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Abstract: Novel magnetically recyclable Fe3O4@Pd nanoparticles (NPs) were favorably synthesized
by fixing palladium on the surface of nitrogen-doped magnetic nanocomposites. These catalysts
were fully characterized by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD),
transmission electron microscopy (TEM), thermogravimetric analysis (TG), and X-ray photoelectron
spectroscopy (XPS). The prepared catalyst exhibited good catalytic activity for Suzuki–Miyaura
coupling reactions of aryl or heteroaryl halides (I, Br, Cl) with arylboronic acids. These as-prepared
catalysts could be readily isolated from the reaction liquid by an external magnet and reused at
least ten times with excellent yields achieved. In addition, using this protocol, the marketed drug
crizotinib (anti-tumor) could be easily synthesized.

Keywords: heterogeneous catalyst; magnetically; palladium catalysts; nitrogen-doped; Suzuki
coupling; crizotinib

1. Introduction

Catalysts are gaining increasing importance, due to their effective manner of solving energy
and resource problems, which have become an important part of achieving sustainable development
strategies in the 21st century [1,2]. Among the noble metals, palladium and nickel are the most
useful catalysts for the formation of C–C bonds in organic transformations [3–5]. In the past,
homogeneous Pd catalysts made significant progress in Suzuki–Miyaura coupling reactions; however,
it is difficult to separate the products and reuse them. To overcome the drawbacks of homogeneous
catalysts, heterogeneous catalysts were significantly explored [6–10]. Heterogeneous catalysis has
some advantages such as a recyclable catalytic systems, nontoxic ligands, and a lower amount of
palladium residues in products [11–14]. The recovery of Pd catalysts from reaction systems is not
easy, and attempts to solve the problem were made by immobilizing the active metal species on
supports, such as carbon, silica, metal oxide, polymer, and nanocomposites [15–20]. The magnetic
core/shell-supported catalyst is an excellent solution, and its intrinsic magnetic properties enable the
efficient separation of the catalysts from the reaction system with an external magnetic field [21,22].
For example, Kumar et al. reported the use of Fe3O4@C/Pd as an excellent catalyst for the
hydrogenation of aromatic nitro compounds, Suzuki coupling, and sequential reactions; the reactions
worked well and gave excellent yields [23]. Sun and coworkers found that the magnetic Fe3O4@C/Pd
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catalyst showed high catalytic activity for the yield of biphenyl, and it could maintain 90% activity even
after being recycled ten times [24]. Fang et al. demonstrated that magnetic Fe3O4@C/Pd microsphere
catalysts were active in Suzuki coupling [25].

Nitrogen-doped carbon has attracted much attention due to its special structure, good properties,
and potential applications [26–30]. Zhang et al. reported that Pd@C–N’s high catalytic performance
is attributed to the unique structure of the catalytic support–metal and support–substrate junctions.
Wang’s group found that an as-synthesized Pd/N–carbon nanotube (CNT) catalyst showed high
catalytic activity in the Heck reaction, and that the catalyst could be reused at least five times in
the aerobic oxidation of benzyl alcohol [31,32]. Movahed and coworkers demonstrated that the
good reactivity of the Pd NP–high nitrogen-doped graphene (HNG) catalyst in Suzuki coupling was
attributed to the high degree of nitrogen loading in graphene sheets [33].

Continuing our longstanding interest in developing novel carbohydrate-derived catalysts for C–C
or C–S coupling reactions [34–38], we were interested in developing a green and efficient chemistry
protocol for C–C coupling reactions and related practical applications. Herein, we describe the efficient
synthesis of a magnetically-recyclable, nitrogen-doped Fe3O4@Pd catalyst for the Suzuki coupling of
aryl or heteroaryl halides (I, Br, Cl) with arylboronic acids. These as-prepared catalysts could be easily
isolated from the reaction mixture using an external magnet, and they could be reused at least ten
times with excellent yields achieved. In addition, the marketed drug crizotinib (anti-tumor) could be
easily synthesized using this protocol.

