Supplementary Materials: Photo-induced Charge Separation vs. Degradation of a BODIPY-Based Photosensitizer Assessed by TDDFT and RASPT2

Karl Michael Ziems, Stefanie Gräfe and Stephan Kupfer *

1. Preliminary benchmark

Figure S1. Comparison of TDDFT and MS-RASPT2 at GS S₀ geometry ¹1⁰ for the non-reduced dye. Left: comparison for dissociative states with RAS_{Diss}. Right: comparison for CT states with RAS_{CT}. Colour code: singlet ground state (black), excited singlet state (blue), dissociative singlet state (red), triplet state (green), dissociative triplet state (orange), triplet CT state (cyan).

Figure S2. Comparison of TDDFT and MS-RASPT2 (RAS_{Diss} and RAS_{CT}) states at singly reduced GS D₀ geometry ²**1**⁻¹. Colour code: doublet ground state (black), excited doublet state (blue), dissociative doublet state (red), CT doublet state (green), dissociative quartet state (orange), CT quartet state (cyan).

	Transition	Weight / %	<i>E</i> / eV	λ / nm	f	Character
So (A1)	HF	-	-	-	-	HF
S1 (B1)	$\pi_3(a_2) \rightarrow \pi_4^*(b_2)$	89	2.88	430	0.5183	HOMO → LUMO
	$\pi_2(a_2) \rightarrow \pi_4^*(b_2)$	11				$HOMO-1 \rightarrow LUMO$
S2 (A1)	$\pi_2(b_2) \rightarrow \pi_4^*(b_2)$	98	3.44	360	0.0454	
S ₃ (B ₁)	$\pi_2(a_2) \rightarrow \pi_4^*(b_2)$	88	3.45	359	0.3113	HOMO-1 → LUMO
	$\pi_3(a_2) \rightarrow \pi_4^*(b_2)$	12				$HOMO \rightarrow LUMO$
S8 (A2)	$\pi_3(a_2) \rightarrow \sigma^*(a_1)$	93	4.41	281	0.0000	Diss
S11 (B2)	$\pi_3(a_2) \rightarrow \sigma^*(b_1)$	87	4.55	272	0.0001	Diss
T1 (B1)	$\pi_3(a_2) \rightarrow \pi_4^*(b_2)$	96	1.55	800	-	HOMO → LUMO
T2 (B1)	$\pi_2(a_2) \rightarrow \pi_4^*(b_2)$	89	2.58	480	-	HOMO-1 → LUMO
T3 (A1)	$\pi_2(b_2) \rightarrow \pi_4^*(b_2)$	90	2.75	451	-	
T4 (A1)	$\pi_3(b_2) \rightarrow \pi_4^*(b_2)$	80	3.36	369	-	
	$p(b_2) \rightarrow \pi_4^*(b_2)$	12				
T ₆ (A ₂)	$\pi_{\text{ph},2}(b_1) \rightarrow \pi_4^*(b_2)$	82	3.90	318	-	СТ
T7 (A2)	$\pi_3(a_2) \rightarrow \sigma^*(a_1)$	70	4.02	308	-	Diss
	$\pi_2(b_2) \rightarrow \sigma^*(b_1)$	17				
	$\pi_2(a_2) \rightarrow \sigma^*(a_1)$	10				
Ts (B2)	$\pi_3(a_2) \rightarrow \sigma^*(b_1)$	58	4.11	302	-	Diss
	$\pi_2(b_2) \rightarrow \sigma^*(a_1)$	26				
	$\pi_2(a_2) \rightarrow \sigma^*(b_1)$	11				
T11 (B1)	$\pi_{\text{ph},3}(a_2) \rightarrow \pi_4^*(b_2)$	100	4.29	289	-	СТ
T12 (B2)	$\pi_3(a_2) \rightarrow \pi_{ph,5}^*(b_1)$	94	4.39	282	-	СТ
T13 (A1)	$\pi_3(a_2) \rightarrow \pi_{\text{ph},4}^*(a_2)$	85	4.46	278	-	СТ

Table S1. TDDFT calculated vertical excitation energies (*E*), wavelengths (λ), oscillator strengths (*f*), and singly-excited configurations of the main excited singlet-singlet and singlet-triplet transitions involved in the initial absorption of ¹1^o within the Franck-Condon region.

