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Abstract: Over the last decade, increasing demand for olefins and their valuable products has
prompted research on novel processes and technologies for their selective production. As olefins
are predominately dependent on fossil resources, their production is limited by the finite reserves
and the associated economic and environmental concerns. The need for alternative routes for olefin
production is imperative in order to meet the exceedingly high demand, worldwide. Biomass is
considered a promising alternative feedstock that can be converted into the valuable olefins, among
other chemicals and fuels. Through processes such as fermentation, gasification, cracking and
deoxygenation, biomass derivatives can be effectively converted into C2–C4 olefins. This short review
focuses on the conversion of biomass-derived oxygenates into the most valuable olefins, e.g., ethylene,
propylene, and butadiene.
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1. Introduction

The importance of C2–C4 olefins (i.e., C2H4, C3H6, butenes, and C4H6) has been highlighted
because of their numerous applications as key building blocks in the chemical industry, linked with
the increasing needs of the expanding global population [1]. These lower olefins are the most prevalent
organic compounds, with the highest production volumes, worldwide, highly dependent on crude oil
and natural gas products [2]. It is estimated that 400 million tons of olefins are annually produced,
using one billion tons as hydrocarbon feedstock, via processes such as fluid-catalytic cracking, steam
cracking, and dehydrogenation [3]. Almost 60% of the global feedstocks are used in FCC units, and
approximately 40% in steam cracking processes. (Figure 1) Produced olefins can be used in a wide
spectrum of high-end applications such as packaging, construction, solvents, coatings, and synthetic
fibers [4].
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C2H4 constitutes the most predominant olefin in the global market and is primarily produced
via naphtha steam cracking, among various hydrocarbon feedstocks, as well as through ethane
thermal cracking. Globally, 57% (Figure 2) of the C2H4 volume is produced via naphtha and gas
oil steam cracking and 38% through ethane and LPG (Liquefied Petroleum Gas) steam cracking.
Naphtha is a liquid fraction obtained from petroleum refining processes, such as catalytic cracking
and hydrocracking. Depending on its origin, it contains variable amounts of paraffins, aromatic, and
olefinic compounds. The ratio of these components can indicate the process that the specific fraction
can be used for the optimum results. At high temperatures (i.e., 650–750 ◦C), naphtha and gas oil can
yield 30 and 25 wt. % of C2H4, respectively. In the case of ethane, added along with naphtha in the
feed stream, yields of C2H4 can reach 80 wt. % [5]. Its eminent industrial uses cause the world demand
for C2H4 to incessantly increase, as it can be used for significant applications, such as the production
of intermediate chemicals, mainly in the industry of plastics. i.e., polymers (e.g., poly-ethylene),
propionaldehyde—via hydroformylation, vinyl chloride—via halogenation and de-hydrohalogenation,
alpha-olefins—via oligomerization, and C2H4 oxide and acetaldehyde—via oxidation [4,6,7]. In recent
years, bio-ethanol has been extensively studied as an alternate feedstock for C2H4 production [8].
Other bio-derived compounds such as methanol and dimethyl-ether, can also be used as a feedstock
for C2H4, via Methanol to Olefins (MTO) and Dimethyl-ether to Olefins (DMTO) processes [9,10].
Bio-ethylene can also be produced via bio-synthesis from various enzymes or microorganisms [11].
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C3H6 is the second most significant olefin, conventionally produced via steam cracking, as a
co-product, or through fluid catalytic cracking (FCC). (Figure 3) C2H4 and gasoline production severely
affect C3H6 production; recently, steam crackers switch to ethane feedstocks, suppressing concurrent
production of C3H6, while its demand outpaces existing steam and fluid catalytic cracking capacity [12].
C3H6 is mainly used for the production of polypropylene, as well as for the synthesis of numerous
platform chemicals (e.g., cumene, acrylonitrile, propylene-oxide) [13]. The importance of C3H6 in
the C3 value chain addresses the need for alternative processes; using the conventional technology,
C3H6 can also be produced through C4-C8 olefin cracking, or through FCC under severe conditions
in order to increase produced volume [12]. On-purpose production methods that include propane
dehydrogenation (PDH) [14], olefin metathesis [15], or methanol to olefins (MTO) [16,17], have recently
been implemented, as well as using other unconventional feedstocks [18], such as bio-alcohols and
vegetable oils.
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C4 olefins are mostly produced via fluid catalytic cracking, as well as through steam cracking
(Figure 4). Most common C4 olefins are C4H6, isobutylene, and butenes; C4H6 is a key chemical,
currently used for the production of polymers (i.e., rubbers), butylenes are expended in the fuel
industry for the production of blending components and octane enhancers, and n-butenes are used
as co-monomers of polyethylene and for the synthesis of higher olefins. C4H6 is the prevalent C4

olefin, conventionally co-produced via naphtha and gas oil cracking, along with C3H6 and C2H4,
among others; C4H6 yield via cracking is substantially low, highlighting the need for more targeted
production methods [4]. Demand for C4H6 is expected to increase, as it can be used as a bio-based
feedstock for greener rubbers. Several bio-based routes have based proposed for C4H6- production;
bio-ethanol constitutes the most promising feedstock for this purpose.
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Overall, existing olefin production is highly dependent on fossil resources that are expended
into energy-consuming processes, heavily contributing to the environmental affliction. Continuously
increasing demand has turned the petrochemical industry towards optimization of existing processes in
order to meet challenging capacities, while lowering the vast production costs. Recently, investigation
of alternative feedstocks has been considerably studied in order to offer an attractive solution
untrammeled from the limited crude oil reserves; coal, natural gas, and biomass are some of the
examples [2,4]. Coal has been used in coal-rich countries as a feedstock for chemicals’ production;
even though it reduces dependence on fossil resources, the resulting CO2 emissions limit the extent of
its applications [4]. Methane prices have recently dropped due to technological advances, enabling
the use of shale gas as an attractive, economical feedstock. Thus, cost-effective olefin production,
via steam cracking, has been enabled, already implemented in the olefin market, primarily for the
production of C3H6 and higher olefins [12,19,20]. Renewable feedstocks offer great advantages in terms
of sustainability, energy consumption, environmental pollution, CO2 emissions, and cost; biomass is
an abundant carbon-source with potential to replace fossil resources [21]. Through processes such as
fermentation, hydro-deoxygenation or gasification, light olefins can be produced from bio-feedstocks,
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or from bio-intermediates (e.g., ethanol, butanol, naphtha, methanol, and propane) via dehydration,
metathesis, and steam-cracking, among others [22].

