spectrum of 1-benzyl-4-phenyl-1H-1,2,3-triazole (TZ-1).

Plot P3: 1H NMR (in CDCl₃) spectrum of 2-(1-benzyl-1H-1,2,3-triazol-4-yl)ethanol (TZ-2).

Plot P4: ¹³C NMR (in CDCl₃) spectrum of 2-(1-benzyl-1*H*-1,2,3-triazol-4-yl)ethanol (TZ-2).

Plot P9: 1H NMR (in CDCl3) spectrum of 1-benzyl-4-butyl-1H-1,2,3-triazole (TZ-3).

Plot P5: ¹³C NMR (in CDCl₃) spectrum of 1-benzyl-4-butyl-1*H*- triazole (TZ-3).

Plot P11: 1H NMR (in CDCl3) spectrum of 2-(1-benzyl-1H-1,2,3-triazol-4-yl)propan-2-ol (TZ-4).

Plot P12: ¹³C NMR (in CDCl₃) spectrum of 2-(1-benzyl-1*H*-1,2,3-triazol-4-yl)propan-2-ol (TZ-4).

Plot P13: 1H NMR (in CDCl₃) spectrum of 2-(1-benzyl-1H-1,2,3-triazol-4-yn)pyridine (TZ-5).

Plot P14: ¹³C NMR (in CDCl₃) spectrum of 2-(1-benzyl-1*H*-1,2,3-triazol-4-yn)pyridine (TZ-5).

Plot P76: ¹³C NMR (in CDCl₃) spectrum of TZ-6.

8.20 7.93 7.91 7.91 7.81 7.81 7.79 7.79 7.79 7.47 7.38

Plot P20: ¹³C NMR (in CDCl₃) spectrum of TZ-9.

Plot P22: ¹³C NMR (in CDCl₃) spectrum of TZ-10.

Plot P10: ¹H NMR (in THF) spectrum of (TT-1).

Plot 27: ¹H NMR (in DMSO) spectrum of (TT-3).

Plot 11: ¹³C NMR (in DMSO) spectrum of (TT-3).

Plot 30: ¹³C NMR (in THF) spectrum of (TT-4).

Plot 32: ¹³C-NMR (in THF) spectrum of (TT-5).

Crystallographic Details

Single Crystal X-ray Diffraction Study: Suitable single crystals were selected from the mother liquor and covered with perfluorinated polyether oil on a microscope slide. The diffraction data of compound 3, 4, TZ-4, and TZ-2 (Table S3, S4) were collected at 100 K on a Bruker D8 three circle diffractometer equipped with a SMART APEX II CCD detector and a microfocus source^[4] with INCOATEC Quazar mirror optics ($\lambda = 0.71073$ Å). The diffraction data of compound TZ-3 were collected at 100 K on a Bruker D8 TXS-Mo-rotating anode with mirror optics and a Smart Apex II Ultra detector. The data were integrated with SAINT.^[5] A multi-scan absorption correction for all structures and a $\lambda\lambda$ correction^[6] for structures 3, 4, TZ-2 and TZ-4 were applied using SADABS.^[7] The structures were solved by direct methods (SHELXT)^[8] and refined against all data by full-matrix least-squares methods on F^2 (SHELXL)^[9] within the shelXle GUI.^[10] The hydrogen atoms were refined isotropically on calculated positions using a riding model with their U_{iso} values constrained to 1.5 U_{eq} of their pivot atoms for terminal sp³ carbon atoms and 1.2 times for all other carbon atoms. Hydrogens bound to oxygen were refined freely with a distance restraint (DFIX). All non-hydrogen-atoms were refined with anisotropic displacement parameters. Disordered moieties were refined using distance restraints (SAME) and anisotropic displacement parameter restraints (SIMU and RIGU).^[11]

