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Abstract: Hydrogen storage in the form of liquid organic hydrides, especially N-ethylcarbazole,
has been regarded as a promising technology for substituting traditional fossil fuels owing
to its unique merits such as high volumetric, gravimetric hydrogen capacity and safe
transportation. However, unsatisfactory dehydrogenation has impeded the widespread application
of N-ethylcarbazole as ideal hydrogen storage materials in hydrogen energy. Therefore, designing
catalysts with outstanding performance is of importance to address this problem. In the present
work, for the first time, we have synthesized Pd nanoparticles immobilized on carbon nanotubes
(Pd/CNTs) with different palladium loading through an alcohol reduction technique. A series of
characterization technologies, such as X-ray diffraction (XRD), inductively coupled plasma-atomic
emission spectrometer (ICP-AES), X-ray photoelectron spectroscopy (XPS) and transmission electron
spectroscopy (TEM) were adopted to systematically explore the structure, composition, surface
properties and morphology of the catalysts. The results reveal that the Pd NPs with a mean diameter
of 2.6 ± 0.6 nm could be dispersed uniformly on the surface of CNTs. Furthermore, Pd/CNTs
with different Pd contents were applied in the hydrogen release of dodecahydro-N-ethylcarbazole.
Among all of the catalysts tested, 3.0 wt% Pd/CNTs exhibited excellent catalytic performance with the
conversion of 99.6% producing 5.8 wt% hydrogen at 533 K, low activation energy of 43.8 ± 0.2 kJ/mol
and a high recycling stability (>96.4% conversion at 5th reuse).

Keywords: palladium catalysts; CNTs; dodecahydro-N-ethylcarbazole; dehydrogenation; hydrogen
storage

1. Introduction

Among numerous alternative energy, hydrogen has been deemed as one of the most important
and ideal energy sources owing to its distinct merits, such as a high calorific value, non-toxic
environmentally, sustainable and cost-effective [1–4]. As is known, a complete energy system
that utilizes hydrogen as an energy source is composed of producing, storing, transporting and
utilizing hydrogen. However, it is difficult for hydrogen to be stored and transported owing to its
low density [5,6]. Therefore, the technology of hydrogen storage has been regarded as one of the
bottlenecks for promoting the large-scale application of the hydrogen energy [5–8]. To search for new
hydrogen storage technology satisfying the U.S. Department of Energy (DOE) requirements with
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minimum gravimetric of 5.5 wt% and volumetric capacity of 40 g L−1 remains a challenging issue for
the large-scale application of hydrogen.

Among various hydrogen storage materials, such as formic acid, cyclohexane, and ammonia
borane, [9–12] organic liquid hydrides have emerged as a preferred approach in existing vehicle
hydrogen storage systems for its virtues like high H2 storage density and safe transportation [12–14].
Especially, reversible hydrogen storage and release can be catalytically achieved under relatively moderate
conditions [15,16]. Currently, hydrogenation reactions have been extensively studied in the previously
reported literature [17–19]. Compared with the traditional organic liquid hydrides, the substitution
of a heteroatom in heterocyclic aromatic molecules, such as in N-ethylcarbazole, can decrease the
endothermicity of the reaction and bring down the dehydrogenation temperature [20,21]. Therefore,
N-ethylcarbazole, with a gravimetric density of 5.8 wt.%, has been identified as the most prospective
candidate for hydrogen storage (Scheme 1). Although there are many studies about the dehydrogenation
reaction from calculations and experiments [20–28], the dehydrogenation reaction is still the key to limit
its large-scale application, especially, the development of dehydrogenation catalysts with outstanding
activity and stability is the hotspot of current research.
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as a catalyst support material due to their high specific surface area, superior electrical conductivity 
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the synthesis method for Pd NPs, such as doping or through a supramolecular strategy, an alcohol 
reduction method, is another key factor for improving the dehydrogenation performance of the 
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A large number of dehydrogenation catalysts have been extensively investigated, including
homogeneous catalysts and the heterogeneous catalysts [29–35]. For the homogeneous catalysts,
Wang et al. firstly reported the synthesis of homogeneous Ir-complex catalysts and explored
its performance for the hydrogen release of dodecahydro-N-ethylcarbazole at 473 K but the
dehydrogenation results were unsatisfactory [34]. However, the heterogeneous catalysts exhibited a
notable advantage over homogeneous ones with respect to catalytic activity. For the heterogeneous
catalysts, the supporting materials and NPs (Nanoparticles) are the two key factors influencing
the catalytic performance. Yang et al. [36] have studied the dehydrogenation activity of
perhydro-N-ethylcarbazole over a series of noble metal catalysts and the kinetics of dehydrogenation
of dodecahydro-N-ethylcarbazole over a 5 wt% Pd/Al2O3 catalyst. The results revealed that the
order is Pd > Pt > Ru > Rh according to the initial catalytic activity of the investigated noble metal
catalysts in the dehydrogenation process and the rate-limiting step of the entire reaction process is the
transformation from tetrahydro-N-ethylcarbazole to N-ethylcarbazole. Furthermore, Kustov et al. [37]
confirmed that the catalytic activity of the catalysts can be improved under microwave activation.
Although Pd based catalysts supported several supports, such as alumina, silica, TiO2, MoO3

and carbon [29–33,35–38], have been systematically investigated for producing hydrogen from
perhydro-N-ethylcarbazole, there are no reports about CNTs as the supporting material in the hydrogen
release from perhydro-N-ethylcarbazole.