In this context, the alternative production of olefins from biomass intermediates is reviewed and
compared to the conventional processes, with emphasis on the most promising chemical technologies
for future applications that progress biomass valorization.

2. Olefins from Biomass

Following the incessantly increasing demand worldwide, technological advances have enabled
the production of light olefins from various biomass-derived feedstocks, obtaining mainly mixtures
of C2–C4 olefins. Specific processes can be selective to the production of a certain product, as will be
discussed in this chapter. Overall, olefins from biomass are predominantly produced from biomass
intermediates, and more specifically, from alcohols, diols, and other oxygenates. These intermediates
are, in most cases, formed via fermentation, hydro-deoxygenation, or gasification processes (Figure 5).
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2.1. Ethylene (C2H4)

As mentioned above, steam cracking (mainly using naphtha as a feedstock) is the most extensively
used process for C2H4 production from hydrocarbons. Steam cracking operating conditions require
vast amounts of energy, thus increasing the production cost, and heavily contributing to environmental
issues. Even though the installed technology for these processes has already been modified for
increased efficiency, novel production methods have been explored in order to reduce production
cost and to substitute the finite fossil resources. Apart from C2H4 conventional production from
petrochemicals, C2H4 can be effectively produced from renewable feedstocks, such as plants,
microorganisms, and bio-alcohols (Figure 6).
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C2H4 biosynthesis is a natural pathway, as it constitutes an important hormone that plants
recognize and produce [11]. ACC synthase and oxidase are two vital enzymes that enable C2H4

production from ACC (1-aminocyclopropane-1carboxylic acid) and SAM (S-adenosyl methionine),
along with carbon dioxide and HCN, via the Yang cycle, starting from methionine via three consecutive
reaction steps: (a) methionine is converted into SAM by SAM synthetase; (b) ACC synthetase
converts SAM to ACC; and finally, (c) ACC is converted into C2H4 by ACC oxidase [23]. (Scheme 1)
Microorganisms, such as bacteria and fungi have also been reported to produce C2H4 starting
from methionine via the KMBA (2-keto-4-methylthiobutyric acid) formation pathway or through
2-oxoglutarate conversion [24–26]. Ethylene production rate can reach 2859.2 µmol/gCDW/h
(CDW-Cell Dry Weight) from Pseudomonas putida [27]. Despite the fact that bio-synthesis technology
is at its early stages, recent techno-economic analyses highlight the potential of these processes
for on-purpose C2H4 production. However, further studies are required in order to reduce cost
and overcome or improve aspects such as productivity and product separation. Advances in the
biotechnological processes could improve productivity and reduce cost, enabling future development
of C2H4 biosynthesis methods [28].
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Ethanol, derived from biomass, i.e., cellulose, corn, and sugarcane [8] is the most common
bio-feedstock for the production of C2H4. Several companies worldwide, such as Braskem
(Sao Paulo, Brazil), Axens (Rueil-Malmaison, France), Solvay (Brussels, Belgium), and BP (London,
United Kingdom), focus on research and plant operation for ethanol dehydration into C2H4 [13–15],
as the global demand for C2H4 is continuously increasing [29,30]. Even though each company has
developed and installed specific technologies for this reaction, ethanol dehydration typically includes
two steps; reaction of ethanol dehydration and purification of products [29]. Bio-ethanol can be
produced via fermentation processes causing sugars to selectively break down into ethanol, at high
rates, with limited by-product formation [31]. However, the strong dependence on sugar production
costs limit their application [30,32]. More complex feedstocks with higher market availability and
thus lower cost (i.e., cellulose, hemicellulose, and lignocellulose) are more attractive but their direct
conversion into ethanol is challenging and has not been reported to be satisfactorily viable for
applications in the industry [33].

