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Abstract: The Metal-free nitrogen-doped carbons represent an emerging low-cost nonprecious
electrocatalyst for oxygen reduction reaction (ORR) that is a sluggish process at the cathode of
polymer electrolyte membrane fuel cells (PEMFCs) and a verity of metal-air batteries. During the
past few years, the ORR catalytic activity of nitrogen-doped carbons has been significantly increased,
making them highly competitive alternatives to conventional precious metals based electrocatalysts
for ORR. However, controversies remain in the unambiguous identification of the ORR active sites on
nitrogen-doped carbons. This review summarizes the recent progress in probing the potential active
sites on metal-free nitrogen-doped carbons for ORR, aiming to gain in-depth understanding of the
ORR catalytic mechanism on nitrogen-doped carbons for further enhancing ORR activity.

Keywords: oxygen reduction reaction; active site; nitrogen-doped carbon; electrocatalytic activity;
fuel cells

1. Introduction

The emerging energy crisis and global climatic issues have impelled scientists and engineers
to explore renewable energy technologies [1], of which PEMFC has become one research hotspot
due to various advantages, such as using renewable and green hydrogen as a fuel, high power
conversion efficiency, high energy density [2] and so on. However, the cathodic ORR usually
shows a sluggish charge-transfer kinetics which requires efficient electrocatalysts to boost. Normally,
precious Pt based nanomaterials are the universal choice of ORR electrocatalysts [3]. However,
the apparent disadvantages of Pt based precious metals, such as scarcity and high cost, heavily impede
the widespread commercialization of PEMFC technology. Alternatively, many cost-effective
electrocatalysts have been developed during the past few decades, including the low-cost
transition metals and nitrogen codoped carbons (M-N/C, M = Fe or Co) [4], metal oxides [5,6],
transition metal carbides [7], nitrides [8,9], chalcogenides [10], perovskites [11,12], and also metal-free
heteroatom doped carbon based electrocatalysts [13]. Comparing to metal containing electrocatalysts,
the metal-free carbon-based materials demonstrate many advantages, such as widely available
precursors, environmentally friendly, strong resistance to the poisoning of CO and high immunity to
the negative impacts from fuel crossover. Among them, N-doped carbons have attracted intensive
research attentions due to their remarkable ORR catalytic activity.
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Normally, there are four nitrogen doping configurations on carbon skeletons, i.e., pyridinic N,
pyrrolic N, graphitic (or quarterly) N and oxidized N (Figure 1), with a binding energy of 398.2, 399.4,
400.8 and 402.7 eV, respectively [14]. Bonding with two carbon atoms at the boundary or defect of
graphene, pyridinic N possesses a lone pair of electrons and donates one p electron to the π system.
In regard to pyrrolic N, the N atom substitutes a carbon atom of the five-membered ring and donates
two p electrons to the π system. Graphitic N refers to an N atom which bonds to three carbon atoms in
carbon of hexagonal ring planes, and it is less impressionable to the protonation reaction because of an
unavailable lone pair of electrons around N atom in the carbon plane.
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the charge distribution on adjacent carbon atoms, and the oxygen chemisorption mode is changed 
consequently [15–17]. Although the nitrogen doping strategy has been proven to be effective in 
improving the ORR activity in various carbon-based materials, including carbon nanosphere [18], 
nanotube [19], graphene [20,21], etc., the intrinsic active sites for catalyzing ORR on the nitrogen-
doped carbons haven’t been conclusively identified and thus probing the ORR on N-doped carbons 
remains a hot research topic. In other words, despite that oxidized N is generally believed to be inert, 
whether the other three nitrogen doping configurations (i.e., pyrrolic N, pyridinic N or graphitic N) 
dominate ORR activity of N-doped carbons or not remains a matter of active debates. Several factors 
are considered to account for this situation: (i) Coexistence of different N doping structures in N-
doped carbon electrocatalysts. So far, selectively generating only one specific nitrogen doping 
configuration on the entire carbon matrix during the synthesis procedure is still an enormous 
challenge which makes it an intractable issue to unambiguously determine the direct correlation 
between the definite nitrogen doping configuration (e.g., pyrrolic N, graphitic N or pyridinic N) and 
ORR activity. (ii) The ORR activity of N-doped carbons is also influenced by multiple structural 
parameters, including morphology, graphitization level, defect, relative work function on interface, 
and composition etc.; and the internal heterogeneity of the electrocatalysts often further complicates 
this issue. (iii) N-doped carbon samples prepared from the same group can also have fluctuations in 
structure and activity.  