2. Results and Discussion

The preparation procedures of Fe3O4@C/Pd and Fe3O4@NC/Pd involve three steps, as shown
in Scheme 1. Initially, the Fe3O4 particles were prepared via a robust solvothermal reaction based
on the high-temperature reduction of FeCl3·6H2O in ethylene glycol [39]. Then, a thin carbon layer
was modified with ethylenediamine (EDA) by stirring a mixture of Fe3O4, glucose, and EDA in
water. The mixture was coated on the surface of the magnetite Fe3O4 particles via carbonization
under hydrothermal conditions [40]. Ultimately, the Fe3O4@NC/Pd and Fe3O4@C/Pd catalysts were
obtained upon adding PdCl2 to Fe3O4@NC or Fe3O4@C in ethanol, followed by ascorbic-acid reduction,
to generate Pd(0) nanoparticles.
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Scheme 1. Synthesis of Fe3O4@C/Pd and Fe3O4@NC/Pd catalysts.

These as-prepared catalysts were characterized by infrared analysis (FT-IR), thermogravimetric
analysis (TG), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS),
X-ray diffraction (XRD) and inductively coupled plasma-optical emission spectrometry (ICP-OES).
In Figure 1, the presence of absorption bands at 673 cm−1 could correspond to the absorption band
of Fe–O and 1336 cm−1 could correspond to the O–H bending vibrations; 1558 cm−1 and 3386 cm−1

are associated with the C=O and O–H vibrations, which confirms the successful attachment of
nitrogen-doped carbon on the surface of Fe3O4. This also reflects the carbonization of aminated
glucose during the hydrothermal process and suggests the presence of large amounts of hydrophilic
groups on the Fe3O4@NC [41]. The FTIR spectra of Fe3O4@NC/Pd (c) and Fe3O4@NC (b) were similar
to Fe3O4 (a), however the FTIR spectra of Fe3O4@C/Pd and Fe3O4@NC/Pd were different (Figure S1).
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The existence of absorption bands at 1382 cm−1 (C–H) and 1250 cm−1 (C–O) confirmed the arylide
was adsorbed by Fe3O4@NC/Pd catalyst after the catalytic reaction (Figure S2).Catalysts 2018, 8, x FOR PEER REVIEW  3 of 12 
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Figure 1. Fourier-transform infrared (FTIR) spectra of (a) Fe3O4, (b) Fe3O4@NC, and (c) Fe3O4@NC/Pd.

The thermal stability of Fe3O4 (a), Fe3O4@NC (b) and Fe3O4@NC/Pd (c) was then proved by TG
analysis. Figure 2 shows that catalysts were stable up to 250 ◦C and suggests that their high thermal
stability allows them to be compatible with most organic reactions.
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Figure 2. Thermogravimetric analysis graphs of (a) Fe3O4; (b) Fe3O4@NC; (c) Fe3O4@NC/Pd.

The TEM image of Fe3O4@NC/Pd is shown in Figure 3. These microspheres essentially have
a typical core/shell nanostructure and the average diameter of the catalyst was about 300 nm. The final
morphology of Fe3O4@NC and Fe3O4@C shows a core–shell feature with Pd uniformly deposited
on the surface. The TEM studies confirmed the incorporated Pd NPs on the surface of Fe3O4@NC
nanospheres and also indicated that the catalyst had a core–shell nanostructure. In addition, the results
mean the carbonization did not damage the core–shell structure.
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Figure 3. TEM images of Fe3O4@NC/Pd catalyst.
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As shown in Figure 4, the electronic properties of the Fe3O4@NC/Pd catalyst were probed
by XPS analysis. As shown in Figure 4a, the peaks corresponding to C1s, N 1s, O 1s, and Pd 3s,
3p and 3d were clearly observed in the XPS survey spectroscopy. This indicates that the nitrogen
successfully doped the Fe3O4@Pd NPs. The C1s peak of Fe3O4@NC/Pd catalyst is shown in Figure 4b.
The main peak at 281.1 eV was associated with the C–C, implying that most of the carbon atoms in
the Fe3O4@NC/Pd catalyst were arranged in a conjugated honeycomb lattice. As shown in Figure 4c,
the binding energy of Pd 3d3/2 and Pd 3d5/2 were 331.1 eV and 336.2 eV, respectively. The two peaks
were the characteristic peaks of Pd(0), suggesting that the absorbed Pd(II) was successfully reduced
to Pd(0) nanoparticles under ascorbic-acid reduction. By ICP-OES detection, the content of the Pd
element loaded on Fe3O4@NC/Pd catalyst was found to be 5 wt%.
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Figure 4. XPS spectra of (a) Fe3O4@NC/Pd catalyst, (b) C 1s and (c) Pd 3d.