Bio-ethanol dehydration is an endothermic reaction, requiring relatively moderate temperatures
(i.e., 180–500 ◦C) and the presence of a catalyst. The mechanism of bio-ethanol dehydration consists of
the following steps: (a) protonation of the hydroxyl group by an acid catalyst, (b) deprotonation of the
methyl group by the conjugate base of the catalyst, and (c) rearrangement to form C2H4 (Scheme 2) [30].
The selection of the most suitable catalyst for bio-ethanol dehydration into C2H4 is of key importance,
in order to lower reaction temperature and overcome common issues, such as catalyst deactivation
due to coke formation, particle collision, and agglomeration [29,30]. Acid catalysts, such as zeolites
and silicoaluminophosphates (SAPO), have been widely used for this reaction, over the last decades,
as they promote selective conversion into the desired product, with extremely high conversion and
selectivity values, despite the fact that catalysts need to be frequently regenerated [30,34]. Actually,
SAPO catalysts are significantly active in this reaction, reaching 98.0% selectivity to ethylene, at 250 ◦C,
over SAPO-11-4 and 98.4%, at 340 ◦C, over Mn-SAPO-34 [35,36]. However, over modified HZSM-5
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and MCM-41 catalysts, selectivity to C2H4 is even higher (i.e., 99.0%) [37]. Moreover, alumina-based
catalysts, such as Al2O3-MgO/SiO2, exhibited high conversion and selectivity values (i.e., 99.0 and
97.0%, respectively) requiring regeneration over longer periods of operation [29]. Tungsten-based
heteropolyacids, supported on various substances are highly selective at relatively low reaction
temperatures (i.e., 180–250 ◦C) [38]. It has been proven that acid-base sites on the catalyst surface are
linked with the product distribution of this reaction; ethanol dehydration most probably proceeds via
the formation of intermediate species and highly depends on temperature, ethanol partial pressure, and
the nature of acid-base sites [30,39–43]. In fact, as ethanol dehydration is an endothermic reaction, the
reaction temperature strongly affects C2H4 yield. Basic catalysts, such as MgO or CaO have also been
used with results that resembled those, over acidic catalysts. Phosphoric acid, oxides, molecular sieves,
and other heteropoly acid catalysts can also be used for this purpose [29]. Syndol is a commercial
catalyst, used by Halcon SD (USA), to obtain high ethanol conversion and selectivity to ethylene, at
400–500 ◦C [29,44–46]. Overall, a selection of the most promising catalysts for ethanol conversion into
C2H4 are presented in Table 1.

Catalysts 2018, 8, 2 6 of 18

 

can also be used for this purpose [29]. Syndol is a commercial catalyst, used by Halcon SD (USA), to
obtain high ethanol conversion and selectivity to ethylene, at 400–500 °C [29, 44–46]. Overall, a
selection of the most promising catalysts for ethanol conversion into C2H4 are presented in Table 1.

Scheme 2.Mechanism of bio ethanol dehydration to C2H4.

Table 1. Selected catalysts for bio ethanol dehydration to C2H4.

Catalyst
Ethanol

Conversion (%)
Selectivity to
C2H4 (%)

Temperature (°C) WHSV a/LHSV b (h 1) Reference

Mn SAPO 34 99.4 98.4 340 2.0 a [35]
0.5%La 2%P HZSM 5 100.0 99.9 240–280 2.0 a [47]

TPA MCM 41 * 98.0 99.9 300 2.9 a [48]
SynDol ** 99.0 96.8 450 26–234 b [29, 44–46]

STA MCM 41 *** 99.0 99.9 250 2.9 a [49]

* tungstophosphoric acid (TPA), ** MgO Al2O3/SiO2, *** silicotungstic acid (STA).

a Weight hourly space velocity (WHSV), b Liquid hourly space velocity (LHSV)

Methanol is another alcohol that can be converted into olefins, through the well known
methanol to olefins (MTO) process. The MTO reaction is one of the most important processes for
producing olefins from a C1 feedstock [50]. MTO was initially proposed, in 1977, by Mobil
Corporation [51], followed by numerous research studies, focusing on the development of a
commercially available technology [52,17]. Within this context, the first MTO plant was installed in
2010, in China, for the production of light olefins from coal [53].

Bio methanol can be produced via several processes including pyrolysis, bio synthesis,
gasification, and electrolysis, using a wide range of biomass waste, such as agricultural, forest, and
municipal [17, 53–55]. Although most of these processes are currently under development, the
installation of bio methanol production units requires further studies on design and energy
efficiency in order to ensure feasibility of large scale application [56].

MTO is an autocatalytic reaction that conventionally takes place at moderate temperature (i.e.,
300–450 °C), over acidic catalysts. A number of suggestions on the mechanism of MTO has been
proposed, showing that most conclusions agree that the reaction network consists of at least three
main pathways: (a) direct methanol conversion; (b) direct conversion of ethylene; and (c) ethane
methylation by methanol [52]. Depending on the catalyst used, MTO can selectively yield mainly
C2H4 and C3H6; most studies focus on methanol conversion into ethylene, as the main product.
(Scheme 3) Over SAPO catalysts and zeolites, bio methanol can be selectively converted into light
olefins; over SAPO 34, selectivity to C2H4 and C3H6 is 60.0%, at 350–425 °C [57]. Modification on the
catalyst synthesis procedure strongly affects product distribution. Dimethyl ether to olefins (DMTO)
is a similar process that yields the same products. Bio dimethyl ether can be produced from
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and C3H6) and syngas, following the bioliq® concept developed in Karlsruhe Institute of Technology,
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driven by a substantially complex reaction mechanism based on methylation, oligomerization, and
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Table 1. Selected catalysts for bio-ethanol dehydration to C2H4.

Catalyst Ethanol
Conversion (%)

Selectivity to
C2H4 (%) Temperature (◦C) WHSV a/LHSV b (h−1) Reference

Mn-SAPO-34 99.4 98.4 340 2.0 a [35]
0.5%La-2%P-HZSM-5 100.0 99.9 240–280 2.0 a [47]

TPA-MCM-41 * 98.0 99.9 300 2.9 a [48]
SynDol ** 99.0 96.8 450 26–234 b [29,44–46]

STA-MCM-41 *** 99.0 99.9 250 2.9 a [49]

* tungstophosphoric acid (TPA), ** MgO-Al2O3/SiO2, *** silicotungstic acid (STA). a Weight hourly space velocity
(WHSV), b Liquid hourly space velocity (LHSV).

Methanol is another alcohol that can be converted into olefins, through the well-known
methanol-to-olefins (MTO) process. The MTO reaction is one of the most important processes
for producing olefins from a C1 feedstock [50]. MTO was initially proposed, in 1977, by Mobil
Corporation [51], followed by numerous research studies, focusing on the development of a
commercially available technology [17,52]. Within this context, the first MTO plant was installed
in 2010, in China, for the production of light olefins from coal [53].

