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Abstract: The quantitative structure-activity relationship (QSAR) of 18 Ti-phenoxy-imine
(FI-Ti)-based catalysts was investigated to clarify the role of the structural properties of the catalysts
in polyethylene polymerization activity. The electronic properties of the FI-Ti catalysts were
analyzed based on density functional theory with the M06L/6-31G** and LANL2DZ basis functions.
The analysis results of the QSAR equation with a genetic algorithm showed that the polyethylene
catalytic activity mainly depended on the highest occupied molecular orbital energy level and
the total charge of the substituent group on phenylimine ring. The QSAR models showed good
predictive ability (R2) and R2 cross validation (R2

cv) values of greater than 0.927. The design concept is
“head-hat”, where the hats are the phenoxy-imine substituents, and the heads are the transition metals.
Thus, for the newly designed series, the phenoxy-imine substituents still remained, while the Ti metal
was replaced by Zr or Ni transition metals, entitled FI-Zr and FI-Ni, respectively. Consequently,
their polyethylene polymerization activities were predicted based on the obtained QSAR of the FI-Ti
models, and it is noteworthy that the FI-Ni metallocene catalysts tend to increase the polyethylene
catalytic activity more than that of FI-Zr complexes. Therefore, the new designs of the FI-Ni series are
proposed as candidate catalysts for polyethylene polymerization, with their predicted activities in
the range of 35,000–48,000 kg(PE)/mol(Cat.)·MPa·h. This combined density functional theory and
QSAR analysis is useful and straightforward for molecular design or catalyst screening, especially in
industrial research.
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1. Introduction

As an inexpensive material, polyethylene (PE) has drawn significant attention due to its excellent
physical properties, such as high mechanical strength, high elasticity and high resistivity towards
corrosion, light weightness, and reusability [1–4]. Normally, the polyethylene materials are prepared
via the coordination polymerization using different categories of catalysts, among which metallocenes
are very promising candidates that provide high activity and selectivity [5–11]. Many experimental and
theoretical methodologies show that the structures of the metallocenes determine their macroscopic
properties and catalytic behaviors. Understanding these structures can thus lead to the development
of new catalysts with improved properties.

Recently, the development of single site olefin polymerization is one of the hot topics in industrial
polyolefins. Generally, to improve the polymerization catalytic performance, there are two desirable
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methods: modification of ligands or transition metal substitutions [11–17]. Each fine-tuned ligand
unit can offer various structural and electronic properties that influence the catalytic activity [13,18].
In particular, phenoxy-imine can efficiently provide a suitable bulky structure for the ethylene
polymerization process. The bidentate ligand was successfully studied by Fujita and co-workers
through the generation of a bis(phenoxy-imine) transition metal complex [19–24]. The formation
of this organic bulky substituent enhances the catalytic activity, thus initiating the polymerization.
Therefore, nowadays, many researchers aim to develop efficient catalysts through ligand design and
functionality modification [25–29]. In addition, the metal center was also investigated by substitution
between early transition metals and late transition metals, such as Ti and Ni, respectively [2,5,30,31].

Since current technologies offer high efficiency and performance in simulations and calculations,
computational studies of catalyst chemistry are becoming more and more applied to clarify phenomena
in molecules. Significant polyolefin catalyst research has been adopted in order to understand the
molecular details. As with polyolefin Ziegler–Natta catalysts, Ratanasak and co-worker declared
that the calculation results could reasonably explain the role of both electric and steric parameters
on catalytic activity and stereoselectivity via density functional theory (DFT) calculations [32,33].
Moreover, the group of Ojwach reported the DFT study of transition metal complex catalysts,
which justified that the molecular structure directly affected the catalytic activity [2,34]. The theoretical
study of polyethylene polymerization via a titanium phenoxy-imine catalyst was further carried out
by Nikitin and co-workers [35]. Their DFT calculations showed that both the structural and electronic
properties were related to the experimental catalytic activities. The key parameter was the energy band
gap of the frontier molecular orbitals, which depended on the active site of the catalyst. By tuning
this parameter, it was showed that the structures and type of substituent groups on the ligands had a
significant impact on the energy band gap and catalytic performance. Nevertheless, there was still
a lack of information regarding the metal center effect, although this was directly positioned at the
active site.