To evaluate the catalytic performance of these catalysts, Suzuki coupling were carried out as model
reactions. The reactions were carried out using water as the solvent and by coupling 4-iodoanisole (1a)
with phenylboronic acid (2a), and using different reaction parameters such as the base, the temperature,
the time, the dosage and the kind of catalyst to obtain the best reaction conditions. As shown in Table 1,
the Fe3O4 and the magnetic core–carbon shell were not able to catalyze the reaction (Table 1, entries 1–3).
Fe3O4@C/Pd and Fe3O4@NC/Pd showed good results due to their high reactivity, demonstrating,
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respectively, that N-doped carbon has a great influence on the catalytic results, and an increase in the
nitrogen loading in carbon sheet leads to an increase in the product yield (Table 1, entries 4, 5). Then,
various bases such as K2CO3, NaOH, Na2CO3, KOH, Et3N and Cs2CO3 were also screened for their
effect on the reaction (Table 1, entries 5–10); the best yield was obtained when KOH was used (Table 1,
entry 8). Besides, the effect of different temperatures was explored and the results showed that 90 ◦C
was more appropriate for the Suzuki coupling than other temperatures and provided the highest yield
of 96% (Table 1, entries 8, 11–14). Next, the effect of the catalyst dosage was examined and the best
result was obtained when 10 mg Pd was used as the catalyst (Table 1, entries 8, 16–18). Finally, it was
found that the reaction after 0.5 h resulted in a higher yield (Table 1, entries 8, 19–20).

Table 1. Optimization of reaction conditions. a.
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Entry Catalyst (mg) Base Temp (◦C) Time (h) Yield b (%)

1 Fe3O4 K2CO3 90 1 -
2 Fe3O4@C K2CO3 90 1 -
3 Fe3O4@NC K2CO3 90 1 -
4 Fe3O4@C/Pd K2CO3 90 1 84
5 Fe3O4@NC/Pd K2CO3 90 1 93
6 Fe3O4@NC/Pd NaOH 90 1 94
7 Fe3O4@NC/Pd Na2CO3 90 1 92
8 Fe3O4@NC/Pd KOH 90 1 96
9 Fe3O4@NC/Pd Et3N 90 1 71

10 Fe3O4@NC/Pd Cs2CO3 90 1 83
11 Fe3O4@NC/Pd KOH rt 1 66
12 Fe3O4@NC/Pd KOH 50 1 75
13 Fe3O4@NC/Pd KOH 70 1 90
14 Fe3O4@NC/Pd KOH 100 1 95
15 Fe3O4@NC/Pd K2CO3 50 1 70
16 - KOH 90 1 -
17 Fe3O4@NC/Pd KOH 90 1 95 c

18 Fe3O4@NC/Pd KOH 90 1 77 d

19 Fe3O4@NC/Pd KOH 90 0.5 96
20 Fe3O4@NC/Pd KOH 90 0.2 90

a The reaction conditions: 4-iodoanisole 1a (1 mmol), phenylboronic acid 2a (1.5 mmol), 10 mg catalysts, and base
(1.5 mmol) in 3 mL water under air. b Isolated yield. c 20 mg catalysts. d 5 mg catalysts.