	Transition	Weight / %	E / eV	λ/nm	f	Character
So (A1)	-	83	-	-	-	HF
S1 (B1)	$\pi_3(a_2) \rightarrow \pi_4^*(b_2)$	76	2.71	457	0.9383	HOMO → LUMO
S2 (B1)	$\pi_2(a_2) \rightarrow \pi_4^*(b_2)$	75	3.65	340	0.0939	HOMO-1 → LUMO
S3 (A2)	$\pi_3(a_2) \rightarrow \sigma^*(a_1)$	74	5.06	245	0.0000	Diss
S4 (A1)	DE: $\pi_3(a_2) \rightarrow \pi_4^*(b_2)$	59	5.06	245	0.0030	HOMO → LUMO
	$\pi_3(b_2) \rightarrow \pi_4^*(b_2)$	13				
S5 (B2)	$\pi_3(a_2) \rightarrow \sigma^*(b_1)$	77	5.52	229	0.0012	Diss
S6 (A2)	$\pi_{\text{ph},2}(b_1) \rightarrow \pi_4^*(b_2)$	86	5.91	210	0.0000	СТ
S7 (A2)	$\pi_2(a_2) \rightarrow \sigma^*(a_1)$	64	5.93	209	0.0000	Diss
S8 (B2)	$\pi_3(a_2) \rightarrow \pi_{\mathrm{ph},5}^*(b_1)$	84	6.33	196	0.0000	СТ
T1 (B1)	$\pi_3(a_2) \rightarrow \pi_4^*(b_2)$	82	1.88	658	-	HOMO → LUMO
T2 (B1)	$\pi_2(a_2) \rightarrow \pi_4^*(b_2)$	78	3.04	408	-	HOMO-1 → LUMO
T3 (A1)	$\pi_2(b_2) \rightarrow \pi_4^*(b_2)$	47	4.09	303	-	
	$\pi_3(b_2) \rightarrow \pi_4^*(b_2)$	24				
T4 (A1)	$\pi_3(b_2) \rightarrow \pi_4^*(b_2)$	49	4.78	260	-	
	$\pi_2(b_2) \rightarrow \pi_4^*(b_2)$	24				
T5 (A2)	$\pi_3(a_2) \rightarrow \sigma^*(a_1)$	72	4.83	257	-	Diss
T6 (B2)	$\pi_3(a_2) \rightarrow \sigma^*(b_1)$	60	5.09	244	-	Diss
	$\pi_2(a_2) \rightarrow \sigma^*(b_1)$	14				
T7 (A2)	$\pi_2(a_2) \rightarrow \sigma^*(a_1)$	62	5.83	213	-	Diss
Ts (A2)	$\pi_{\text{ph},2}(b_1) \rightarrow \pi_4^*(b_2)$	86	5.95	208	-	СТ
T9 (B2)	$\pi_2(a_2) \rightarrow \sigma^*(b_1)$	49	5.99	207	-	Diss
	$\pi_3(a_2) \rightarrow \sigma^*(b_1)$	16				

Table S2. Vertical excitation energies (*E*), wavelengths (λ), oscillator strengths (*f*), and singly-excited configurations of the main excited singlet-singlet and singlet-triplet transitions involved in the initial absorption of ¹1⁰ within the Franck-Condon region. Calculated at the MS-RASPT2 level of theory using RAS_{Diss} and a level shift of 0.3 a.u. Double excitations are indicated by DE.