The quantitative structure–activity relationship (QSAR) method, an approach for examining
the activities of these catalysts in relation to their structures, is widely applied in catalyst
research [28,32,36–39]. In particular, this technique can also provide a better explanation of the different
types of electronic and steric factors, which not only affect the bond lengths and angles, but also the
highest occupied molecular orbital (HOMO) energy, the lowest unoccupied molecular orbital (LUMO)
energy, and the atomic charge. As a result, this quantitative analysis can give an effective insight into
the efficiency of different catalysts based on their structure and electronic properties. Thus, in this work,
the DFT optimization method and QSAR analysis were applied to investigate the electronic descriptors
of Ti-phenoxyimine (FI-Ti) metallocene catalysts related to their polyethylene polymerization activity.
A genetic algorithm with multiple linear regression (GA-MLR) was selected to derive the QSAR
equations [40–43]. Based on the best obtained QSAR equation, it was then used to predict the
polyethylene polymerization activity of the newly designed Zr- and Ni-phenoxyimine catalysts.

2. Results and Discussion

2.1. Electronic Properties

In this work, we studied the relationship between the PE activity and the basic electronic properties
of the FI-Ti catalysts. Eighteen FI-Ti catalysts were used as a training set for manipulating the
QSAR equation. The structure details of each candidate and their experimental catalyst activity
that were collected from Nikitin’s work [35] are shown in Table 1 (for more details regarding
experimental data, see Materials and Methods). The range of PE catalytic activities (A) was found to
be 4100–54,200 kg(PE)/mol(Cat.)·MPa·h. Therefore, the activities were converted into ln(A) values
(listed in Table 1), which is the same unit as the electronic properties. Based on the QSAR equation,
the experimental activity would serve as the dependent variable, while the electronic properties
would be independent ones. Thus, all catalysts were built and then optimized using DFT with the
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M06L exchange-correlation functional [44] via the 6-31G** and LANL2DZ basis functions. The M06L,
an empirical functional, is accurate for noncovalent interactions, main group thermochemistry, and
transition metals [45,46]. In this work, we applied the M06L functional with 6-31G** for C, H, O,
N, and Br, and LANL2DZ for Ti, Ni, and Zr. The selection of the M06L functional is based on
previous benchmark studies [46–48]. Zhao and Truhlar [46] reported that M06L has reasonably good
overall performance, and it is the best functional for transition metal energetics, and for the study of
organometallic and inorganometallic thermochemistry. Furthermore, M06L was reported as a good
choice for calculations on some small non-covalent dimers in both geometric and electronic studies [47].
In addition, the M06L functional was successfully carried out on dihydropyrazine series annulated
linear polyacene systems to study the aromaticity and HOMO–LUMO energy [48].

Table 1. Chemical structure of FI-Ti catalysts with different substituents R1, R2, and R3 (data cited
from reference [35]).
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imine ligands, there are three substituents attached on phenyl rings; R1 and R2 were o- and p-
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1Ti t-Bu H H 4100 3.613
2Ti t-Bu H m-OAll 17,800 4.250
3Ti t-Bu H p-OAll 54,200 4.734
4Ti t-Bu Me H 17,100 4.233
5Ti t-Bu Me m-OAll 13,600 4.134
6Ti t-Bu Me p-OAll 39,000 4.591
7Ti t-Bu t-Bu H 19,400 4.288
8Ti t-Bu t-Bu m-OAll 12,400 4.093
9Ti t-Bu t-Bu p-OAll 33,000 4.519