	[(aIPr ^{Ph})Cu(IPr)]I (3)	$[(aIPr^{Ph})_2Cu]I$ (4)
Empirical formula	C ₆₀ H ₇₆ CuIN ₄	C ₆₆ H ₈₀ N ₄ I
CCDC no.	1560171	1560172
Molecular weight	1043.68	1119.78
Crystal size [mm]	0.14 x 0.11 x 0.08	0.18 x 0.19 x 0.90
Crystal system	Monoclinic	Hexagonal
Space group	P21/c	P6322
<i>a</i> [Å]	14.199(2)	24.661(2)
<i>b</i> [Å]	20.651(3)	24.661(2)
<i>c</i> [Å]	19.460(2)	42.161(3)
<i>α</i> [°]	90	90
β[°]	97.46(2)	90
γ[°]	90	120
<i>V</i> [Å ³]	5657.8(13)	22206(4)
Ζ	4	12
ρ[Mgm-3]	1.225	1.005
μ[mm ⁻¹]	0.970	0.746
F (000)	2184	7032
θ-range [°]	1.444-25.681	1.069-26.398
Reflections collected.	72914	337920
Independent reflections	10760	15201
R(int)	0.0564	0.0509
Number of restraints	67	412
Parameters	642	737
R1 [l>2 <i>o</i> (l)]	0.0296	0.0317
wR2 [I>2 <i>o</i> (I)]	0.0681	0.0846
R1 [all data]	0.0399	0.0364
wR2 [all data]	0.0732	0.0873
GooF	1.022	1.081
Absolute structure parameter	-	0.000(3)
Extinction coefficient	-	0.00012(3)
Largest diff. peak / hole [e· Å ⁻³]	0.465/-0.303	0.985/-0.404

Table S3. Crystal data and structure refinement for 3 and 4.

	Triazole TZ-3	Triazole TZ-4	Triazole TZ-2
Empirical formula	C13H17N3	C12H15N3O	C11H13N3O
CCDC no.	1560174	1560175	1560173
Molecular weight	215.29	217.27	203.24
Crystal size [mm]	0.11 x 0.15 x 0.16	0.127 x 0.134 x 0.368	0.10 x 0.12 x 0.15
Crystal system	Monoclinic	Monoclinic	Monoclinic
Space group	P21/c	P21/c	P21/c
a [Å]	13.061(3)	11.515(3)	22.580(3)
<i>b</i> [Å]	5.473(2)	10.493(3)	5.375(2)
<i>c</i> [Å]	17.510(3)	9.342(2)	8.599(2)
β[°]	108.84(2)	94.62(2)	100.86(2)
<i>V</i> [Å ³]	1184.6(6)	1125.1(5)	1024.9(5)
Ζ	4	4	4
ρ[Mgm ⁻³]	1.207	1.283	1.317
μ[mm ⁻¹]	0.074	0.085	0.088
F (000)	464	464	432
θ-area [°]	1.647-26.560	1.774-26.353	1.837-25.347
Reflections collected.	30375	33082	16590
Independent reflections	2462	2300	1886
R(int)	0.0387	0.0241	0.0265
Number of restraints	0	1	1
Parameters	146	152	141
R1 [I>2 <i>o</i> (I)]	0.0364	0.0325	0.0325
wR2 [I>2 <i>o</i> (I)]	0.0945	0.0746	0.0776
R1 [all data]	0.0405	0.0353	0.0394
wR2 [all data]	0.0980	0.0765	0.0813
GooF	1.065	1.061	1.071
Extinction coefficient	-	0.0075(12)	0.0042(13)
Largest diff. peak / hole [e∙ Å ⁻³]	0.186/ -0.235	0.283/-0.193	0.235/-0.194

Table S4. Crystal data and structure refinement for TZ-3, TZ-4, and TZ-2.

Asymmetric unit of compound 3. The anisotropic displacement parameters are shown at the 50% probability level. Hydrogen atoms are omitted for clarity.

The iodine shows a positional disorder with a side occupation factor of the main component of 0.945(4) and a vibrational disorder of an isopropyl group with a side occupation factor of the main component of 0.74(3).

Asymmetric unit of compound 4. The anisotropic displacement parameters are shown at the 50% probability level. Hydrogen atoms and isopropyl groups are omitted for clarity. One phenyl ring is vibrationally disordered with a side occupation factor of the main component of 0.513(19). Furthermore, the counterion iodine is positionally disordered on four positions with side occupation factors of 0.0350(6), 0.044(1), 0.4407(8), and 0.4810(8).