In the present review, we summarize the recent important reports on probing ORR active sites 
on metal-free, N-doped carbon nanomaterials to gain a deeper insight into the mechanism of ORR 
which will be conducive to promote the synthesis of more efficient carbon-based ORR electrocatalysts. 
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Regarding carbon-based materials, intrinsic carbon can also play a significant role in the 
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Recent researches reveal that doping nitrogen atoms to carbon skeletons can markedly influence
the charge distribution on adjacent carbon atoms, and the oxygen chemisorption mode is changed
consequently [15–17]. Although the nitrogen doping strategy has been proven to be effective in
improving the ORR activity in various carbon-based materials, including carbon nanosphere [18],
nanotube [19], graphene [20,21], etc., the intrinsic active sites for catalyzing ORR on the nitrogen-doped
carbons haven’t been conclusively identified and thus probing the ORR on N-doped carbons remains a
hot research topic. In other words, despite that oxidized N is generally believed to be inert, whether the
other three nitrogen doping configurations (i.e., pyrrolic N, pyridinic N or graphitic N) dominate
ORR activity of N-doped carbons or not remains a matter of active debates. Several factors are
considered to account for this situation: (i) Coexistence of different N doping structures in N-doped
carbon electrocatalysts. So far, selectively generating only one specific nitrogen doping configuration
on the entire carbon matrix during the synthesis procedure is still an enormous challenge which
makes it an intractable issue to unambiguously determine the direct correlation between the definite
nitrogen doping configuration (e.g., pyrrolic N, graphitic N or pyridinic N) and ORR activity. (ii) The
ORR activity of N-doped carbons is also influenced by multiple structural parameters, including
morphology, graphitization level, defect, relative work function on interface, and composition etc.;
and the internal heterogeneity of the electrocatalysts often further complicates this issue. (iii) N-doped
carbon samples prepared from the same group can also have fluctuations in structure and activity.

In the present review, we summarize the recent important reports on probing ORR active sites on
metal-free, N-doped carbon nanomaterials to gain a deeper insight into the mechanism of ORR which
will be conducive to promote the synthesis of more efficient carbon-based ORR electrocatalysts.

2. Dopant-Free Carbon Nanomaterials

Because structural defects and edges are usually widely present in N-doped carbons, it is
necessary to summarize the progress in identifying the active sites for ORR on dopant-free carbons.
Regarding carbon-based materials, intrinsic carbon can also play a significant role in the electrocatalytic
process. For instance, Gong et al. systematically studied different electrochemical processes on
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sidewalls and tips of ultra-long (about 5 mm) perpendicularly aligned carbon nanotube (CNT) arrays by
selectively depositing an insulating polymer coating layer on nanotube tip(s) or sidewalls, respectively.
They found that depending on the electrochemical species involved, both the tip and sidewall of
nanotube could have prominent impact on the electrochemistry of CNT electrode [22].

As for ORR in alkaline electrolyte, Wang and co-workers delicately studied the corresponding
ORR activity of edge and basal planes by precisely depositing a tiny air-saturated droplet at
prescribed location on highly oriented pyrolytic graphite (HOPG) [23]. Experimentally, electrochemical
characterizations were also performed by using a three-electrode configuration, where the reaction
system was comprised of a working electrode of HOPG, a counter electrode of a Pt wire fixed in a
capillary tube, and a reference electrode of an Ag/AgCl wire (Figure 2a). After comparing the ORR
activities of air-saturated droplets deposited on the locations with multiple steps (edges) (Figure 2b) and
basal plane (without steps) (Figure 2c), they found that the graphite located at basal plane displayed an
inferior limiting current density and onset potential than the one at the edge (Figure 2d). It is believed
that the intrinsic ORR catalytic activity of edges on HOPG is attributed to the presence of higher charge
density and delocalized charge on edge/defect carbon atoms. This is the first unambiguous report
which shows that carbon atoms at the edge are more active and it enlightens researchers to develop
edge/defeat rich carbon-based catalysts.
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(Figure 3) [24], which showed trifunctional electrocatalytic activities, including ORR, oxygen 
evolution reaction (OER) and hydrogen evolution reaction (HER). High-resolution transmission 
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Figure 2. (a) Schematic illustration of the micro appliance for the oxygen reduction reaction (ORR)
activity analysis. Optical image for showing the highly oriented pyrolytic graphite (HOPG) substrate
serving as a working electrode by placing an air-saturated electrolyte droplet on (b) the edge and (c) the
basal plane of HOPG. (d) LSV curves for ORR proceeded in an air-saturated electrolyte deposited either
on the edge (see panel b) or on the basal plane (see panel c) of HOPG. (Reprinted with permission from
Ref. [23], 2014 WILEY-VCH).