After obtaining the optimal reaction conditions, the substrate scope of the aryl halides and
arylboronic acids was studied. As shown in Table 2, the effect of different aryl iodides was first
carried out using phenylboronic acid (2a) as a substrate. The result showed that the substrates with
electron-releasing groups gave good yields when compared to electron-withdrawing groups in aryl
halides (Table 2, entries 1–13) and meta-substituted or ortho-substituted substrates showed lower
yields than the para-substituted arylhalides (Table 2, entries 2,4–7,10–13). These results showed that
the steric hindrance and electronic effect of substrates 1a–m had little effect on the Suzuki coupling
under the optimized reaction conditions. Then, the efficiency of the protocol for the Suzuki coupling of
aryl bromides or chlorides with corresponding boronic acids was examined. The reaction conditions
were quite effective for the coupling of aryl bromides with boronic acids, resulting in high yields
(Table 2, entries 14–16). However, only a moderate yield were obtained when aryl chlorides were
used as the substrate (Table 2, entries 17–20). The coupling reactions using arylboronic acids were also
investigated, and the coupling products were obtained in good yields, the electron-releasing groups
in arylboronic acid gave higher yields compared to substrates bearing electron-withdrawing groups
(Table 2, entries 21–26). Moreover, the optimized reaction conditions were effective for the Suzuki
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coupling of heteroaryl bromides with phenylboronic acids and produced products in satisfactory
yields (Table 2, entries 27–32).

Table 2. Suzuki coupling between aryl halides and arylboronic acids in the presence of Fe3O4@NC/Pd.
a.
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With this methodology in hand, we turned our attention to the preparation of crizotinib, which
is a potent and selective Me-senchymal epithelial factor/anaplastic lymphoma kinase (c-Met/ALK)
inhibitor (Scheme 2) [42]. Crizotinib has a palladium residue problem because the aminopyridine
coordinates to palladium to form the corresponding stable compounds. As a result, the separation of the
crizotinib API from the residual palladium has been a challenging task [43]. Thus, the coupling between
aryl bromide 4 and pinacol boronate 5 were carried out employing this method. This transformation
was accomplished with excellent results in the presence of the Fe3O4@NC/Pd catalyst and KOH in
water at 90 ◦C for 6 h. Then the intermediate 6 was treated with 4 M HCl in 1,4-dioxane/CH2Cl2,
and the crizotinib API was isolated in very high yield (95%) with >99% purity and <10 ppm Pd.
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The recyclability of the catalyst was then studied using the Suzuki coupling reaction. The reuse
experiments for the Fe3O4@NC/Pd catalyst were carried out and the catalyst was able to be separated
by a permanent magnet after each round and reused in next catalytic reaction. As shown in Figure 5,
the magnetic catalyst remained effective and stable after the tenth round, affording a coupling product
with 90% yield, which indicated the good stability of the Fe3O4@NC/Pd catalyst.

Catalysts 2018, 8, x FOR PEER REVIEW  7 of 12 

 

transformation was accomplished with excellent results in the presence of the Fe3O4@NC/Pd catalyst 
and KOH in water at 90 °C for 6 h. Then the intermediate 6 was treated with 4 M HCl in 
1,4‐dioxane/CH2Cl2, and the crizotinib API was isolated in very high yield (95%) with >99% purity 
and <10 ppm Pd. 

 
Scheme 2. Application of the catalyst in the synthesis of crizotinib. 

The recyclability of the catalyst was then studied using the Suzuki coupling reaction. The reuse 
experiments for the Fe3O4@NC/Pd catalyst were carried out and the catalyst was able to be separated 
by a permanent magnet after each round and reused in next catalytic reaction. As shown in Figure 5, 
the magnetic catalyst remained effective and stable after the tenth round, affording a coupling 
product with 90% yield, which indicated the good stability of the Fe3O4@NC/Pd catalyst. 

0 2 4 6 8 10
0

10

20

30

40

50

60

70

80

90

100

90919393

`

9595

93

959696

 

 

Yi
el

d(
%

)

Runs

96

 
Figure 5. Recycling and reuse of Fe3O4@NC/Pd in the Suzuki coupling. 

It is well known that using magnetic separation to recycle catalysts is much easier than filtration 
and centrifugation. A key factor to be investigated is the stability of the catalyst: the leaching of 
active species into the reaction mixture. When exploring the leaching of Pd from the catalyst, the 
concentration of Pd in the Fe3O4@NC/Pd catalyst was found to be unchanged using ICP‐OES 
analysis. A hot filleting leaching experiment was also conducted. After 0.5 h, the magnetic 

Figure 5. Recycling and reuse of Fe3O4@NC/Pd in the Suzuki coupling.

