Article

Support effect on the performance of Ni₂P catalysts in the hydrodeoxygenation of methyl palmitate

Irina V. Deliy *, Ivan V. Shamanaev, Pavel V. Aleksandrov, Evgeny Yu. Gerasimov, Vera P. Pakharukova, Evgeny G. Kodenev, Ilya V. Yakovlev, Olga B. Lapina and Galina A. Bukhtiyarova

Boreskov Institute of Catalysis, 630090, Pr. Lavrentieva 5, Novosibirsk, Russia;

i.v.shamanaev@catalysis.ru (I.V.Sh.); aleksandrov@catalysis.ru (P.V.A.); gerasimov@catalysis.ru (E.Yu.G.); verapakharukova@yandex.ru (V.P.P.); kodenev_e@mail.ru (E.G.K.); spitzstichel@gmail.com (I.V.Ya.); olga@catalysis.ru (O.B.L.); gab@catalysis.ru (G.A.B.)

* Correspondence: delij@catalysis.ru (I.V.D.); Tel.: +7-383-326-9410

Received: 11 October 2018; Accepted: 31 October 2018; Published: date

Supplementary Materials

Figure S1. Pore size distributions determined from the desorption branch of N₂ isotherm for (a) NiP_A/Al₂O₃ and (b) NiP_I/Al₂O₃ catalysts reduced at 550, 600 and 650 °C as well as for Al₂O₃ support.

Figure S2. XRD patterns of NiP_I/SiO₂(600) catalyst prepared from phosphite precursor and reduced at temperature of 600 °C and SiO₂ support.

Figure S3. TEM images of Ni_xP_y/γ -Al₂O₃ catalysts prepared from different precursors: (a) NiP_A/Al₂O₃ 650 and (b) NiP_I/Al₂O₃ 600.

Figure S4. Full-scale mass-normalized 14 kHz MAS ³¹P spectra of NiP_I/Al₂O₃ reduced at 550, 600 and 650 °C. A significant decrease in intensity of the line corresponding to PO_x groups can be observed for the sample reduced at 650 °C.

Figure S5. Temperature effect on the conversion of methyl palmitate (solid symbols, solid lines) and oxygen-containing compounds (empty symbol, dash lines) over NiP_A/Al₂O₃ 650 and NiP_I/Al₂O₃ 600 catalysts (P_{H2} = 3.0 MPa, T = 250-330 °C, H₂/feed = 600 Nm³/m³, methyl palmitate LHSV = 9 h⁻¹).

Figure S6. Conversions of methyl laurate, lauric acid, dodecanal and dodecanol over Ni₂P/SiO₂ catalyst at T = 290 °C, P_{H2} = 3.0 MPa, H_2 /feed = 600 Nm³/m³ and reagent LHSV = 10.7 h⁻¹. Feed composition: **1** – 8.0 wt% of methyl laurate and 0.5 wt% of *n*-ocatane in *n*-decane; **2** – 7.6 wt% of lauric acid and 0.5 wt% of *n*-ocatane in *n*-decane; **3** – 7.0 wt% of dodecanal and 0.5 wt% of *n*-ocatane in *n*-decane; **4** – 7.1 wt% of dodecanol-1 and 0.5 wt% of *n*-ocatane in *n*-decane.

Figure S7. MP conversion (*X*_{MP}) and total oxygen-containing compounds conversion (*X*_o) as a function of time on stream for Ni₂P/Al₂O₃ and Ni₂P/SiO₂ catalysts at T = 290 °C, P_{H2} = 3.0 MPa, H₂/feed = 600 Nm³/m³ and methyl palmitate LHSV = 3.6-9 h⁻¹.

Figure S8. Dependence of the CO and CO₂ sum from pentadecane content in methyl palmitate hydrodeoxygenation over NiP_A/Al₂O₃ 650 catalyst (P_{H2} = 3.0 MPa, T = 290 °C, H₂/feed = 600 Nm³/m³, methyl palmitate LHSV = 3.6–12 h⁻¹).

© 2018 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).