Recently, Yao and co-workers successfully synthesized dopant-free defect-rich graphene (DG)
after completely removing nitrogen atoms via heating N-containing carbon precursor under 1150 ◦C
(Figure 3) [24], which showed trifunctional electrocatalytic activities, including ORR, oxygen evolution
reaction (OER) and hydrogen evolution reaction (HER). High-resolution transmission electron
microscopy (HR-TEM) images clearly revealed the reconstruction of carbon and formation of various
carbon defects, including pentagons, heptagons, and octagons. These defects are believed to account
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for the ORR activity [25,26] not only because they can modulate the electronic environment around the
vacancies, but also promote the wetting properties owing to the changes in surface area and surface
hydrophobicity after perturbing the surface properties of graphene.
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and edge defects by in-situ MgO template method [27]. In their experiments, dangling bonds of all 
the edged carbon atoms were eliminated by hydrogenation (Figure 4). From the thermodynamic 
viewpoint, the zigzag edge and pentagon defects were considered as the potential ORR active sites 
according to density functional theory (DFT) calculation, while the hole defects, armchair edges and 
pristine sp2 carbon atoms are inert to ORR. According to their results, the zigzag edge defects have a 
portion of the active unpaired π electrons that can effectively facilitate electron transfer to O2 and 
hence exhibit lower free energy for in the formation of OOH* species as compared with the pristine 
sp2 carbon. This result signifies that the edge defects and non-hexagonal topological defects may 
contribute to the increase of ORR activity for holy carbons. Along this line, Dai and co-workers used 
Ar plasma to treat dopant-free graphene, which helped create structure defects but reserve its high 
electronic conductivity [28]. The thus-obtained defect- and edge-rich graphene indeed demonstrated 
remarkably enhanced ORR activity as compared with the pristine graphene. Moreover, DFT 
calculations also indicate that the high charge density on edge- and defect-carbon atoms most likely 
accounts for the apparent ORR activity for dopant-free carbons. 

Figure 3. (a) Schematic illustration of the synthesis process of defect-rich graphene (DG). (b) X-ray
photoelectron spectroscopy (XPS) spectra of the pristine graphene, NG, and DG. (c) The corresponding
high-resolution N1s XPS spectra of NG as well as DG. (d) Raman spectra of pristine graphene, NG,
and DG. (e) TEM image of DG sample. (f) HAADF image of DG sample determined at an accelerated
voltage of 80 kV. Hexagons (orange), pentagons (green), heptagons (blue), and octagons (red) (g) The
representative atomic force microscopy (AFM) image of DG sample. (Figures are reprinted with
permission from Ref. [24], 2016 WILEY-VCH).

Apart from the edge sites, intrinsic carbon defects are also explored in order to ascertain the
intrinsic active sites for ORR on carbons. Hu et al. synthesized carbon nanocages with pentagon,
hole, and edge defects by in-situ MgO template method [27]. In their experiments, dangling bonds of
all the edged carbon atoms were eliminated by hydrogenation (Figure 4). From the thermodynamic
viewpoint, the zigzag edge and pentagon defects were considered as the potential ORR active sites
according to density functional theory (DFT) calculation, while the hole defects, armchair edges and
pristine sp2 carbon atoms are inert to ORR. According to their results, the zigzag edge defects have
a portion of the active unpaired π electrons that can effectively facilitate electron transfer to O2 and
hence exhibit lower free energy for in the formation of OOH* species as compared with the pristine sp2

carbon. This result signifies that the edge defects and non-hexagonal topological defects may contribute
to the increase of ORR activity for holy carbons. Along this line, Dai and co-workers used Ar plasma
to treat dopant-free graphene, which helped create structure defects but reserve its high electronic
conductivity [28]. The thus-obtained defect- and edge-rich graphene indeed demonstrated remarkably
enhanced ORR activity as compared with the pristine graphene. Moreover, DFT calculations also
indicate that the high charge density on edge- and defect-carbon atoms most likely accounts for the
apparent ORR activity for dopant-free carbons.
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Figure 4. Defect models of (a) Pentagon (highlight), (b) Hole, (c) Zigzag edge and (d) Armchair-like
edge. C atom (gray), H atom (white). (e) Representative HR-TEM image of CNC700. (f) Pore size
distributions for different samples. (g) The corresponding Raman spectra of CNC. (h) Schematic
illustration of a carbon nanocage structure with three typical defective locations I (the corner),
II (the broken fringe) and III (the hole). Reprinted with permission from Ref. [27], 2015 American
Chemical Society.