	Transition	Weight / %	<i>E</i> / eV	λ / nm	f	Character
So (A1)	-	79	-	-	-	HF
S1 (B1)	$\pi_3(a_2) \rightarrow \pi_4^*(b_2)$	73	2.69	460	0.9059	HOMO → LUMO
S2 (B1)	$\pi_2(a_2) \rightarrow \pi_4^*(b_2)$	68	3.62	342	0.0987	HOMO-1 → LUMO
S3 (A1)	$\pi_2(b_2) \rightarrow \pi_4^*(b_2)$	53	4.52	275	0.0562	
	DE: $\pi_3(a_2) \rightarrow \pi_4^*(b_2)$	17				$HOMO \rightarrow LUMO$
T1 (B1)	$\pi_3(a_2) \rightarrow \pi_4^*(b_2)$	72	1.90	654	-	HOMO → LUMO
T2 (B1)	$\pi_2(a_2) \rightarrow \pi_4^*(b_2)$	75	3.04	408	-	HOMO-1 → LUMO
T3 (A1)	$\pi_2(b_2) \rightarrow \pi_4^*(b_2)$	64	4.16	298	-	
T4 (A1)	$\pi_{\mathrm{ph,3}}(a_2) \rightarrow \pi_{\mathrm{ph,4}^*}(a_2)$	40	4.45	279	-	Intra Ph
	$\pi_{\text{ph,2}}(b_1) \rightarrow \pi_{\text{ph,5}^*}(b_1)$	31				
T5 (B2)	$\pi_{\text{ph},3}(a_2) \rightarrow \pi_{\text{ph},5}^*(b_1)$	39	4.84	256	-	Intra Ph
	$\pi_{\text{ph,2}}(b_1) \rightarrow \pi_{\text{ph,4}^*}(a_2)$	36				
T ₆ (A ₁)	$\pi_3(b_2) \rightarrow \pi_4^*(b_2)$	65	4.85	256	-	
T7 (A2)	$\pi_{\text{ph},2}(b_1) \rightarrow \pi_4^*(b_2)$	81	4.93	252	-	СТ
T ₈ (B ₁)	$\pi_{\text{ph},3}(a_2) \rightarrow \pi_4^*(b_2)$	72	5.09	243	-	СТ
T9 (A1)	$\pi_{\text{ph},2}(b_1) \rightarrow \pi_{\text{ph},5}^*(b_1)$	43	5.23	237	-	Intra Ph
	$\pi_{\mathrm{ph,3}}(a_2) \rightarrow \pi_{\mathrm{ph,4}^*}(a_2)$	21				
T10 (B2)	$\pi_3(a_2) \rightarrow \pi_{ph,5}^*(b_1)$	68	5.51	225	-	СТ
T11 (A1)	$\pi_3(a_2) \rightarrow \pi_{\mathrm{ph},4}^*(a_2)$	68	5.52	225	-	СТ
T12 (A2)	$\pi_3(a_2) \rightarrow \sigma^*(a_1)$	42	5.54	224	-	Diss
	$\pi_2(a_2) \rightarrow \sigma^*(a_1)$	50				
	$\pi_2(b_2) \rightarrow \sigma^*(b_1)$	15				
T13 (B2)	$\pi_2(a_2) \rightarrow \sigma^*(b_1)$	56	5.82	213	-	Diss
	$\pi_2(b_2) \rightarrow \sigma^*(a_1)$	11				

	Transition	Weight / %	<i>E</i> / e V	λ/nm	f	Spin	Character
Do (B2)	HF	-	-	-	-	2.02	HF
D1 (B1)	$\pi_4^*(b_2) \to \pi_{\text{ph},5}^*(b_1)$	99	2.04	607	0.0000	2.03	
D2 (A2)	$\pi_4^*(b_2) \rightarrow \pi_{\text{ph},4}^*(a_2)$	98	2.11	587	0.0000	2.03	
D3 (A1)	$\pi_4^*(b_2) \to \sigma^*(a_1)$	95	2.12	584	0.0000	2.11	
D4 (B1)	$\pi_4^*(b_2) \to \sigma^*(b_1)$	94	2.26	549	0.0000	2.12	
D5 (A2)	$\pi_3(a_2) \rightarrow \pi_4^*(b_2)$	87	2.69	460	0.1942	2.05	HOMO → LUMO
D6 (A2)	$\pi_2(a_2) \rightarrow \pi_4^*(b_2)$	93	3.38	367	0.0034	2.08	HOMO-1 → LUMO
Q1 (B1)	$\pi_3(a_2) \rightarrow \sigma^*(a_1)$	60	3.55	350	-	3.25	Diss
	$\pi_2(a_2) \rightarrow \sigma^*(a_1)$	10					
Q2 (B2)	$\pi_{\text{ph,2}}(b_1) \rightarrow \pi_{\text{ph,5}^*}(b_1)$	52	3.62	342	-	3.46	Intra Ph
	$\pi_{\mathrm{ph,3}}(a_2) \rightarrow \pi_{\mathrm{ph,4}^*}(a_2)$	38					
Q3 (A1)	$\pi_3(a_2) \rightarrow \sigma^*(b_1)$	52	3.64	341	-	3.27	Diss
	$\pi_2(b_2) \rightarrow \sigma^*(a_1)$	15					
	$\pi_2(b_2) \rightarrow \sigma^*(b_1)$	11					
Q4 (A1)	$\pi_{\mathrm{ph,2}}(b_1) \rightarrow \pi_{\mathrm{ph,4}^*}(a_2)$	81	4.68	265	-	3.47	Intra Ph
	$\pi_{\text{ph,3}}(a_2) \rightarrow \pi_{\text{ph,5}^*}(b_1)$	17					
Q5 (B2)	$\pi_{\text{ph},3}(a_2) \rightarrow \pi_{\text{ph},4}^*(a_2)$	60	4.73	262	-	3.46	Intra Ph
	$\pi_{\text{ph},2}(b_1) \rightarrow \pi_{\text{ph},5}^*(b_1)$	37					