Bio-methanol can be produced via several processes including pyrolysis, bio-synthesis,
gasification, and electrolysis, using a wide range of biomass waste, such as agricultural, forest,
and municipal [17,53–55]. Although most of these processes are currently under development, the
installation of bio-methanol production units requires further studies on design and energy efficiency
in order to ensure feasibility of large-scale application [56].

MTO is an autocatalytic reaction that conventionally takes place at moderate temperature
(i.e., 300–450 ◦C), over acidic catalysts. A number of suggestions on the mechanism of MTO has
been proposed, showing that most conclusions agree that the reaction network consists of at least
three main pathways: (a) direct methanol conversion; (b) direct conversion of ethylene; and (c) ethane
methylation by methanol [52]. Depending on the catalyst used, MTO can selectively yield mainly C2H4

and C3H6; most studies focus on methanol conversion into ethylene, as the main product. (Scheme 3)
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Over SAPO catalysts and zeolites, bio-methanol can be selectively converted into light olefins; over
SAPO-34, selectivity to C2H4 and C3H6 is 60.0%, at 350–425 ◦C [57]. Modification on the catalyst
synthesis procedure strongly affects product distribution. Dimethyl ether-to-olefins (DMTO) is a
similar process that yields the same products. Bio-dimethyl ether can be produced from lignocellulosic
biomass, via pyrolysis and gasification, resulting in the formation of olefins (i.e., C2H4 and C3H6) and
syngas, following the bioliq® concept developed in Karlsruhe Institute of Technology, which is already
implemented in a large scale unit in Germany [58–60]. DMTO can take place at high temperature
(i.e., 723 ◦C) and low pressure (i.e., 4 bar), fully converting dimethyl ether (DME) into C2H4 (45.0%),
C3H6 (39.0%), butenes (8.0%), and other light gases [10]. DME to olefins conversion is driven by a
substantially complex reaction mechanism based on methylation, oligomerization, and hydrocarbon
formation and cracking reactions, over zeolite catalysts [61].Catalysts 2018, 8, 2 7 of 18
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An overall comparison of the main C2H4 production processes is shown in Table 2. Despite of the
technological advances of the last decades, bio-ethylene production processes cannot replace those
dependent on fossil resources. As bio-synthesis processes are a recent research subject, further studies
on the reduction of the cost and on increasing the productivity are essential prior to considering their
industrial application. Bio-ethanol dehydration is the most promising alternative for the production
of “green” C2H4, as numerous studies have focused on the selection of the most suitable catalyst,
lowering the reaction temperature, while increasing the yield to C2H4. As ethanol dehydration has
already been implemented, the only set-back for industrial bio-ethanol dehydration to C2H4 is the
production and availability of bio-ethanol. MTO and DMTO processes have also been extensively
studied with encouraging results regarding their commercial applications. Likewise, bio-methanol
and bio-DME production is also limited, lowering prospect productivity. However, future increases
of the produced bio-feedstocks could eliminate this issue, achieving high yields, in cost-competitive
processes, as steam-cracking units. Future studies should focus on cost reduction linked with the
implementation of the bio-based methods.

Table 2. Comparison of C2H4 production processes.

Process Steam Cracking Bio-Synthesis Bio-Ethanol
Dehydration MTO DMTO

Feedstock HC (Naphtha) ACC/SAM Bio-ethanol Bio-methanol Bio-DME

Operating
Conditions

675–700 ◦C atmospheric
pressure

Ambient, aerobic
conditions 180–500 ◦C 300–500 ◦C,

low pressure
675–750 ◦C,

low pressure

Advantages Already installed
technology

Selective sustainable
production

Commercial
application Close to commercial application

Disadvantages
Energy intense,

environmental concerns,
finite resources

Increased cost, low
productivity

Limited
bio-ethanol

supply

Limited production of
bio-feedstocks

Yield to C2H4 31.3% - 99.9% 41.5% 45.0%

2.2. Propylene (C3H6)

As the demand for C3H6 increases, research focuses on on-purpose production of C3H6, based
on biomass resources, aiming at substituting oil-based feedstocks, in more environmentally friendly
processes. Corn, vegetable oils and other biomass products have been effectively used as feedstocks
for the production of bio-propylene, via processes such as gasification, metathesis, dehydrogenation,
fermentation, and cracking [22].
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Conventionally, C3H6 is a by-product of C2H4 production via steam cracking of hydrocarbons
and FCC of gas oil. (Figure 7) At high temperatures, various hydrocarbons (e.g., naphtha, ethane, and
propane) are co-fed, under the most suitable operating conditions, to selectively yield C3H6 [62]. FCC,
also uses hydrocarbons to produce C3H6, at moderate pressure and high temperatures, over zeolites,
such as, ZSM-5, often modified with metals to increase selectivity to C3H6 [63]. It is considered greener
than steam cracking due to lower energy demand and decreased CO2 emissions. Apart from the
well-known steam cracking and FCC, olefin metathesis and methanol to C3H6 are also considered
alternatives for industrial application. Moreover, alkanes can be converted into alkenes via catalytic
dehydrogenation; propane can be used as a feedstock, at high temperature and atmospheric pressure.
Propane dehydrogenation plants have already been installed worldwide by several companies;
Linde/BASF (Alabama, USA), Lummus Technology (New Jersey, USA), Snamprogetti/Yarsintez
(Jubail, Saudi Arabia), UOP (Illinois, USA), etc., mostly using chromium, and Pt–Sn catalysts [64].
Methanol to C3H6 is actually included in methanol to olefins reactions, described in the previous
chapter; zeolites (i.e., ZSM-5) are the most active catalysts in order to selectively produce C3H6 from
methanol [65].
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As mentioned above, bio-ethanol can be produced through various methods. Apart from
constituting a valuable feedstock for C2H4 production, bio-ethanol can also be used for C3H6