Diffuse residual electron density was observed in the crystal voids. The pictures show the residual electron density in the solvent channels. Heavily disordered lattice solvent (THF) could hardly be modelled into these voids. However, the refined model with solvent molecules was not satisfying. Therefore, the SQUEEZE routine of PLATON^[12] program package was used, which allows for the

mathematical compensation of the electron distribution of disordered solvent contained in the voids to the calculated diffraction intensities.

	without solvent	with solvent	squeeze
R1*	0.3399	0.0497	0.0378
wR2*	0.6779	0.1398	0.0956

Asymmetric unit of compound 1-benzyl-4-butyl-1H-1,2,3-triazole (TZ-3). The anisotropic displacement parameters are shown at the 50% probability level. Hydrogen atoms are omitted for clarity.

Structure of 2-(1-benzyl-1-1,2,3-triazol-4-yl)propan-2-ol (TZ-4). The anisotropic displacement parameters are shown at the 50% probability level. Not freely refined hydrogen atoms are omitted for clarity.

Hydrogen bonds for tz_4 [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
O(1)-H(1O)N(3)#1	0.858(14)	2.012(14)	2.8621(13)	170.8(16)

Symmetry transformations used to generate equivalent atoms:

#1 x,-y+1/2,z+1/2

Structure of unit of 2-(1-benzyl-1H-1,2,3-triazol-4-yl)ethanol (TZ-2). The anisotropic displacement parameters are shown at the 50% probability level. Not freely refined hydrogen atoms are omitted for clarity.

Hydrogen bonds for tz_2 [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
O(1)-H(1O)O(1)#1	0.870(15)	2.024(15)	2.8933(12)	178.1(19)

Symmetry transformations used to generate equivalent atoms: #1 -x+1,y+1/2,-z+3/2

References

- 1. Jlalia, I.; Meganem, F.; Herscovici, J.; Girard, C. "Flash" Solvent-free synthesis of triazoles using a supported catalyst. *Molecules* **2009**, *14*, 528-539.
- 2. Nasir Baig, R.B.; Varma, R.S. A highly active magnetically recoverable nano ferrite-glutathione-copper (nano-FGT-Cu) catalyst for Huisgen 1,3-dipolar cycloadditions. *Green Chem.* **2012**, *14*, 625-632.
- 3. Wang, D.; Li, N.; Zhao, M.; Shi, W.; Ma, C.; Chen, B. Solvent-free synthesis of 1,4-disubstituted 1,2,3-triazoles using a low amount of Cu(PPh3)2NO3 complex. *Green Chem.* **2010**, *12*, 2120-2123.
- 4. Obata, M.; Kitamura, A.; Mori, A.; Kameyama, C.; Czaplewska, J.A.; Tanaka, R.; Kinoshita, I.; Kusumoto, T.; Hashimoto, H.; Harada, M., et al. Syntheses, structural characterization and photophysical properties of 4-(2-pyridyl)-1,2,3-triazole rhenium(I) complexes. *Dalton Trans.* **2008**, 3292-3300.
- 5. Bruker AXS Inc., in Bruker Apex CCD, SAINT v8.30C (Ed.: Bruker AXS Inst. Inc.), WI, USA, Madison, 2013.
- 6. Krause, L.; Herbst-Irmer, R.; Stalke, D. An empirical correction for the influence of low-energy contamination. J. Appl. Cryst. 2015, 48, 1907–1913.
- 7. Krause, L.; Herbst-Irmer, R.; Sheldrick, G.M.; Stalke, D. Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. *J. Appl. Cryst.* **2015**, *48*, 3–10.
- 8. Sheldrick, G. SHELXT Integrated space-group and crystal-structure determination. Acta Cryst. A 2015, 71, 3–8.
- 9. Sheldrick, G. Crystal structure refinement with SHELXL. Acta Cryst. C 2015, 71, 3–8.
- 10. Hubschle, C.B.; Sheldrick, G.M.; Dittrich, B. ShelXle: A Qt graphical user interface for SHELXL. J. Appl. Cryst. 2011, 44, 1281–1284.
- 11. Thorn, A.; Dittrich, B.; Sheldrick, G.M. Enhanced rigid-bond restraints. Acta Cryst. A 2012, 68, 448-451.
- 12. Spek, A. Structure validation in chemical crystallography. Acta Cryst. D 2009, 65, 148-155.