Table S4. TDDFT calculated vertical excitation energies (*E*), wavelengths (λ), oscillator strengths (*f*), spin (2S + 1) and singly-excited configurations of the main excited doublet-doublet and doublet-quartet transitions involved in the initial absorption of ²1⁻¹ within the Franck-Condon region.

	Transition	Weight / %	<i>E</i> / eV	λ / nm	f	Character
D ₀ (B ₂)	HF	83	-	-	-	HF
D1 (A1)	$\pi_4^*(b_2) \rightarrow \sigma^*(a_1)$	70	2.58	480	0.0001	Diss
D2 (A2)	$\pi_3(a_2) \rightarrow \pi_4^*(b_2)$	47	2.63	471	0.2630	HOMO → LUMO
	$\pi_2(a_2) \rightarrow \pi_4^*(b_2)$	30				HOMO-1 \rightarrow LUMO
D3 (B1)	$\pi_4{}^*(b_2) \to \sigma^*(b_1)$	73	2.83	438	0.0000	Diss
D4 (A2)	$\pi_2(a_2) \rightarrow \pi_4^*(b_2)$	46	3.44	360	0.0006	HOMO-1 → LUMO
	$\pi_3(a_2) \rightarrow \pi_4^*(b_2)$	32				$HOMO \rightarrow LUMO$
D5 (B1)	$\pi_4^*(b_2) \rightarrow \pi_{\text{ph},5}^*(b_1)$	86	3.64	341	0.0000	СТ
D ₆ (A ₁)	$\pi_3(a_2) \rightarrow \sigma^*(b_1)$	54	4.61	269	0.0009	Diss
Q1 (B1)	$\pi_3(a_2) \rightarrow \sigma^*(a_1)$	58	4.26	291	-	Diss
	$\pi_2(a_2) \rightarrow \sigma^*(a_1)$	17				
Q2 (A1)	$\pi_3(a_2) \rightarrow \sigma^*(b_1)$	55	4.43	280	-	Diss
	$\pi_2(a_2) \rightarrow \sigma^*(b_1)$	18				
Q3 (B1)	$\pi_2(b_2) \rightarrow \sigma^*(a_1)$	48	4.96	250	-	Diss
	$\pi_3(a_2) \rightarrow \sigma^*(a_1)$	21				
	$\pi_2(b_2) \rightarrow \sigma^*(b_1)$	11				
Q4 (A1)	$\pi_2(a_2) \rightarrow \sigma^*(b_1)$	45	5.13	242	-	Diss
	$\pi_3(a_2) \rightarrow \sigma^*(b_1)$	23				
	$\pi_2(b_2) \rightarrow \sigma^*(a_1)$	11				