In recent years, CNTs, as a one-dimensional nanomaterial, have received considerable attention
as a catalyst support material due to their high specific surface area, superior electrical conductivity
and outstanding chemical and thermal stability [39,40]. In addition, CNTs can endow beneficial
interactions between support and metal NPs, thus improving the catalytic activity. As is well known,
the synthesis method for Pd NPs, such as doping or through a supramolecular strategy, an alcohol
reduction method, is another key factor for improving the dehydrogenation performance of the
catalysts [35,41–44]. Fang et al. [42] have successfully synthesized Pd/rGO using ethylene glycol
as a reductant for the hydrogen production of dodecahydro-N-ethylcarbazole. Constructing Pd NP
catalysts using an alcohol reduction method for the dehydrogenation of dodecahydro-N-ethylcarbazole
has rarely been reported.



Catalysts 2018, 8, 638 3 of 11

Herein, in this work, for the first time, we have utilized an alcohol reduction method
to construct CNT-supported Pd NPs (Pd/CNTs) as the catalyst for hydrogen generation from
dodecahydro-N-ethylcarbazole. The catalyst has been characterized by many characterization methods,
such as XRD, ICP-AES, XPS and TEM to investigate the structure, composition, surface properties and
morphology of the catalysts. The dehydrogenation process of dodecahydro-N-ethylcarbazole over
Pd/CNTs catalyst is also discussed.

2. Results and Discussion

The Pd/CNTs with different Pd contents were fabricated via an alcohol reduction route,
as schematically shown in Scheme 2 [45,46]. Typically, PVP (Poly (N-vinyl-2-pyrrolidone))-Pd NPs
were obtained by refluxing a solution containing H2PdCl4, ethanol, H2O and PVP at 363 K for 3 h.
Subsequently, the as-synthesized PVP-Pd NPs were put in the CNTs solution under magnetic stirring
for 24 h. Then, the above-mentioned solution was evaporated, the catalyst was dried and calcined.
The obtained products were denoted the X wt% Pd/CNTs catalysts.
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Scheme 2. A fabrication diagram for the preparation of Pd/CNTs.

Powder X-ray diffraction (XRD) patterns were collected to explore the phase and crystal structure
of the acid-treated CNTs, Pd/CNTs with different Pd contents. As shown in Figure 1, a similar XRD
pattern was observed for all of the samples. All of the samples showed three obvious peaks at 25.9◦,
43.8◦, and 54.2◦, which could be ascribed to the (002), (100), and (004) reflections of graphite structure,
respectively. There was only the diffraction peak of the graphite structure for the Pd/CNTs with
different Pd loadings. However, no distinct characteristic diffraction corresponding to Pd NPs was
detected in the XRD patterns, probably owing to the fact that the Pd loading of Pd/CNTs was too
low. The diffraction peak ascribed to Pd (JCPDS (Joint Committee on Powder Diffraction Standards)
no. 46-1043) could be observed for Pd/CNTs with a higher loading (20 wt%) in Figure S1 (Supporting
Information). The accurate composition of Pd/CNTs was measured by an inductively coupled
plasma-atomic emission spectrometer (ICP-AES), which is close to their designed content (Table S1,
Supporting Information).

X-ray photoelectron spectroscopy (XPS) was performed to investigate the surface state of 3.0 wt%
Pd/CNTs. As seen in Figure 2, the peaks centered at 341.0 eV (3d3/2 state) and 335.8 eV (3d5/2 state),
lower than that of Pd/Rgo, can be ascribed to the Pd0 species, which is consistent with the previously
reported literature [39,40,42]. Furthermore, it is worth noting that the two small peaks appeared at
343.6 eV and 337.8 eV for the Pd3d spectra of 3.0 wt% Pd/CNTs can be attributed to Pd2+, may relate
to the sample treatment process for the XPS measurements [47]. The nitrogen adsorption-desorption
isotherms and pore-size distributions for the CNTs and 3.0 wt% Pd/CNTs are displayed in Figures S2
and S3 (Supporting Information). It can be seen that the samples present similar adsorption-desorption