3. N-Doped Carbon Nanomaterials

A large number of N-doped carbon-based nanomaterials have been published during the
past few years, including graphene, graphite, carbon nanospheres, carbon nanotubes and so
on. These various N-doped carbon nanomaterials can even rival commercial Pt/C catalysts in
terms of ORR electrocatalytic activity but with a much lower cost and more widely available
earth-abundant precursor materials [29]. As mentioned above, although many promising N-doped
carbon electrocatalysts for ORR have been prepared, researchers have not reached a consensus on
discrimination of the active sites. Herein, we summarize the recent important progress in probing the
ORR catalytic active sites on representative N-doped carbon nanomaterials, aiming to help understand
the ORR mechanism, and also better design and synthesize more efficient carbon electrocatalysts.

A pioneer work in N-doped carbon electrocatalysts for ORR was conducted by Gong and
co-workers in 2009, where perpendicularly aligned nitrogen-containing carbon nanotubes (referred as
VA-NCNTs) (Figure 5a,c) were prepared by simple pyrolysis of the iron(II) phthalocyanine [15].
These NCNTs are observed to show a zigzag-like path along the nanotube axial direction and
doping nitrogen into the graphitic texture generated a bamboo-like feature. The metal-free VANCNTs
were obtained by electrochemical purification to remove the residual Fe and the resulting catalyst
exhibited a four-electron ORR procedure in alkaline electrolyte. Interestingly, the electrocatalytic
activity and working stability of metal-free VANCNTs were even higher while the overpotential and
fuel crossover effect were lower than that of commercially available Pt/C catalyst. On the basis of the
quantum mechanics calculation results, Gong et al. pointed out that a considerably high positive charge
density of carbon atoms was able to counterbalance the strong electronic affinity of the neighboring
nitrogen atoms (Figure 5d). Correspondingly, the chemisorption mode of oxygen can be changed by
nitrogen-induced charge delocalization from the usual end-on adsorption (Pauling model, see the
top sketch in Figure 5e) on undoped CNTs to a side-on adsorption (Yeager model, see the bottom
sketch in Figure 5e) on NCNTs surface, which can significantly weaken the O–O bond to facilitate
ORR. Therefore, introduction of nitrogen, an element that has a stronger electron affinity than C
not only helps modify the surface electronic configuration for carbon-based electrocatalysts but also
furthermore incubate additional active sites and defects for catalyzing ORR.
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Figure 5. (A) The SEM image for showing the side-view of as-prepared VA-NCNTs deposited on
a quartz surface. (B) The TEM image for showing the morphology of the VA-NCNTs which have
been electrochemically purified. (C) The digital photograph of the VA-NCNT array after having been
transferred onto a conductive nanocomposite film. (D) The charge density distribution on the NCNTs
according to DFT calculations. (E) Sketch for showing the potential chemical adsorption modes of a
single oxygen molecule on undoped CNTs (top) and NCNTs (bottom). Reprinted with permission from
Ref. [15], 2009, American Association for the Advancement of Science.

In addition to directly doping carbon skeletons with nitrogen, an alternative method was
subsequently developed by Wang et al., where they found that the positively charged polyelectrolyte
such as Poly-diallyl dimethylammonium chloride (PDDA) showed a vigorous electron-withdrawing
capability and could create net positive and delocalized charges on the conjugated graphene surface
when adsorbing onto the surface of graphene [30], leading to intermolecular charge transfer states.
Consequently, the graphene catalyst adsorbing positively charged PDDA exhibits a much higher
ORR electrocatalytic activity than wholly graphene (Figure 6a). Besides, Wang et al. also employed
the positively charged PDDA to tune the ORR catalytic activity of pristine CNTs [31]. Electrons of
electrons-rich carbon atoms on CNTs can be withdrawn by the functional groups (i.e., quaternary
ammonium) on PDDA backbone, resembling the introduction of a p-type dopant, and therefore the
positively charged carbon atoms can not only enhance the oxygen adsorption but also facilitate ORR
through potent attraction of electrons from the anode (Figure 6b). These observations signify a vital
function of intermolecular charge transfer in carbon and it seems that carbon atoms could also serve as
the active sites for ORR.
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Ref. [31], 2011 American Chemical Society.