	Transition	Weight / %	<i>E</i> / e V	λ/nm	f	Character
Do (B2)	HF	81	-	-	-	HF
D1 (B1)	$\pi_4^*(b_2) \rightarrow \pi_{\text{ph},5}^*(b_1)$	83	2.11	587	0.0000	СТ
D2 (A2)	$\pi_3(a_2) \rightarrow \pi_4^*(b_2)$	72	2.49	497	0.1831	HOMO → LUMO
D3 (B1)	$\pi_4^*(b_2) \to \sigma^*(b_1)$	67	3.03	409	0.0000	Diss
D4 (A2)	$\pi_2(a_2) \rightarrow \pi_4^*(b_2)$	66	3.35	370	0.0101	HOMO-1 → LUMO
D5 (A2)	$\pi_4^*(b_2) \to \pi_4^*(a_2)$	38	3.54	350	0.1503	СТ
	$\pi_4{}^*(b_2) \rightarrow \pi_{\text{ph},5}{}^*(b_1)$	29				
D6 (A2)	$\pi_4^{*}(b_2) \rightarrow \pi_{ph,4}^{*}(a_2)$	50	4.36	284	0.1501	СТ
	$\pi_4^*(b_2) \rightarrow \pi_4^*(a_2)$	23				
Q1 (B2)	$\pi_{\text{ph,3}}(a_2) \rightarrow \pi_{\text{ph,4}^*}(a_2)$	60	4.38	283	-	Intra Ph
	$\pi_{\text{ph,2}}(b_1) \rightarrow \pi_{\text{ph,5}^*}(b_1)$	23				
Q2 (A1)	$\pi_3(a_2) \rightarrow \pi_{ph,5}^*(b_1)$	82	4.72	262	-	Intra Ph
Q3 (B1)	$\pi_3(a_2) \rightarrow \sigma^*(a_1)$	34	4.89	254	-	Diss
	$\pi_2(a_2) \rightarrow \sigma^*(a_1)$	23				
	$\pi_2(b_2) \rightarrow \sigma^*(b_1)$	13				
Q4 (A1)	$\pi_{\text{ph},3}(a_2) \rightarrow \pi_{\text{ph},5}^*(b_1)$	41	5.06	245	-	Intra Ph
	$\pi_{\text{ph,2}}(b_1) \rightarrow \pi_{\text{ph,4}^*}(a_2)$	39				
Q5 (B2)	$\pi_{\text{ph,2}}(b_1) \rightarrow \pi_{\text{ph,5}^*}(b_1)$	57	5.23	237		Intra Ph
	$\pi_{\text{ph},3}(a_2) \rightarrow \pi_{\text{ph},4}^*(a_2)$	20				

2. Light-induced charging of the PS

Table S7. SOC between the bright S1 and CT states	Calculated at the MS-RASPT2 level of theory using
RASct in 11º geometry.	

	Transition	E/eV	Character	SOC with S ₁ / cm ⁻¹
T1 (B1)	$\pi_3(a_2) \rightarrow \pi_4^*(b_2)$	1.90	$HOMO \rightarrow LUMO$	-
T2 (B1)	$\pi_2(a_2) \rightarrow \pi_4^*(b_2)$	3.04	HOMO-1 → LUMO	-
T7 (A2)	$\pi_{\text{ph},2}(b_2) \rightarrow \pi_4^*(b_2)$	4.93	СТ	5.3
T ₈ (B ₁)	$\pi_{\text{ph},3}(a_2) \rightarrow \pi_4^*(b_2)$	5.09	СТ	-
T10 (B2)	$\pi_3(a_2) \rightarrow \pi_{\text{ph},5}^*(b_1)$	5.51	СТ	0.0
T11 (A1)	$\pi_3(a_2) \rightarrow \pi_{\text{ph},4}^*(a_2)$	5.52	СТ	0.5

Figure S3. Vibrational modes at GS geometry ${}^1\!1^0$ corresponding to a torsion around the main/side ring dihedral.

Table S8. SOC for ¹1⁰ at a torsion of 55° (C₂ symmetry) obtained by RASPT2 with RAS_{CT} and a level shift of 0.3 a.u.

	Transition	<i>E</i> / eV	Character	SOC with S ₁ / cm ⁻¹
S1 (B)	$\pi_3(a) \rightarrow \pi_4^*(b)$	2.68	HOMO → LUMO	-
T1 (B)	$\pi_3(a) \rightarrow \pi_4^*(b)$	0.90	HOMO → LUMO	0.1
T2 (B)	$\pi_2(a) \rightarrow \pi_4^*(b)$	2.03	$HOMO-1 \rightarrow LUMO$	0.4
T3 (A)	$\pi_{\text{ph,2}}(b) \rightarrow \pi_4^*(b)$	3.62	СТ	4.0

Figure S4. Vibrational modes at GS geometry ²**1**⁻¹ corresponding to a torsion around the main/side ring dihedral.