production; C2H4 from bio-ethanol can undergo dimerization followed by the well-known metathesis
reaction, along with butenes, thus producing C3H6 [66]. For this process, not only bio-ethylene can
be derived from biomass (i.e., bio-ethanol), but also bio-butylene from bio-butanol dehydration [67].
In fact, butanol can be produced from bio-ethanol, via the Guerbet process, where higher alcohols
can be formed, upon condensation of two primary alcohols [68]. For this purpose, basic oxides,
such as MgO and hydrotalcites have been active in ethanol conversion into butanol, reaching 85%
selectivity [69]. N-butanol can also be produced through fermentation; several companies (e.g., Versalis
-San Donato Milanese, Italy, Global Bioenergies - Evry, France) have already developed biochemical
processes for the production of C4 alcohols. Through the ABE process (Acetone-Butanol-Ethanol), C4

alcohols can be produced via carbohydrate fermentation by genetically modified micro-organisms [39].
The metathesis reaction can yield C3H6 using C2H4 and butenes as a feedstock, via two different

approaches: (a) dimerization of bio-ethylene and then reaction with remaining bio-ethylene and
(b) direct reaction of bio-ethylene and bio-butene. (Scheme 4) C2H4 dimerization processes have
already been implemented in the industry (e.g., AlphaButol by Axens- Rueil-Malmaison, France),
operating under relatively mild conditions (i.e., 0–100 ◦C) and over metal catalysts, such as Ti and
Ni [70]. In direct reaction processes, (e.g., Olefin Conversion Technology-OCT ABB Lummus Global),
both homogeneous and heterogeneous catalysts have been employed. Heterogeneous (e.g., tungsten,
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molybdenum, or Rhenium oxides, on alumina or silica) are usually preferred over homogeneous,
such as organometallic complexes. Tungsten oxides, supported on silica have been used for the OCT
process, at temperatures above 260 ◦C and 30–35 bar, reaching more than 90.0% selectivity to C3H6,
for 60.0% butene conversion [71]. Pre-reduction treatment, as well as increased acidity obtained
using more acidic supports, enhances catalytic activity at lower temperature [72]. Rhenium catalysts
have exhibited selectivity ~100%, however fast deactivation requires continuous regeneration [73].
Molybdena catalysts have also been used in the Shell High Olefin Process (SHOP), producing α-olefins
through the oligomerization of C2H4, followed by olefin metathesis [74].
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Solely 1-butene, produced via bio-butanol dehydration, can also be used as a feedstock for C3H6

formation, as 1-butene is isomerized to 2-butene, and then both react via metathesis to form C3H6

and 2-pentene [75]. Moreover, oligomerization/cracking of C2H4 from bio-ethanol can result in C3H6

production [76–78]. The direct ethanol to C3H6 process (ETP) has recently been explored, over catalysts
such as zeolites [79–81] and metal oxide catalysts [82–84] in order to increase yield to C3H6 against the
most common by-products (i.e., C2H4, butenes and aromatic hydrocarbons), improve stability and
suppress coke formation. Thus, as the yield to C3H6 rarely exceeds 40.0%, the need for novel catalytic
materials is imperative [85].

Other biomass-derived oxygenates, such as polyols, aldehydes, and ketones can also be converted
into hydrocarbons through oxygen removal catalytic reactions (hydrogenation/ dehydrogenation, and
hydro-deoxygenation). In this context, over transition metal oxides, glycerol and other C3 oxygenated
compounds can be converted into C3H6. Glycerol is a low cost molecule that can be produced via
fermentation, transesterification and hydrogenolysis reactions, from biomass feedstocks. It can be
upgraded into valuable compounds through a number of chemical or biological routes [33]. Glycerol to
olefins (GTO) methods require the complete removal of oxygen, which is an intricate task. Its catalytic
conversion into C3H6 is a novel research subject that has recently attracted attention; Hultenberg and
Brandin recently filed a patent introducing the production of lower hydrocarbons (e.g., ethane, propane,
and propene) from glycerol, over WO3 on ZrO2 and Pt on CeO2 catalysts. [86] Fadigas et al. initially
explored glycerol conversion, in a continuous flow process, over Ni, and Fe–Mo metal catalysts
supported on activated carbon, obtaining high selectivity values to C3H6 [87]. Schmidt’s group
reported glycerol cracking into propanal, acrolein, C3H6, and C2H4, in three steps (i.e., dehydration,
hydrogenation, and upgrading), over HZSM-5 zeolites, Pd/α-Al2O3, and HBEA zeolites, respectively
for each step/reaction [88].