10Ti Cumyl H H 27,400 4.438
11Ti Cumyl H m-OAll 32,600 4.513
12Ti Cumyl H p-OAll 34,500 4.538
13Ti Cumyl Me H 34,050 4.532
14Ti Cumyl Me m-OAll 19,800 4.297
15Ti Cumyl Me p-OAll 29,400 4.468
16Ti Cumyl Cumyl H 18,550 4.268
17Ti Cumyl Cumyl m-OAll 26,000 4.415
18Ti Cumyl Cumyl p-OAll 25,700 4.410

Based on the optimized FI-Ti structures, with consideration of a symmetric skeleton structure
of metallocene catalysts (see inserted figure of Table 2), there is only one Ti atom, thus, the partial
charge of the Ti atom was collected. Alternatively, a pair of O, N, and Cl atoms coordinated to Ti
metal; therefore, the charge of O, N, and Cl was calculated from the average charge of (eA + eB)/2,
where the eA and eB are the partial charge of OA, NA, or ClA, and OB, NB, or ClB, respectively. For the
phenoxy-imine ligands, there are three substituents attached on phenyl rings; R1 and R2 were o- and
p-substitutions on phenoxy ring I, respectively, whereas R3 was a m-, or p-substituent on phenylimine
ring II. Therefore, to elucidate the electronic effects of ligand substitution, the partial charge of all
atoms in each substituent group was combined, which recalled the total charge of the R1, R2 and
R3 groups. However, based on the bis-phenoxyimine structure, there are pairs of R1, R2, and R3;
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therefore, the electronic charge of ligand substitutions was calculated from (tA + tB)/2, where tA is
the total charge of the R1A, R2A, or R3A group, and tB is the total charge of the R1B, R2B, or R3B group.
In addition, the HOMO energy, LUMO energy, and the HOMO–LUMO energy gap (E-gap) were also
included, as listed in Table 2.

Table 2. FI-Ti electronic descriptor data.
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2.2. QSAR Model Relationship

The main steps in the QSAR study were the calculations and selections of structural descriptors
as numerical variables representing each chemical structure. Firstly, the ln(A) activity and all electronic
descriptors were calculated, and the pairwise correlation-located correlation coefficient was a number
that was a measure of the strength and the direction of the correlation between two variables. It was
be expressed using the variable r, where r was between 1 and −1. Thus, the data points with a perfect
strength line are r = −1 or r = 1. When r < 0 or r > 0, the data would have negative or positive
associations, respectively. The obtained correlation coefficients of greater than ±0.8 were classified
as being intercorrelated, and only one of them with a high correlation with the activity data was
considered in developing the model. Based on our correlation matrix in Table 3, the high correlation
coefficient was only found on HOMO and LUMO pairwise, with a 0.890 correlation coefficient value.
However, both of them resulted in similar correlation coefficients to ln(A); therefore, these two
descriptors would be further selected by the occurrences of the population in the genetic algorithm
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(GA) process. Then, all 10 electronic descriptors were used as input descriptors for manipulating the
QSAR equation of the FI-Ti catalysts.