Catalysts 2018, 8, 509 7 of 16

These results clearly demonstrated that the introduction of nitrogen doping or topological defects
to carbon can reallocate the electron density within the carbon structure, thus leading to electron
fluctuations on the carbon surface and improving oxygen adsorption. As mentioned above, the three
main nitrogen doping configurations on carbon skeletons, including graphitic N, pyrrolic N and
pyridinic N are regarded as potential active sites for catalyzing ORR, while the oxidized N is generally
inactive. For pyridinic N and pyrrolic N, they are connected with two sp2 hybridized C atoms,
while graphitic N (i.e., quaternary N) is directly bonded with three tetrahedral sp3 hybridized
C atoms [32]. The planar sp2 hybridization of C–N bond shows a torsion angle of 0◦ while the
tetrahedral sp3 hybridization is observed to show a torsion angle of 60◦ [33], hence pyrrolic N
and pyridinic N usually show a planar platelet structure while quaternary N generally displays
an uneven (three dimensional) structure. With a quasi-closed flat nanoreactor comprised of layered
montmorillonite (MMT), Wei and co-workers synthesized pyrrolic N and pyridinic N-doped graphene
(NG) which could selectively generate planar N via adjusting the interspace width of the MMT
flat nanoreactor [34]. In their synthesis experiment (Figure 7), aniline (AN) monomers were first
intercalated into the layers of MMT, and then in situ oxidation polymerization was performed,
followed by high-temperature pyrolysis. High content (90.27%) of planar N (pyridinic N and
pyrrolic N) is selectively generated and well-preserved by the MMT flat nanoreactor, leading to
enhanced electrical conductivity as proven by the results of electrochemical impedance spectroscopy
measurements as well as considerable ORR catalytic activity. The authors concluded that both pyridinic
N and pyrrolic N are more active for ORR electrocatalysis than graphitic N which might benefit from
the high electrical conductivity attributed to the reservation of planar structures after nitrogen doping.
Although this conclusion still requires further support from the straight correlation between the ORR
performance and a specific N, one can find that nitrogen doping configuration influences the local
structure of carbon materials and hence finally on the corresponding ORR activity.
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Figure 7. Schematically showing the controlled synthesis of N-doped carbons comprising different
nitrogen doping configurations with MMT serving as nanoreactor. Reprinted with permission from
Ref. [34], 2013 WILEY-VCH.

It is worth knowing that apart from the structure effects derived from nitrogen doping, topological
defect is also proven to influence on ORR electrocatalytic activity. Recently, Zhang et al. synthesized
edge-rich N-doped graphene mesh via direct carbonization of sticky rice with the presence of nitrogen
source melamine and Mg(OH)2 nanosheet hard templates [35]. DFT calculations were performed to
probe the possible ORR active sites derived from many structure factors, including nitrogen-doping,
topological defects, and edge effects, for instance pyrrolic N, pyridinic N and quaternary N on
the edge (Q), quaternary N in the bulk phase (QN), five-carbon ring (C5), seven-carbon ring (C7),
as well as five-carbon ring wired to seven-carbon ring (C5+7) as depicted in Figure 8a. They found
that for all nitrogen doping-caused sites, the sites neighboring to the edge exhibited a much lower
overpotential in ORR catalysis, signifying the strong influence of edge effects on ORR. Topological
defects (e.g., pentagon and heptagon carbon rings) can significantly diminish the overpotential of ORR
in the DFT computation as compared with pristine graphene, and these nitrogen-free configurations
that are contiguous to pentagonal and heptagonal carbon rings display the minimum overpotential
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as depicted in Figure 8b, locating the summit of volcano plots for both ORR and oxygen evolution
reaction (OER). Based on their DFT results, the interacted O and OOH species preferably bind at the
junction of the rings comprised of neighboring seven-carbon and five-carbon, whereas the O–O bond
in OOH species are tend to be broken by the C5–C7 dipole in the C5+7 configuration and engender a
facile reduction of oxygen (Figure 8c). It is believed that the discrepancy of electron densities induced
by contiguous carbon rings is capable of developing spatial curvatures and further generating a
permanent dipole moment. Therefore, a moderate adsorption might account for the higher ORR
activity of the C5+7 configurations rather than that between nitrogen and carbon atoms because of
the presence of stronger dipole moment. Also, the free energy diagrams of ORR sub-steps on active
sites reveal the determining step is transformation of O* to OH* for pyrrolic N while desorption of
OH− from C5+7 serves as the determining step (Figure 8d,e), further suggesting that the C5+7 defect
promotes adsorption of oxygen intermediates. These results remind us of the importance of topological
defects and provide a path to further understanding the active sites for ORR.
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Figure 8. (a) Schematic illustration of various kinds of N-doping types or topological defects on
graphene skeleton. (PR: pyrrolic nitrogen; PN: Pyridinic nitrogen.) (b) Volcano plots of overpotential
versus adsorption energy of OH* for ORR and OER. (c) Schematic illustration of optimized adsorption
mode of C5+7 interacting with O, OH, and OOH species (from top to bottom). Diagrams for showing
the calculated free energy for ORR proceeded at pH = 0 on (d) graphene with C5+7 defect and
(e) pyrrolic N. The color of elements: carbon (gray), hydrogen (white), oxygen (blue), and nitrogen
(red). Reprinted with permission from Ref. [35], 2016 WILEY-VCH.