Yu et al used Ir/ZrO2 and H-ZSM5 catalysts, in two steps, in order to selectively produce
C3H6 via hydro-deoxygenation in a fixed-dual-bed reactor. Over the optimized reaction conditions
(i.e., 250 ◦C and 1 bar hydrogen pressure), selectivity to C3H6 reached 85.0%, for complete glycerol
conversion [89]. (Table 3) Sun et al. used WO3-Cu/Al2O3 catalysts, at 250 ◦C under hydrogen
flow (atmospheric pressure) to obtain 47.4% selectivity to C3H6 for 100% glycerol conversion [91].
Combining WO3-Cu/Al2O3 and SiO2-Al2O3 in a dual-bed reactor, selectivity to C3H6 reached 84.8%.
Mota et al, used Fe/Mo catalysts supported on activated carbon to obtain 100 glycerol conversion and
90.0% selectivity to C3H6 at 300 ◦C [92]. In all the above studies, a number of by-products has been
detected in the gas phase (e.g., carbon dioxide, propane, and ethylene). Further studies by our group,
in a batch reactor, over molybdena-based catalysts supported on carbon, report glycerol production
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into C3H6 with 100% selectivity in the gas phase (88.0% glycerol conversion and 76.0% selectivity to
C3H6) at 300 ◦C and under hydrogen atmosphere (80 bar) (Figure 8) [90]. Our group has also proven
that reducible molybdenum oxides selectively drive this reaction into C3H6, most probably via a
reverse Mars—van Krevelen mechanism; formation of Mo4+ and Mo5+ species most likely drives the
reaction to the formation of the desired product. C3H6 is most probably formed via two consecutive
cycles, in a one-step reaction: (a) due to the presence of oxygen vacancies, the adsorption of glycerol
proceeds with the two adjacent hydroxyls forming an unstable cyclic intermediate which in turn is
released as 2-propenol and (b) the latter after re-adsorption with the remaining hydroxyl is further
deoxygenated to C3H6 [93]. Dow Global Technologies have patented a GTO process in a batch reactor,
reaching 96% selectivity to C3H6 for 24% glycerol conversion. Hydroiodic acid acts as a catalyst in
subsequent reduction-oxidation cycles, over reductive atmosphere [92].

Table 3. Selected catalysts for one-step glycerol conversion into C3H6.

Catalyst Glycerol
Conversion (%)

Selectivity to
C3H6 (%) Temperature (◦C) WHSV (h−1) Reference

Ir/ZrO2 & HZSM-5-30 100.0 85.0 250 1.0 [89]
Fe–Mo/Black Carbon 88.0 76.0 300 - [90]

WO3-Cu/Al2O3 & SiO2-Al2O3 100.0 84.8 250 - [91]
Fe/Mo 100.0 90.0 300 5.4 [92]

Catalysts 2018, 8, 2 10 of 18

 

GTO process in a batch reactor, reaching 96% selectivity to C3H6 for 24% glycerol conversion.
Hydroiodic acid acts as a catalyst in subsequent reduction oxidation cycles, over reductive
atmosphere [92].

Figure 8. Effect of reaction time on selectivity over the Fe–Mo/BC_A catalyst (H2 pressure: 8.0 MPa,
temperature: 300 °C). Reproduced from [90]. Copyright 2015, Royal Society of Chemistry.

Bio oil, produced from catalytic pyrolysis of fats, oils and other low values compounds, can
also be used as a feedstock for the production of olefins, through processes that are already used in
the petrochemicals’ industry [94]. Syntroleum Corporation has already implemented similar
processed (i.e., Bio Synfining), where vegetable oils and fats can be converted into fuels and propane
[95]. Neste Oil is also using the NExBTL (Next Generation Biomass to Liquid) process in order to
produce liquid fuels and olefins [96]. Through steam cracking and fluid catalytic cracking, liquid
fuels and C3H6 can be formed, while via the first route olefins are primarily produced [97]. The first
step of the steam cracking process is hydro deoxygenation of fatty acids and triglycerides, resulting
in green hydrocarbons and naphtha. Hydro deoxygenation proceeds over conventional
hydrotreating catalysts, under high hydrogen pressure and moderate temperatures (i.e., 280–400 °C)
[98]. Noble metal catalysts have also been used, supported on carbon, silica, alumina, or zeolites [99].
The second step involves gasoline and C3H6 production via cracking at atmospheric pressure, at
800 °C. Milder reaction conditions enhance C3H6 formation, while suppressing C2H4 and aromatics
production.

Table 4 summarizes the main characteristics of the most important C3H6 production methods.
Through steam cracking C3H6 can be formed as a by product of C2H4 production, at high
temperatures, in a markedly energy intense process. Lower temperatures of FCC make this process
more environmentally friendly, compared to steam cracking. However, yield to C3H6 is highly
dependent on the feedstock and on the selected condition. Catalyst deactivation and product
recovery are among the disadvantages of this rather popular method. Propane dehydrogenation is
another C3H6 production process from finite resources that also requires high temperatures and
atmospheric pressure. Recently installed units highlight the potential of this application for
on purpose C3H6 production at high yields. Via metathesis reactions olefins can be converted into
C3H6, at relatively low temperatures and moderate pressure. Bio olefins are the most suitable
feedstock but their availability limits the productivity of this method. Glycerol to olefins is a novel
research subject that aims at the production of “green” C3H6 through catalytic reactions, at moderate
temperature. Nonetheless, more in depth research is essential on the most suitable catalysts that will
selectively drive the reaction. Even though C3H6 production from glycerol is still a lab scale
application, future studies focusing on scale up and techno economic analyses will enable industrial
application of these biomass valorization processes.
 

Figure 8. Effect of reaction time on selectivity over the Fe–Mo/BC_A catalyst (H2 pressure: 8.0 MPa,
temperature: 300 ◦C). Reproduced from [90]. Copyright 2015, Royal Society of Chemistry.