GAs are a well-known and widely employed variable selection method that is used to solve the
optimization problems defined by fitness criteria, applying the evolution hypothesis of Darwin and
various genetic functions, i.e., cross-over and mutation [49–52]. GAs have been applied in various
fields for many applications involving regression problems, and they offer a new approach to the
problem of QSAR models. By using the major characteristics of Darwinian evolution, GAs can
construct complicated models that not only use linear polynomials, but also higher-order polynomials,
splines and Gaussians, allowing for the production of a more widespread model [43,53–57].
Generally, GAs work with a set of strings that are called a population. This population is evolved
in such a manner that leads it toward the objective of the search. There are three operations of
selection, crossover and mutation, which are iteratively performed, and then newly added members
are scored according to a fitness criterion that is related to the quality of the regression fit to the
data. Thus, the selection probabilities must be re-evaluated each time a new member is added
to the population, and then the convergence is triggered by a lack of progress in the highest and
average scores of the population [57]. Therefore, in this work, to select the most relevant descriptors,
the evolution of the population was simulated and the occurrences of populations of 10 descriptors
are depicted in Figure 1. As the GA population of each parameter was considered to be the basic
value of fitness for the QSAR model, it was found that the HOMO energy level exhibits the highest
value, followed by the R3 total charge, and then the Ti charge with occurrences in population of
2097, 1067, and 351, respectively, whereas the rest of the descriptors only resulted in a range of
10–67 populations, as shown in Figure 1. This indicates that the FI-Ti catalytic activity is closely
related to the HOMO energy level, the R3 total charge, and the Ti charge. Looking into the details
of both correlation coefficient and occurrences of populations, we observed that the complex with
the lower HOMO energy level combined with the higher negative charge of the R3 substituent group
showed the better catalytic activity (see in Table 2). For example, the complex 3Ti with a low HOMO
energy of −0.194 eV and high R3 negative charge of −1.230 achieved the highest PE activity value of
54,200 kg(PE)/mol(Cat.)·MPa·h, while complex 1Ti with R3 positive charge gave the lowest catalytic
activity of 4100 kg(PE)/mol(Cat.)·MPa·h. Consequently, when the substituents differ, the Ti center
atom charge was also affected, and complexes with a Ti charge of ~1.24–1.25 showed higher catalytic
activity than the others. Thus, these three descriptors would further be set as independent variables in
the QSAR equation investigation.

Table 3. Correlation matrix of polyethylene (PE) activity in term of ln(A) and 10 electronic properties.
High correlations (≥±0.8) are labelled in gray cells.

Des. ln(A) Ti a O b N b Cl b R1 c R2 c R3 c HOMO LUMO E-Gap
ln(A) 1.000 0.155 0.119 −0.084 0.033 −0.298 0.041 −0.380 0.355 0.327 −0.225

Tia 0.155 1.000 −0.312 0.119 −0.294 −0.468 −0.290 0.114 −0.156 0.040 0.391
Ob 0.119 −0.312 1.000 0.175 −0.003 −0.268 0.027 −0.169 0.449 0.296 −0.472
Nb -0.084 0.119 0.175 1.000 −0.568 −0.032 −0.128 0.159 0.397 0.550 0.043
Clb 0.033 −0.294 −0.003 −0.568 1.000 −0.065 0.501 0.219 −0.524 −0.636 0.087
R1c -0.298 −0.468 −0.268 −0.032 −0.065 1.000 0.002 0.112 −0.280 −0.225 0.230
R2c 0.041 −0.290 0.027 −0.128 0.501 0.002 1.000 0.017 −0.480 −0.567 0.103
R3c -0.380 0.114 −0.169 0.159 0.219 0.112 0.017 1.000 −0.347 −0.396 0.096

HOMO 0.355 −0.156 0.449 0.397 −0.524 −0.280 −0.480 −0.347 1.000 0.890 −0.684
LUMO 0.327 0.040 0.296 0.550 −0.636 −0.225 −0.567 −0.396 0.890 1.000 −0.275
E-Gap -0.225 0.391 −0.472 0.043 0.087 0.230 0.103 0.096 −0.684 −0.275 1.000

a = partial charge (e), b = average charge (e), c = average of total charge of substituent group (e).
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Figure 1. Occurrences of populations of 10 electronic descriptors by the genetic algorithm (GA) method.

From the GA population results, we found the promising parameter candidates for QSAR model
construction, then, those three electronic parameters of the HOMO energy level, R3 total charge and Ti
atomic charge were used to generate Equation (1) see Table 4. With consideration of QSAR Equation (1),
the linear function was found to describe the relationship between the PE catalytic activity in terms of
ln(A) and three electronic properties, the R3 charge, HOMO energy, and Ti atomic charge. It consisted
of ramp functions that are continuous functions, segmented in three parts: xfit(t) = x1 for t ≤ t1, x2 for
t ≥ t2, and linearly connected between t1 and t2. This type of function is very useful and has many
applications in engineering and mathematics [58,59]. As shown in Table 4, Equation (1) exhibited
an excellent correlation with an R-squared (R2) value of 0.992. The obtained model also showed a
high prediction ability with a cross-validated technique R-squared (R2