Recently, several research groups advocated that the potential active site for ORR is pyridinic N
among the N-doped carbon catalysts [36–39]. Li et al. proposed that the analysis and identification
of the chemical composition of nitrogen-doped graphene before and after ORR might be an optional
method to determine the active sites [40]. The change of graphitic, pyrrolic and pyridinic N contents
for three representative samples were tracked by X-ray photoelectron spectroscopy (XPS) spectra for
nitrogen-doped multilayer graphene through determination of the chemisorbed oxygen reduction
intermediates (Figure 9a–f). As a sort of the intermediates of ORR, –OH attached to aromatic carbon
was increased to a higher content after the ORR process, and it led to an upshift in the binding
energy of the nitrogen from 398.8 to 400.2 eV [41]. Moreover, they observed that the XPS intensity of
the pyridinic peak gradually decreased as the ORR proceeded while the intensity of the “pyrrolic”
nitrogen increased (Figure 9g–h). Therefore, they inferred that the diminishment ORR activity could
be correlated with the transformation of the pristine pyridinic N to the pyrrolic N, and the increase of
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XPS intensity for pyrrolic N peak might be due to the incremental content of the OH-attached pyridinic
N instead of pyrrolic N. They also found that N-doped carbon with the highest content of OH(ads)
attached to the carbon atoms neighboring to pyridinic N after ORR showed the best ORR catalytic
performance among the series; hence, they concluded that pyridinic N had a significant impact on
ORR activity.
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Figure 9. (a–f) The corresponding high-resolution XPS N1s spectra of the three multilayer graphene
samples obtained before and after ORR. The least-squares fitted peaks are pyrrolic N at 399.8 eV (red),
graphitic N at 401.2 eV (purple), pyridinic N at 398.5 eV (blue), and nitrogen oxide at 403 eV (green).
XPS O1s spectra of G-NH3·H2O obtained (g) before and (h) after ORR. The fitted peaks are C=O at
530.8 eV (green), C(aliphatic)–OH/C(aliphatic)–O–C(aliphatic) at 532.0 eV (red), C(aromatic)–OH at
533.3 eV (blue), and chemisorbed water molecules at 535.7 eV (purple). (i) Diagram of the chemical
structure of −OH attached to the pyridinic N. Reprinted with permission from Ref. [40] 2014 American
Chemical Society.

As mentioned above, N-doped carbon nanomaterials usually concurrently contain multiple
nitrogen-doping configurations; hence, it is difficult to discern the direct correlation between a
specific nitrogen doping configuration and ORR activity. To alleviate the impacts of these structural
factors, recently, Guo et al. used model catalysts HOPG (i.e., highly oriented pyrolytic graphite) with
controlled nitrogen doping conjugations and well-defined π conjugation to probe the ORR active
sites in a 0.1-M H2SO4 aqueous solution [42]. The edge-HOPG samples prepared by bombarding the
HOPG with an Ar+ ion beam through a thin metallic mask were utilized to synthesize the Pyridinic
N-dominated HOPG model catalysts through thermal annealing in NH3 atmosphere, while the
graphitic N-dominated HOPG model catalysts were prepared by thermally annealing the HOPG
that had been subjected to mild bombardment with a nitrogen ion beam. They found that although
the nitrogen concentration of the pyri-HOPG sample was lower than that of the grap-HOPG sample
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(Figure 10a), its ORR activity was much higher than that of grap-HOPG as depicted in Figure 10b,
and the apparent ORR current density for the series control samples showed a linear dependence on the
content of pyridinic N. Because the pyri-HOPG sample is nearly absolutely comprised with pyridinic
N (95% for pyridinic N and 5% for graphitic N), Guo et al. concluded that pyridinic N could reduce the
ORR overpotential more efficiently than Graphitic N, and hence pyridinic N was most likely the ORR
active site. Further investigation of the intermediates of ORR by ex situ post-ORR XPS measurements
revealed that the content of nitrogen decreased after ORR (Figure 10c) and the OH species-attached
carbon atoms next to pyridinic N led to conversion of the pyridinic N to pyridonic N (Figure 10d).
Additionally, the results of CO2 temperature programmed desorption (CO2-TPD) measurements
showed that the acidic CO2 molecule preferentially adsorbed on pyri-HOPG (Figure 10e), indicative of
the formation of Lewis base sites on pyri-HOPG. Previous DFT calculations showed that the carbon
atoms contiguous to pyridinic N could act as active Lewis bases for its tendency to donate electron
pairs [43]. Oxygen molecules were reported to adsorb on Lewis base sites [44]. Because the first step of
the whole ORR process is adsorption of O2, Guo et al. proposed that the active site for ORR could be a
Lewis base site derived from pyridinic N.