Table S9. SOC between the bright S_1 and	dissociative states.	Calculated	at the	MS-RASP	2level of
theory using RAS _{Diss} in ¹ 1 ⁰ geometry.					

	Transition	<i>E</i> / eV	Character	SOC with S ₁ / cm ⁻¹
T1 (B1)	$\pi_3(a_2) \rightarrow \pi_4^*(b_2)$	1.88	$HOMO \rightarrow LUMO$	-
T2 (B1)	$\pi_2(a_2) \rightarrow \pi_4^*(b_2)$	3.02	$HOMO-1 \rightarrow LUMO$	-
T5 (A2)	$\pi_3(a_2) \rightarrow \sigma^*(a_1)$	4.78	Diss	0.6
T6 (B2)	$\pi_3(a_2) \rightarrow \sigma^*(b_1)$	5.06	Diss	39.2

3. Photo-degradation

Figure S5. TDDFT PESs along the doubly dissociative (C-I) coordinate for the non-reduced dye. No dissociative behaviour can be observed. Colour code: singlet ground state (black), excited singlet state (blue), dissociative singlet state (red), triplet state (green), dissociative triplet state (orange), triplet CT state (cyan).

Figure S6. PESs along the unrelaxed doubly dissociative (C-I) coordinate for the non-reduced dye. These potentials were calculated at the MS-RASPT2 level of theory using RAS_{Diss} and a level shift of 0.1 a.u. The unrelaxed coordinate was chosen to maintain the C_{2v} symmetry and thus reduce the computational costs. The reported energetic shift between RASPT2 and TDDFT can best be seen through the shift of the crossing point between S₁ and the dissociative states towards higher excitation energies and longer elongations compared to the TDDFT results in Figure S5. Colour code: singlet ground state (black), excited singlet state (blue), dissociative singlet state (red), triplet state (green), dissociative triplet state (orange).

Figure S7. SOCs for the diabatic potentials along the unrelaxed doubly dissociative (C-I) coordinate between the $S_1(B_1)$ state and the two dissociative triplet states, $T_5(A_2)$ (above) and $T_6(B_2)$ (below); calculated at the MS-RASPT2 level of theory using RAS_{Diss}.

Figure S8. Quadratic potentials according to Marcus theory with energy difference (ΔE), and reorganization energy for initial (λ_i) and final (λ_i) geometry. Left: For an ISC from S₁ at GS geometry ¹1^o to T₇ at its excited state geometry; mono-dissociation. Right: For an ISC from S₁ at GS geometry ¹1^o to T₈ at its excited state geometry; di-dissociation.

Table S10. Results for ISC between S_1 / T_7 and S_1 / T_8 based on Marcus theory and Equation 1. f = fina	1
and i = initial, representing the geometry from which the reorganization energy was taken.	

S1 (B1)	to T7(A2)	to T8(B2)
$\Delta E / eV$	-0.37	0.48
λ (f) / eV	1.75	0.67
λ (i) / eV	1.51	0.75
SOC / cm ⁻¹	0.58	39.22
<i>t</i> ısc (f) / s	5.63×10^4	4.19×10^4
<i>t</i> ısc (i) / s	5.92 × 10 ⁵	6.62×10^4
<i>k</i> isc(f) / s ⁻¹	1.78×10^{3}	2.39 × 10 ³
<i>k</i> ısc (i) / s ⁻¹	1.69×10^4	1.51×10^{3}

Table S11. SOCs at the geometry derived from the crossing point of the S1 and T8 potentials obtained by RASPT2 with RAS_{Diss} and a level shift of 0.3 a.u.

	Transition	<i>E</i> / eV	Character	SOC with S ₁ / cm ⁻¹
S1 (B1)	$\pi_3(a) \rightarrow \pi_4^*(b)$	2.72	$HOMO \rightarrow LUMO$	-
T5 (A2)	$\pi_3(a_2) \rightarrow \sigma^*(a_1)$	3.72	Diss	1.7
T6 (B2)	$\pi_3(a_2) \rightarrow \sigma^*(b_1)$	3.91	Diss	53.0