cv) value of 0.936. In addition,
the data distribution was evaluated by the F value, which resulted in 168.295. Although it seems that
this model is a good model, the population data of the GA imposed a question on us that Ti charge
population was actually very small compared with the other two descriptors. Furthermore, based on
the “head-hat” design concept, the Ti center would be replaced with other metals; thus, to avoid the
direct effect of the metal’s partial charge, the elimination of the Ti charge parameter was suitable to
accomplish a better QSAR model.

Table 4. Statistical results of quantitative structure-activity relationship (QSAR) equations on
FI-Ti series.

No Equation c R2 R2
cv F Value

Equation (1)

ln(Activity) = 26.09 × (R3 Charge + 0.22) − 7.47 × (R3
Charge + 1.18) + 497.87 × (HOMO + 0.19) − 494.72 ×
(HOMO + 0.19) − 7.81 × ( 1.24 − Ti-Charge) + 1943.36 ×
(−0.20 - HOMO) − 3345.07 × (−0.20 − HOMO) + 4.73

0.992 0.936 168.295

Equation (2) a

ln(Activity) = −4.91 × (R3 Charge + 1.22) + 23.54 × (R3
Charge + 0.13) + 33949.84 × (−0.19 − HOMO) − 2361.91
× (−0.20 − HOMO) + 743.80 × (−0.20 − HOMO) −
33941.61 × (−0.19 − HOMO) + 5.00

0.992 0.984 230.917

Equation (3) b

ln(Activity) = −9.15 × (R3 Charge + 1.17) + 30.70 × (R3
Charge + 0.24) − 257.00 × (HOMO + 0.189) + 225.65 ×
(HOMO + 0.19) −1938.84 × (−0.20 − HOMO) + 533.89 *
(−0.20 − HOMO) + 4.74

0.997 0.927 564.305

a reduced Ti-charge descriptor, b deleted outliers, c linearity ramp function equation.
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2.3. QSAR Model Improvement via the Elimination of Insignificant Descriptors and Outliers

As discussed above, the Ti charge exhibited a significantly lower occurrence population when
compared with the two properties in Equation (1). Thus, an elimination of the weak parameter strategy
was applied. The two-descriptor models of the HOMO energy levels, and the R3 total charge was
generated. As shown in Table 4, the QSAR Equation (2) still obtained a good predictive ability with an
R2 value of 0.992 and rising on R2

cv of 0.984. Furthermore, the data distribution F value of Equation (2)
was also increased to 230.917, which was higher than that in Equation (1). It is noteworthy that with
only two electronic property variables, the obtained QSAR model resulted in higher reliability and
better predictive ability. The analysis results confirmed that the partial Ti atom charge plays a less
important role in PE catalytic activity prediction.

Generally, with the exception of the predictive ability, the model with the higher F value was
considered to be the better model. Although Equation (2) showed very good correlation and predictable
ability, if there were some choices for more accurate predicted results, it would be completed to improve
the model. Thus, based on Equation (2), the accuracy was considered via the residual value that was
calculated from the experimental and predicted ln(A) of PE polymerization, as illustrated in Figure 2.
The graph shows that there were two outliers exhibiting more than a |2| scaled residual value,
which are the complexes 6Ti (2.128) and 12Ti (−2.168). These outliers show high residual results for
the predicted activity compared to the others, and this reason led to the error of the whole model.
Thus, to further improve the QSAR model, the data of 6Ti and 12Ti complexes were eliminated,
and then QSAR Equation (3) was generated. The results indicated that the new model of Equation (3)
achieved a superior higher F value of 564.305, which was twice that of the previous one, while still
exhibiting high prediction ability with an R2 of 0.997 and an R2

cv of 0.927. Therefore, both Equations (2)
and (3) were selected to predict the PE activity of FI-Ti catalysts using the GA-MLR of the ramp
function, and their graphical plots between the experimental and predicted PE activities are depicted
in Figure 3a,b, respectively.
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2.4. Prediction of PE Polymerization Activity for Newly Designed Zr and Ni Phenoxyimine Catalysts