However, graphitic N was recently suggested to be responsible for the ORR active sites rather
than pyridinic N and pyrrolic N. For example, Yang et al. used melamine and L-cysteine as precursors
to synthesize 3D metal-free N-doped graphene nanoribbon networks (N-GRW) that consisted of a high
nitrogen content and showed active ORR and OER bi-functional catalytic activities and conducted
active site probing experiments in alkaline electrolytes [45]. Mott–Schottky analysis experiments
were performed and revealed that N-GRW had high charge carrier density. According to ultraviolet
photoelectron spectroscopy (UPS) spectra, a smaller work function in valence band emission region was
obtained for N-GRW, which demonstrates that there is a lower energetic barrier, i.e., a higher driving
energy, for the electron transfer from catalyst to the adsorbed oxygen. Herein, the rate-determining
step for ORR catalysis which is regarded to promote the formation of OOH species. From the X-ray
absorption near-edge structure (XANES) spectra of carbon (Figure 11b) and nitrogen (Figure 11c)
elements before and after oxygen reduction, one can find that after ORR or OER, the peak intensity
associated with p*C–O–C, C–N in Figure 11b increased at 287.7 eV, indicating that the intermediate
species (O*) were adsorbed on the carbon atoms, and a new peak arose at 289.6 eV after ORR and
OER, corresponding to the adsorption of OOH* intermediates. Meanwhile, as depicted in Figure 11c,
the nitrogen K-edge XANES spectrum of the N-GRW after ORR, displayed a new peak which is
close to graphitic N (~401 eV) but with a lower binding energy. Such a new peak was attributed
to O* and OOH* intermediates adsorbed on carbon atoms surrounding graphitic N and leads to
distortion of heterocycles. In sharp contrast, the peak of pyridinic N at around 398.0 eV remained
unchanged after ORR, as compared with the pristine N-GRW (Figure 11c). Based on these results,
Yang et al. concluded that the active N-doping configuration for the ORR is likely to be quaternary N
with n-type doping nature, rather than pyridinic N with p-type doping characteristic on the N-GRW
electrode. They also pointed out that the augmentation of nucleophile strength for the carbon atoms
surrounding quaternary N was attributed to the reason that quaternary N could provide partial
electrons to the highly conjugated carbon skeleton (i.e., n-type doping), which could facilitate the
adsorption of oxygen molecule onto the carbon skeleton surface and, hence, promote ORR process.
Interestingly, they found that the pyridinic N species served as the electrocatalytic active sites for OER.