Bio-oil, produced from catalytic pyrolysis of fats, oils and other low-values compounds, can also
be used as a feedstock for the production of olefins, through processes that are already used in the
petrochemicals’ industry [94]. Syntroleum Corporation has already implemented similar processed
(i.e., Bio-Synfining), where vegetable oils and fats can be converted into fuels and propane [95].
Neste Oil is also using the NExBTL (Next Generation Biomass to Liquid) process in order to produce
liquid fuels and olefins [96]. Through steam cracking and fluid catalytic cracking, liquid fuels and
C3H6 can be formed, while via the first route olefins are primarily produced [97]. The first step
of the steam cracking process is hydro-deoxygenation of fatty acids and triglycerides, resulting in
green hydrocarbons and naphtha. Hydro-deoxygenation proceeds over conventional hydrotreating
catalysts, under high hydrogen pressure and moderate temperatures (i.e., 280–400 ◦C) [98]. Noble metal
catalysts have also been used, supported on carbon, silica, alumina, or zeolites [99]. The second step
involves gasoline and C3H6 production via cracking at atmospheric pressure, at 800 ◦C. Milder reaction
conditions enhance C3H6 formation, while suppressing C2H4 and aromatics production.
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Table 4 summarizes the main characteristics of the most important C3H6 production methods.
Through steam cracking C3H6 can be formed as a by-product of C2H4 production, at high temperatures,
in a markedly energy intense process. Lower temperatures of FCC make this process more
environmentally friendly, compared to steam cracking. However, yield to C3H6 is highly dependent on
the feedstock and on the selected condition. Catalyst deactivation and product recovery are among the
disadvantages of this rather popular method. Propane dehydrogenation is another C3H6 production
process from finite resources that also requires high temperatures and atmospheric pressure. Recently
installed units highlight the potential of this application for on-purpose C3H6 production at high
yields. Via metathesis reactions olefins can be converted into C3H6, at relatively low temperatures
and moderate pressure. Bio-olefins are the most suitable feedstock but their availability limits the
productivity of this method. Glycerol to olefins is a novel research subject that aims at the production
of “green” C3H6 through catalytic reactions, at moderate temperature. Nonetheless, more in-depth
research is essential on the most suitable catalysts that will selectively drive the reaction. Even though
C3H6 production from glycerol is still a lab-scale application, future studies focusing on scale-up and
techno-economic analyses will enable industrial application of these biomass-valorization processes.

Table 4. Comparison of C3H6 production processes.

Process Steam Cracking FCC Dehydrogenation Metathesis GTO

Feedstock HC HC Propane Bio-olefins Glycerol

Operating
Conditions

750–900 ◦C,
moderate pressure

500–550 ◦C,
moderate pressure

500–700 ◦C,
atmospheric pressure

0–260 ◦C,
moderate pressure

250–400 ◦C,
hydrogen pressure

Advantages Already installed
technology

Greener than
Steam Cracking,

Flexibility of
operation

Already installed
units

Already installed
units

Sustainable
production

Disadvantages

Energy intense,
environmental
concerns, finite

resources

Yield depends on
feedstock, catalyst

deactivation,
product recovery

Catalyst deactivation,
endothermic reaction

Limited production
of bio-feedstocks

Require hydrogen
atmosphere,

lab-scale

Yield to C3H6 18.0% 25.0% 85.0% 90.0% 90.0%

2.3. Butadiene (C4H6)

Alternative feedstocks have been proposed in order to effectively produce bio-butadiene
from renewable resources, thus substituting the energy consuming processes of naphtha cracking.
In Figure 9, the various production processes for C4H6 are summarized.
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C4H6 is also a by-product of C2H4 production through cracking of hydrocarbons. C4H6

production from bio-ethanol is a promising alternative that has been industrially implemented prior
to the installation of naphtha cracking technologies; ethanol to C4H6 processes have been used since
1920, constituting the main production practice until the end of World War II [22,100]. Main routes of
this process include dehydrogenation, dehydration, and condensation over suitable catalysts, either in
one-step (i.e., Lebedev approach) (Scheme 5) or two-step processes (i.e., Ostromisslenski approach)
(Scheme 6) [100]. In the first case, multifunctional catalysts have been employed, mainly alumina
and magnesia-silica catalysts, via C2H4 dimerization and subsequent metathesis, while at the latter,
ethanol was initially dehydrogenated into acetaldehyde, over copper-based catalysts, at moderate
temperatures, and then ethanol reacted with acetaldehyde to form C4H6, over Ta2O5 catalyst, as well
as other oxides, supported on silica [101,102]. Several research projects suggest that aldol condensation
of acetaldehyde is a key step in ethanol conversion into C4H6 [103]. On the other hand, latest works,
including DRIFTS (Diffuse Reflection Infrared Spectroscopy) analyses and DFT (Density Functional
Theory) calculations, propose that ethanol carbanionic intermediates are of key importance for the
reaction mechanism [104].
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Apart from bio-ethanol, C4H6 can be formed from other biomass derived oxygenates such as
butanols and butanediols, produced through biomass fermentation or gasification [105,106]. In fact,
bio-1,4-butanediol is currently produced by Genomatica, at a small scale plant, planning on installing
an industrial scale one with Novamont [107]. Acid catalyzed dehydration of bio-butanols yields a
mixture of n-butenes. Subsequent dehydrogenation results in the production of C4H6. N-butanol
can be converted into 1-butene or nonlinear C4 olefins, via dehydration, over catalysts with mild
or high acidity, respectively; over zeolites a ~60% yield to isobutene has been obtained [108].
The overwhelming cost of the butene dehydrogenation step has led to research on direct dehydration
of butanediols to C4H6, over suitable catalysts; over sodium phosphate catalysts, 1,4-butanediol can be
converted into C4H6 at 280 ◦C, while conversion of 1,3-butanediol requires higher temperatures, over
the same catalysts [109]. C4H6 yield up to 95% has been reported from 1,4-butanediol [110] and 90%
from 1,3-butanediol [103]. In both cases, increased by-product formation is a critical issue that further
studies on catalytic approaches could address. Dehydration of other C4 diols (e.g., 2,3-butanediol) is
much more challenging, requiring multiple and more complex reaction steps [111]. 2,3-butanediol,
produced via glucose fermentation, can be converted into C4H6, over scandium oxide catalysts, at
high temperatures (i.e., 411 ◦C), reaching 88% yield. Using two catalytic beds, with scandium oxide
and alumina, selectivity to C4H6 was 94%, proving the feasibility of direct double bond dehydration
of 2,3-butanediol [91]. Alternatively, two-step processes, using two different catalysts (e.g., silica
or alumina-based) for subsequent dehydrations, have also been proposed, yielding C4H6 via the
formation of unsaturated alcohols [112]. Novel chemical and biochemical technologies enable the
production of C4H6 from syngas originating from the gasification of biomass or waste gases from
the steel industry; butanediols can be produced from syngas via fermentation [113]. As syngas can
be produced from various organic materials, such as biomass, it is rather inexpensive. Thus, it is
an excellent resource for the production of valuable bio-chemicals and bio-fuels [114]. Bio-catalytic
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processes enable syngas fermentation in moderate conditions, increasing energy saving, improving
product yield and involving less toxic compounds or products [115,116]. Despite the fact that syngas
fermentation is still an immature approach, its future potential cannot be ignored.