We propose the design concept of “head-hat”, where the hats are phenoxy-imine substituents and
the heads are transition metals. In this work, based on the training set of the FI-Ti catalysts, the Ti
metal center was then replaced by Zr or Ni transition metals, while keeping the same phenoxy-imine
substituents, namely, the FI-Zr and FI-Ni series, respectively, as shown in Table 5. The new FI-Zr
and FI-Ni complex structures were systemically built and optimized using the same criteria as the
FI-Ti catalysts. Their HOMO energy levels and R3 total charges were then extracted. The prediction
of the PE activities of the new FI-Zr and FI-Ni catalysts was carried out by applying QSAR model
Equations (2) and (3), as listed in Table 5. Furthermore, to investigate the PE polymerization tendency
performance, the results of the overall PE catalytic activities versus the Ti, Zr, and Ni phenoxy-imine
complexes were plotted using Equations (2) and (3), as depicted in Figure 4a,b, respectively. Based on
the graphical plots, the trend of higher PE activity was found to follow the order of FI-Ni > FI-Ti >
FI-Zr, which agreed well with both QSAR Equations (2) and (3).

In Table 5, assuming the purposed metallocenes for PE catalysts could obtain the theoretical PE
activities prediction of higher than 35,000 kg(PE)/mol(Cat.)·MPa·h. Thus, an insight into the details
of predicted PE activities for the FI-Zr and FI-Ni series based on Equation (2) consisted of 7Zr, 2Ni,
3Ni, 4Ni, 6Ni, 7Ni, 10Ni, 12Ni, 13Ni, and 15Ni. Whereas the predictions from Equation (3) were
found at 9Zr, 2Ni, 3Ni, 10Ni and 11Ni. Therefore, by the intersection results of Equations (2) and (3),
the new proposed catalysts for PE polymerization are 2Ni, 3Ni, and 10Ni and they are expected to
be potential catalysts with predicted PE catalytic activities (Equation (3)) of 47324, 37871, and 41383
kg(PE)/mol(Cat.)·MPa·h, respectively. When looking into the details of these proposed catalysts, our
QSAR finding suggested that the higher HOMO energy level and the negative total charge of R3

substituents tend to increase the PE activity.

Table 5. Electronic descriptors and predicted activities from Equations (2) and (3) of newly designed
FI-Zr and FI-Ni catalysts. The higher predicted activities of PE polymerization more than 35,000
kg(PE)/mol(Cat.) MPa·h are highlighted in red numbers.

Complex
Substituents Descriptors Predicted PE Activity a

R1 R2 R3 R3-Charge HOMO

Equation (2) Equation (3)

2-Zr t-Bu H m-OAll −1.115 −0.199 12,260 11,474
3-Zr t-Bu H p-OAll −1.124 −0.194 18,134 19,368
4-Zr t-Bu Me H 0.135 −0.194 19,141 17,009
5-Zr t-Bu Me m-OAll −1.105 −0.197 15,335 12,979
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Table 5. Cont.

Complex
Substituents Descriptors Predicted PE Activity a

R1 R2 R3 R3-Charge HOMO

Equation (2) Equation (3)