More recently, our group conducted prolonged potential cycling on three representative N-doped
carbons synthesized with the methods reported by three different groups in O2-saturated 0.1 M KOH
aqueous solution in order to probe the ORR active sites and attempt to shield the influence of different
morphology, defect, graphitization level etc. on discriminating the interrelationship between definite
nitrogen doping configurations and ORR performance [14]. The limiting current was found to be
attenuated closely correlated with the diminishment of graphitic N content, as supported by the
results of XPS spectra and Mott-Schottky analysis. Interestingly, among all the three model catalysts,
the prolonged electrochemical potential cycling nearly had no influence on the specific activity per
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graphitic N within a wide-range of potentials which was consistent with the theoretical prediction
(Figure 12). In sharp contrast, no such interrelationship was identified for both pyrrolic N and
pyridinic N.
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Figure 10. (a) The high-resolution N 1s XPS spectra determined for model catalysts. (b) The ORR
catalytic results for model catalysts depicted in panel (a). Inset to the panel is nitrogen contents
corresponding to the model catalysts. (c) N 1s XPS spectra of the N-HOPG model catalyst before and
after ORR, respectively. (d) Schematic illustration of the formation of pyridonic N by the attachment
of OH to the carbon atom adjacent to pyridinic N. (e) CO2-TPD results of the HOPG model catalysts.
Reprinted with permission from Ref. [42], 2016, American Association for the Advancement of Science.
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Figure 11. (A) UPS spectra collected using an He I (21.2 eV) radiation. Secondary electron tail threshold
was enlarged and exhibited in the inset. (B,C) Carbon and nitrogen K-edge XANES spectra of N-GRW
catalyst. In carbon K-edge XANES spectra, A: defects, B: π*C=C, C: π*C–OH, D: π*C–O–C, C–N, E:
π*C=O, COOH, F: σ*C–C. (D) Schematic diagram of the N-GRW catalyst. n- and p-type domains
carried different active sites for ORR and OER. Reprinted with permission from Ref. [45].
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Furthermore, Gibbs free energy change of the first-electron reduction, regarded as a rate-
determining step for the 4e− ORR process (Figure 13a), proceeded on carbons surrounding pyridinic 
or pyrrolic N was much higher than the one on carbon atoms contiguous to graphitic N (Figure 13b), 
according to the calculations of density functional theory (DFT). Based on these results, graphitic N 
might predominantly account for the ORR activity of N-doped carbon catalysts in alkaline electrolyte. 
Actually, several previous reports in the literature also reveal that graphitic N strongly influences on 
the ORR activity of N-doped carbons [46,47].  
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Furthermore, Gibbs free energy change of the first-electron reduction, regarded as a
rate-determining step for the 4e− ORR process (Figure 13a), proceeded on carbons surrounding
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pyridinic or pyrrolic N was much higher than the one on carbon atoms contiguous to graphitic N
(Figure 13b), according to the calculations of density functional theory (DFT). Based on these results,
graphitic N might predominantly account for the ORR activity of N-doped carbon catalysts in alkaline
electrolyte. Actually, several previous reports in the literature also reveal that graphitic N strongly
influences on the ORR activity of N-doped carbons [46,47].Catalysts 2018, 8, x FOR PEER REVIEW  13 of 16 
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4. Conclusions

In summary, both experimental and theoretical approaches have been conducted to determine
the ORR active sites of N-doped carbon catalysts. It is found that nitrogen doping induces
charge redistribution on carbon skeletons. The introduction of an N atom that has a higher
electronegativity than a C atom onto carbon skeletons creates charged sites which are favorable
for oxygen chemisorption and enhances ORR activity. Besides intramolecular charge transfer induced
by N-doping, intermolecular charge transfer induced by physical adsorption of polyelectrolytes also
plays an important role in enhancing ORR activity among carbon-based nanomaterials. Additionally,
topological defects and edge defects also demonstrate higher electrocatalytic activities than basal plane
carbon for the ORR by modulating local electronic density and changing specific surface area.

Generally, introduction of N atoms into carbon materials not only can modulate the electronic
distribution but also change the structure configuration, both of which may make a difference in the
electrochemical activity and electrical conductivity. The content and location of specific N species
directly influence the ORR activity performances. The thermal annealing temperature can tune the
content of different nitrogen species within a carbon catalyst [48]. Transformation of pyrrolic N into
a pyridinic N can be achieved at a relatively low annealing temperature whereas both pyrrolic and
pyridinic N can be transformed into more stable quaternary N at high annealing temperatures [49].
The specific surface area also has an impact on ORR activity because the exposure of active sites are
determined by porous structures and surface areas [50,51].

However, the vast majority of active site probing reports are based on bulk material analyses,
for example XPS, which have limitations in obtaining signals at the atomic level, and hence direct
microscopic evidence of active sites for ORR is unavailable. Generally, a mixture of many kinds
of nitrogen species is obtained in one catalyst sample. In addition, it is usually compounded with
structural parameters, including porosity, surface area, composition, morphology and degree of
graphitization, which make it difficult to come to a consistent and also conclusive conclusion in active
site probing results obtained by different groups. Therefore, the techniques for synthesizing carbon
catalysts with mono-nitrogen doping configuration are still in early stages and more sophisticated
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probing methods are desired concurrently to identify the active site and clarify the mechanism of ORR
on N-doped carbons.
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