As lighter olefins are most preferably produced via steam cracking, C4H6 production is rather
limited through this process. Via dehydrogenation, butane—or butenes via oxidative dehydrogenation,
can be selectively converted into C4H6 but the high temperatures and catalyst deactivation are key
disadvantages impeding commercialization. Bio-ethanol conversion into C4H6 is the most promising
alternative; numerous studies have focused on the selection of the most suitable catalyst. However,
catalytic deactivation and increased by-product formation are still critical issues that further research
could resolve. Via dehydration/hydrogenation steps, bio-butanol can be effectively converted into
C4H6, but the limited availability of the feedstock, along with the significantly high cost due to high
temperature (up to 700 ◦C) and to the hydrogenation step, hinder industrial application. (Table 5) On
the other hand, relatively lower temperatures of highly selective bio-butanediol dehydration could
enable its applicability, even though production of the bio-feedstock is quite limited and by-product
formation is not negligible. To conclude, all bio-based methods for C4H6 production are still in lab-scale.
Nonetheless, in the future, novel catalysts can be synthesized for the selective C4H6 production.
Moreover, further studies on production of the biomass-derived feedstocks could reduce the cost and
increase their availability in order to facilitate the implementation of these processes.

Table 5. Comparison of C4H6 production processes.

Process Steam Cracking Dehydrogenation Lebedev/Ostromisslenski Dehydration

Feedstock Naphtha Butane/Butenes Bio-ethanol Bio-butanediols

Operating
Conditions

750–900 ◦C,
moderate pressure 600–700/400–500 ◦C 400–650 ◦C 250–350 ◦C

Advantages Installed technology
Well-established

technology,
on-purpose production

Bio-based, on-purpose
production

Bio-based, on-purpose
production

Disadvantages

Energy demanding,
environmental concerns,

finite resources,
limited production

High endothermicity,
catalyst deactivation

Catalyst deactivation,
various by-products

Limited production of
bio-feedstock, various

by-products

Yield to C4H6 4.5% 70.0%/71.8% 72.0%/56.5% up to 95.0%

3. Concluding Remarks

Production of bio-olefins is a broad research field that is continuously expanding, as the demand
is incessantly increasing, worldwide. Biomass derived intermediates offer numerous opportunities for
alternative reaction pathways, yielding ethylene, propylene, or butadiene, in less energy demanding
and cost effective processes that do not exploit the finite fossil resources. Bio-olefins can be produced
via numerous processes, some of which have already been implemented in industrial applications.

Ethanol dehydration is the most promising bio-based process for bio-ethylene production that
has already been installed, operating at relatively moderate temperatures. MTO and DMTO are close
to commercial application, using bio-methanol and bio-DME as feedstocks, for selective ethylene
production. In all cases, limited bio-ethanol supply is a key drawback that affects possibility of
industrial applications. Bio-synthesis is an interesting research subject on selective sustainable
production, but more in-depth studies are essential in order to increase productivity and significantly
lower the cost.

Bio-propylene can be effectively produced through bio-olefin metathesis and glycerol to olefins
methods, operating at relatively moderate conditions with increased bio-propylene yields. In fact,
olefin metathesis technology has already been implemented; however, limited bio-feedstock availability
strongly affects productivity and viability of this process. GTO methods include a wide range of
processes that could yield bio-propylene in lab-scale applications. Nevertheless, studies on the most
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efficient and stable catalyst that will lower hydrogen demand are expected to make these processes
applicable in the near future.

Bio-butadiene can be primarily produced from bio-ethanol via the Lebedev/Ostromisslenski
methods that have been extensively studied in the past decades. Dehydration of bio-butanediols
is the most promising approach, reaching 95% yield to butadiene, at lower temperature than
the other alternatives. Bio-butanol can also be used as a feedstock for bio-butadiene production,
but the high operation cost due to hydrogenation step and high temperature limits feasibility of
implementation. Additionally, C4 bio-feedstock production is also limited in order to ensure future
viable industrial applications.

Overall, several bio-based processes have been proposed with high potential in bio-olefin
yields. Even though the majority of them are still in laboratory scale, a few have already been
implemented around the world. The main drawback in the scale-up of these processes is the availability
of the bio-feedstocks which can be produced from various biomass derivatives via fermentation,
bio-synthesis, cracking, and deoxygenation among others. Future studies should mainly focus on
increasing the productivity of these methods, along with reducing the cost, in order to facilitate
their implementation in bio-olefin production units. In most catalytic approaches, novel low-cost
catalytic systems with improved properties regarding selectivity and reaction conditions should also
be researched to advance future applications.
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