

Article

Synthesis and Regeneration of Nickel-Based Catalysts for Hydrodeoxygenation of Beech Wood Fast Pyrolysis Bio-Oil

Caroline Carriel Schmitt ^{1,2,*}, María Belén Gagliardi Reolon ^{1,3}, Michael Zimmermann ¹, Klaus Raffelt ¹, Jan-Dierk Grunwaldt ^{1,4} and Nicolaus Dahmen ¹

- ¹ Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen 76344, Germany; magagliardi@itba.edu.ar (M.B.G.R.); michael.zimmermann@kit.edu (M.Z.); klaus.raffelt@kit.edu (K.R.); grunwaldt@kit.edu (J.-D.G.); nicolaus.dahmen@kit.edu (N.D.)
- ² Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen 76344, Germany
- ³ Instituto Tecnologico de Buenos Aires (ITBA), Buenos Aires C1106ACD, Argentina
- ⁴ Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Karlsruhe 76131, Germany
- * Correspondence: caroline.schmitt@partner.kit.edu

The supplementary material brings complementary information in order to support the discussion of the results presented in the manuscript.

Reactor details

Batch reactor details: 200 mL batch reactor with maximum temperature operation of 400 °C and maximum pressure of 360 bar. The reactor was built at Institute of Catalysis Research and Technology (IKFT) with of Inconel alloy 625 and equipped with a gas injector stirrer (torque 80 N·cm, Premex reactor AG). The heating system was controlled by a Labview Program.

Coke calculation

The amount of solid (coke) over the spent catalyst was calculated following the equation below:

$$m_{solid} = \frac{\%C_{spentcat} \times m_{catalyst}}{100 - \%C_{spentcat}} \quad \text{Equation (S1)}$$

Where the m_{solid} is the mass of coke (g) in the spent catalyst; $C_{spentcat}$ is the concentration of carbon deposited over the spent catalyst obtained by elemental analysis and $m_{catalyst}$ is the amount of catalyst (g) loaded to the reactor.

Results

different catalysts.							
Properties	Ni/SiO ₂	Ni/ZrO ₂	NiCu/SiO ₂	NiCu/ZrO ₂			
Upgraded Aqueous Phase (Wet Basis)							
C (wt.%)	11.6 ± 0.14	11.5±0.01	15.8 ± 0.14	13.6±0.01			
H (wt.%)	11.45 ± 0.07	11.45 ± 0.07	11.3±0.01	11.3±0.01			
O (wt.%)	73.9 ±0.14	74.35 ± 0.35	70.15 ± 0.07	72.5±0.01			
N (wt.%)	2.9±0.01	2.6 ± 0.42	2.65 ± 0.07	2.5±0.01			
Physicochemical Properties							
H2O (wt.%)	74.35 ±0.21	74.5 ± 0.028	67.15 ±0.21	72.35 ±1.20			
рН	3.1±0.01	2.65 ± 0.07	3.05 ± 0.07	2.9±0.01			
Density (g/cm ³)	1.028 ± 0.07	1.026 ± 0.01	1.034 ± 0.01	1.031 ± 0.01			

Table S1. Elemental analysis and physicochemical properties of upgraded aqueous phases from

Figure S1. Fresh and spent catalysts. a)Ni/SiO₂; b) NiCu/SiO₂; c)Ni/ZrO₂; d) NiCu/ZrO₂.

Figure S2. Correlation between the H₂ consumption and CO₂ produced by different catalysts.

Retention Time (min)	Compound			
12.46	1-hydroxy-2-propanone			
13.6	2-cyclopenten-1-one			
13.85	2-methyl-2-cyclopenten-1-one			
15.36	Acetic acid			
15.7	Furfural			
16.42	1-(2-furanyl)-ethanone			
16.7	3-methyl-2-cyclopenten-1-one			
17.7	Propylene glycol			
18.34	1,2-ethanediol			
18.46	1,2-ethanediol, monoacetate			
19.97	3-methyl-cyclopentanone			
21.53	2-hydroxy-3-methyl-2-cyclopenten-1-one			
22.0	2-methoxy-phenol			
23.36	2-methoxy-4-methyl-phenol			
23.954	2-methyl-phenol			
24.0	Phenol			
24.35	4-ethyl-2-methoxy-phenol			
25.0	4-methyl-phenol			
25.116	3-methyl-phenol			
25.36	2-methoxy-4-propyl-phenol			
26.114	Eugenol			
27.23	2-methoxy-4-(1-propenyl)-phenol			
28.314	2-methoxy-4-(1-propenyl)-phenol			
30.04	5-(hydroxymethyl)-2-furancarboxaldehyde			
30.82	Vanillin			
31.62	1-(3-hydroxy-4-methoxyphenyl)-ethanone			

Table S2. Retention time of the main compounds identified in the feed (light and heavy phase).

Fig S6. Reaction pathways identified after HDO reactions.(a)-hydrogenation; (b)rearrangement; (c)-direct deoxygenation; (d)-dehydration; (e)-ring opening; * Products obtained with NiCu/SiO₂ and NiCu/ZrO₂ catalysts.

Catalysts **2018**, *8*, x FOR PEER REVIEW

Fig S8. EDX of selected regions.

Table S3. Elemental composition obtained by EDX of selected regions.

Spectrum	C (wt.%)	Si (wt.%)	S (wt.%)	Ni (wt.%)
Fresh Ni/SiO ₂	2.9	39.5	-	9.6
1 st reaction (spent)	12.1	44.9	0.2	7.3
2 nd reaction (spent)	6.8	42.2	0.1	1.1
3 rd reaction (spent)	9.1	37.4	0.1	2.4
4 th reaction (spent)	10.1	37.9	-	1.8
4 th reaction (calcined)	3.5	41.8	0.1	6.4
4 th reaction (reduced)	3.6	44.5	-	1.2