6-Zr t-Bu Me p-OAll −1.119 −0.190 31,764 24,327
7-Zr t-Bu t-Bu H 0.135 −0.198 43,697 32,147
8-Zr t-Bu t-Bu m-OAll −1.096 −0.192 12,709 10,737
9-Zr t-Bu t-Bu p-OAll −1.117 −0.189 30,879 36,923
10-Zr Cumyl H H 0.136 −0.199 25,310 2709
11-Zr Cumyl H m-OAll −1.128 −0.197 20,015 21,072
12-Zr Cumyl H p-OAll −1.124 −0.191 17,239 19,574
13-Zr Cumyl Me H 0.134 −0.191 33,901 21,331
14-Zr Cumyl Me m-OAll −1.123 −0.193 17,624 18,965
15-Zr Cumyl Me p-OAll −1.116 −0.187 30,705 31,103
16-Zr Cumyl Cumyl H 0.119 −0.190 17,817 12,411
17-Zr Cumyl Cumyl m-OAll −1.096 −0.189 24,490 24,515
18-Zr Cumyl Cumyl p-OAll −1.101 −0.189 25,768 27,286
2-Ni t-Bu H m-OAll −1.132 −0.188 36,587 47,324
3-Ni t-Bu H p-OAll −1.136 −0.183 38,497 37,871
4-Ni t-Bu Me H 0.138 −0.183 40,245 28,649
5-Ni t-Bu Me m-OAll −1.104 −0.182 26,809 17,645
6-Ni t-Bu Me p-OAll −1.135 −0.177 37,849 22,786
7-Ni t-Bu t-Bu H 0.138 −0.183 40,245 27,974
10-Ni t-Bu t-Bu m-OAll −0.140 −0.187 43,849 41,383
11-Ni t-Bu t-Bu p-OAll −1.126 -0.186 34,187 35,222
12-Ni Cumyl H H −1.145 −0.180 42,380 34,431
13-Ni Cumyl H m-OAll 0.137 −0.179 38,555 21,053
14-Ni Cumyl H p-OAll −1.124 −0.181 33,422 24,122
15-Ni Cumyl Me H −1.132 −0.176 36,794 19,909
16-Ni Cumyl Me m-OAll 0.130 −0.178 28,557 13,369
17-Ni Cumyl Me p-OAll −1.101 −0.176 25,915 10,772
18-Ni Cumyl Cumyl H −1.098 −0.178 25,050 11,616

a in units of kg(PE)/mol(Cat.)·MPa·h.
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3. Materials and Methods

3.1. Source of Experimental Datasets

For the experimental data of PE activity over the FI-Ti catalysts, the time-averaged activity of the
FI-Ti catalysts in ethylene polymerization is defined as:

activity =
MC2 H4

∫ τ
0 Wp(t)dt

CTi pC2 H4 τ
(4)

where M(C2H4) and p(C2H4) denote the molecular weight and the pressure of ethylene, respectively;
CTi is the initial concentration of a catalyst, τ is polymerization time, and Wp(t) is the propagation rate
given by:

Wp = ke f f [Ti]act[C2H4] (5)

where keff is the effective rate constant (activity of a single active site) and [Ti]act and [C2H4] denote the
concentrations of active sites and ethylene, respectively. For the QSAR study, the assumption of the
same conditions for obtaining PE polymerization activity is required; thus, the catalytic activity should
be determined by a composite function of keff [Ti]act, as reported by Nikitin et al. [35]. The FI-Ti catalytic
activities for PE polymerization were given in kg(PE)/mol(Cat.)·MPa·h units, and the temperature
conditions were chosen at 40 ◦C except 1Ti, 4Ti, 7Ti, 10Ti, 13Ti and 16Ti, which were estimated by
their 40 ◦C performance condition by (activity(30 ◦C) + activity(50 ◦C))/2. Therefore, the FI-Ti catalytic
activities for PE polymerization in this work were collected from Nikitin’s work and they are listed in
Table 1.