It is well known that using magnetic separation to recycle catalysts is much easier than filtration
and centrifugation. A key factor to be investigated is the stability of the catalyst: the leaching of active
species into the reaction mixture. When exploring the leaching of Pd from the catalyst, the concentration
of Pd in the Fe3O4@NC/Pd catalyst was found to be unchanged using ICP-OES analysis. A hot
filleting leaching experiment was also conducted. After 0.5 h, the magnetic Fe3O4@NC/Pd catalyst
was collected by an external magnet, and the clear liquid solution was continuously stirred at 90 ◦C for
3 h and 2 ppm palladium was determined in the reaction solution, which indicated that there was no
leaching of palladium from the catalyst to the reaction solution.
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3. Experimental Materials

The starting materials were commercially available and were used without further purification
except for the solvents. Ferric chloride hexahydrate (FeCl3·6H2O) was provided by Shanghai Darui
Fine Chemicals Co. Ltd (Shanghai, China). Glucose was obtained from Chinasun Specialty Products
Co. Ltd (Changshu, China). Sodium acetate anhydrous and ethylene glycol were provided by
Shanghai Ling Feng Chemical Reagent Co. Ltd (Shanghai, China). Polyvinyl pyrrolidone (PVP) and
ethylenediamine (EDA) were supplied by Aladdin (Shanghai, China). Palladium(II) chloride (PdCl2,
59.5%) was provided by J&K Scientific Ltd (Shanghai, China). Other materials were of analytical grade
and used as received.

3.1. Characterization

Fourier-transform infrared (FTIR) spectra were determined with a Bruker Tensor 27 FT-IR (Swiss
Brüker, Hangzhou, China) using KBr pellets. Melting points were measured on an X-6 Data microscopic
melting point apparatus. Transmission electron microscopy (TEM) images were obtained from
a FEI T20 microscope (FEI, Shanghai, China). X-ray diffraction (XRD) measurements were obtained
using a Shimadzu XRD-6000 spectrometer (Shimadzu Corp, Beijing, China). X-ray photoelectron
spectrographs (XPS) were determined with an Axis Ultra DLD electron spectrometer (Kratos Analytical,
Manchester, UK) with the C1s = 284.8 eV signal as the internal standard. The magnetic properties of
the catalysts were measured using a vibrating sample magnetometer (VSM) (Lake Shore, New York,
NY, USA). Thermogravimetric analyses (TG) were performed with a Q600 simultaneous DSC-TGA
(TA Instruments, Shanghai, China) at 20 ◦C/min in a nitrogen atmosphere (150 mL/min). A total of
10 mg of each sample in an alumina pan was analyzed in the 30–800 ◦C temperature range.1H and
13C NMR spectra were measured with a Bruker Advance 400 spectrometer (Swiss Brüker, Hangzhou,
China). by using CDCl3 or DMSO-d6 as solvents and TMS as the internal standard. The Pd content in
the catalyst was measured using a Perkin-Elmer Optima 2100 DV (PerkinElmer, Shanghai, China).

3.2. Preparation of Fe3O4 Nanoparticles

Fe3O4 nanoparticles were prepared using a solvothermal reaction method [44]. Typically,
FeCl3·6H2O (1.5 g), NaAC (2 g) and PVP (1 g) were dissolved in ethylene glycol (30 mL) under
magnetic stirring. The resultant solution was transferred into a Teflon-lined stainless steel autoclave,
sealed, and heated to 200 ◦C for 12 h. After completion of the reaction, the resulting product was
separated using an external magnet and washed several times with ethanol water. Finally, the black
Fe3O4 nanoparticles were dried under vacuum at 60 ◦C for 24 h.