3.2. Structural Optimization

All the calculations were performed with the M06L density functional method using the Gaussian
09 software package (Gaussian, Inc., Wallingford, CT, USA, 2009) [60]. The 6-31G** basis set was used
for C, O, N, H, and Cl, while LANL2DZ was used for Ti, Zr, and Ni. The structures of the metal
complexes were optimized and their energies were calculated to extract electronic and steric properties.
Ten electronic properties were collected: the charges of metal centers with Ti/Zr/Ni atoms, the average
charge of O, N, and Cl, charges of substitution groups on phenoxy-imine ligands of R1, R2, and R3,
HOMO energy, LUMO energy, and bond distances of metal centers to surrounding O, N, and Cl atoms.
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3.3. QSAR Model

In QSAR studies, the choices of descriptors are the important steps to achieve the model with high
correlation and prediction ability [61]. Hence, the GA method as an effective technique to select the
appropriate variables was used in this work. Catalytic activity was defined as the dependent variable,
and there were a total of 10 molecular electronic properties (descriptors), including atomistic charges
and quantum-chemical descriptors, which were fitted via the leave-one-out cross-validation coefficient
value as a fitness function. The genetic function approximation (GFA) algorithm implemented in the
Materials Studio 7.0 package (Accelrys Software Inc., San Diego, CA, USA, 2013) was used to construct
the QSAR models [62].

3.4. Statistical Terms

R2 is the fraction of the total variance of the Y variable (ln(A)) that is explained by the genetic
function approximation equation. R2 is calculated as:

SSR
SST

(6)

where SSR is the sum of squares of regression and SST is the total sum of squares. Generally, the closer
the value is to 1.0, the better the genetic function approximation equation explains the Y variable.

R2
cv is derived from cross validation process, in this work, we used the leave-one-out validation.

The R2
cv is calculated as follows:

1− PRESS
SST

(7)

where PRESS is the predictive sum of squares of a model. The R2
cv represents the predictive power of

a model for further prediction on some new catalysts. For a good model, R2
cv should be close to R2.

The following is used for the F test:

SSR/(p− 1)
SSE/(n− p)

(8)

where SSE is the sum of squares of errors. This is the sum of squared differences between measurements,
and model predictions over the entire data set. SSR is the sum of squares due to regression.
n and p represent the number of data points and the number of parameters in a regression model,
respectively. Thus, the ratio F = {SSR/(p − 1)}/{SSE/(n − p)} is then calculated and compared with the
tabulated values of the F distribution for different values of n and p. The F value is derived from the
F test, indicating the probability of a true relationship, or the significance level of the QSAR model.
The F value is the ratio between explained and unexplained variance for a given number of degrees
of freedom. Therefore, the larger the F value, the greater the probability that the QSAR equation is
significant [62–64].

4. Conclusions

The phenoxy-imine catalysts were tailored by varying the substituent groups on the ligand units
and also the metal center. Their activities were then calculated via DFT. After analyzing the raw data of
the DFT simulations and experimental values of FI-Ti with the QSAR method, the calculated properties
from DFT illustrated the significant relation between realistic catalytic activity and the calculated
electronic descriptors. For the best obtained QSAR models, consisting of two models of Equations (2)
and (3), their R2 and R2

cv values are greater than 0.927. From insight into the QSAR models, the HOMO
energy level and the total charge of R3 substituent electronic properties could be used to predict the
PE activity of the FI-Ti catalysts. The design concept of “head-hat” was applied by replacing the
head of Ti metal by Zr or Ni metals, where the hats were still kept as phenoxy-imine substituents.
Based on the obtained QSAR models derived from the FI-Ti training set, the PE polymerization
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activities of the new metallocene catalysts of the FI-Zr and FI-Ni series were then predicted using
QSAR Equations (2) and (3). To purpose the candidate catalysts, higher PE polymerization activities
than 35,000 kg(PE)/mol(Cat.)·MPa·h on those QSAR models were considered, and it was found
that based on all metallocene complexes that consist of Ni as a metal center atom showed better PE
performance than that of the Ti and Zr metal center pheoxy-imines. Thus, the new purposed catalysts
for PE polymerization are 2Ni, 3Ni and 10Ni metallocene complexes. The present work shows that the
combined DFT and QSAR studies are straightforward methods to derive the relationship between PE
catalytic activity and electronic descriptors, and the obtained QSAR model could be used for evaluating
and designing new catalyst structures in search of promising polyethylene catalysts. This tailor-made
study is beneficial to industrial research, and it is a simple method.
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