3.3. Preparation of Fe3O4@C Nanoparticles

Fe3O4@C was prepared by the in situ carbonization of glucose in the presence of Fe3O4 under
hydrothermal conditions [45]. Fe3O4 nanoparticles (200 mg) were dispersed in water (10 mL)
containing glucose (3.2 g) by ultrasonication. Subsequently, it was put into a Teflon lined stainless
steel autoclave, sealed, and heated at 180 ◦C for 10 h and cooled down at room temperature. After
completion of the reaction, the resulting nanoparticles were obtained by an external magnet and
washed with ethanol followed by water. Finally, the black colored product was dried under vacuum
for 24 h to produce Fe3O4@C nanoparticles.

3.4. Preparation of Fe3O4@NC Nanoparticles

Fe3O4@NC was synthesized according to the procedure described in the literature [46]. Fe3O4

nanoparticles (100 mg) were first put into 10 mL water containing ethylenediamine (EDA) (0.2 mL) and
glucose (1.6 g) and ultrasonicated. Subsequently, the mixture was placed into a Teflon-lined stainless
steel autoclave, then the autoclave was sealed and heated at 180 ◦C for 10 h, before cooling to room
temperature. After completion of the reaction, the product was obtained by an external magnet and
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washed several times with ethanol and water. Lastly, the black colored product was dried under
vacuum for 24 h to provide Fe3O4@NC nanoparticles.

3.5. Preparation of the Fe3O4@C/Pd and Fe3O4@NC/Pd Catalyst

The Fe3O4@C/Pd and Fe3O4@NC/Pd catalyst were prepared using a published method [45,46].
Typically, the Fe3O4@C and Fe3O4@NC (400 mg) was well-dispersed in ethanol (40 mL) under
ultrasonication for 0.5 h. The resulting black suspension was ultrasonically mixed with PdCl2 (35 mg)
ethanol solution (3 mL) for 1 h, then an ascorbic acid ethanol solution (8 mL) was dropped into the
above mixture with vigorous stirring under 60 ◦C. After 2 h of reduction, the products were separated
by a permanent magnet and washed several times with water. The products were dried in vacuum to
provide Fe3O4@C/Pd and Fe3O4@NC/Pd.

3.6. General Procedure for the Suzuki Coupling Reactions

Aryl halides (1.0 mmol), arylboronic acid (1.5 mmol), KOH (1.5 mmol), Fe3O4@NC/Pd (10 mg)
and 3 mL H2O were put into a reaction flask and stirred at 90 ◦C under air. After the reaction was
complete, the reaction was cooled to room temperature. Then the mixture was extracted with ethyl
acetate, dried (MgSO4), filtered, and concentrated in vacuo.

The crude product was purified by column chromatography on silica gel using petroleum/ethyl
acetate at 100:1 to afford product.

3.7. General Procedure for Catalyst Recovery

The 4-iodoanisole (1.0 mmol), phenylboronic acid (1.5 mmol), KOH (1.5 mmol), and Fe3O4@NC/Pd
(10 mg) were mixed in H2O (3 mL). The mixture was stirred at 90 ◦C under air. After the completion of
the reaction, the catalyst was separated by a permanent magnet and washed with water (3 × 2 mL) and
ethanol (3 × 2 mL), then dried in a vacuum and used in the next round.

4. Conclusions

In summary, we developed a novel magnetic Fe3O4@NC/Pd, which showed good catalytic
activity in the Suzuki coupling of various aryl halides with different arylboronic acids. This catalyst
was easily recovered from the reaction by a permanent magnet, and was reused ten times with excellent
yields obtained. In addition, this catalyst had high stability, and palladium was hardly ever determined
in the reaction solution. Moreover, this catalyst made it easy to synthesize the marketed drug Crizotinib
(anti-tumor).

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/8/10/443/s1,
Figure S1: FTIR spectra of (a) Fe3O4; (b) Fe3O4@C; (c) Fe3O4@C/Pd, Figure S2: FTIR spectra of (a) fresh
Fe3O4@NC/Pd and (b) used Fe3O4@NC/Pd, Figure S3: Thermogravimetric analysis graphs of (a) Fe3O4;
(b) Fe3O4@C; (c) Fe3O4@C/Pd, Figure S4: Thermogravimetric analysis graphs of (a) fresh Fe3O4@NC/Pd. and
(b) used Fe3O4@NC/Pd.
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