Catalysts 2018, 8, 638 4 of 11

curves (type IV isotherms) and pore-size distributions. The BET (Brunauer–Emmett–Teller) surface
areas of the CNTs and 3.0 wt% Pd/CNTs were calculated to be 137 and 94 m2 g−1, respectively.
Furthermore, the microstructure of 3.0 wt% Pd/CNTs was further investigated using transmission
electron microscopy (TEM) measurements (Figure 3). As displayed in Figure 3, it can be observed that
the Pd NPs were uniformly dispersed on the CNTs and the small average diameter of the particle size
was 2.6 ± 0.6 nm, which is consistent with the previously reported results [39,40,45,46].Catalysts 2018, 8, x; doi: FOR PEER REVIEW  4 of 11 
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Figure 4 shows the hydrogen release of dodecahydro-N-ethylcarbazole over Pd/CNTs with
different Pd loadings in the range of 0 wt%–4.1 wt% at 513 K. The hydrogen generation rate significantly
relied on the loading of Pd. As shown in Figure 4, 5.6 wt% hydrogen evolved at 90.4, 33.6, and 89.5 min
in the presence of the Pd/CNTs with a Pd loading of 2.1 wt%, 3.0 wt% and 4.1 wt%, respectively.
Hydrogen evolution catalyzed by 0.9 wt% Pd/CNTs only yielded 4.6 wt% hydrogen even at 97 min.
However, no gas was detected for the CNT support, implying that CNTs are inactive for hydrogen
production of dodecahydro-N-ethylcarbazole. Obviously, Pd/CNTs with a Pd loading of 3.0 wt%
exhibited excellent catalytic activity with a conversion of 96.4%, producing 5.6 wt% H2.
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Figure 4. Hydrogen release from dodecahydro-N-ethylcarbazole catalyzed by Pd/CNTs with different
Pd loadings at 513 K.

In order to explore the kinetics of the dehydrogenation of dodecahydro-N-ethylcarbazole
catalyzed by 3.0 wt% Pd/CNTs, a series of experiments were carried out under varying temperatures.
As displayed in Figure 5, when the temperature increased from 453 K to 533 K, hydrogen
release increase from 2.7 wt% to 5.8 wt%. It is generally accepted that producing hydrogen
from dodecahydro-N-ethylcarbazole is an endothermic reaction, a higher reaction temperature
may be favorable for hydrogen generation from dodecahydro-N-ethylcarbazole. It can be seen
in Figure 5 that the initial dehydrogenation rate and the amount of hydrogen recovery both
increased with an increasing reaction temperature; the higher the reaction temperature, the higher
the rate of dehydrogenation. First-order kinetics were established with the concentration of the
reactant, dodecahydro-N-ethylcarbazole, measured as a function of time using 3.0 wt% Pd/CNTs
catalyst [35,36,38,48,49]. The reaction rate was expressed as:

r = dC/dt = kC (1)

ln(C/C0) = −kt (2)
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where C represents the concentration of dodecahydro-N-ethylcarbazole, C0 denotes the initial
concentration of dodecahydro-N-ethylcarbazole.
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453, 473, 493, 513 and 533 K.

On the basis of Figure 5 and the above formula, a linear relation of ln(C/C0) vs. time is observed
in Figure 6a. The values of k under the different temperatures could be acquired, a smooth straight
line could be observed by lnk versus 1/T plot, as demonstrated in Figure 6b, and its linear correlation
coefficient was 99.6%. It is indicated that k and T(K) follow the Arrhenius equation:

lnk = −Ea/(RT) + lnk0. (3)
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Considering the slope of the straight line, the apparent activation energy of hydrogen production
of dodecahydro-N-ethylcarbazole over 3.0 wt% Pd/CNTs was calculated to be 43.8 ± 0.2 kJ/mol.

The durability of the catalyst was of significance for its practical application. Therefore,
the reusability of 3.0 wt% Pd/CNTs was investigated at 533 K. As revealed in Figure 7, the catalytic
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activity of 3.0 wt% Pd/CNTs shows no obvious decrease after five runs for hydrogen generation from
dodecahydro-N-ethylcarbazole. The reusability tests revealed that 3.0 wt% Pd/CNTs exhibits activity
in consecutive runs in the hydrogen release from dodecahydro-N-ethylcarbazole, demonstrating 96.4%
conversion and 5.6 wt% H2 at the fifth run.
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Figure 7. Conversion and hydrogen release of the 3.0 wt% Pd/CNTs in successive runs for the
dehydrogenation of dodecahydro-N-ethylcarbazole at 533 K.

3. Materials and Methods

3.1. Materials

All of the chemicals, such as N-ethylcarbazole (purity ≥ 99.5%, Shanghai Infine Chemicals
Co., Ltd., Shanghai, China), ultra-high purity hydrogen (99.99999%, Minxing gas company), 5 wt.%
Ru/Al2O3 (reduced, Alfa aersa), C2H5OH (AR, Sinopharm Chemical Reagent Co., Ltd., Shanghai,
China), Poly (N-vinyl-2-pyrrolidone) (PVP, Sinopharm Chemical Reagent Co., Ltd.), Palladium (II)
chloride (AR, Nanjing Chemical Reagent Co., Ltd., Nanjing, China) and carbon nanotubes (CNTs,
Φ 20–40 nm, Purity > 97%, Shenzhen Nanotech Port Co., Shenzhen, China), were utilized as purchased
without further purification.

3.2. Catalyst Preparation

CNTs were pretreated in a mixture of H2SO4 (90 mL) and HNO3 (60 mL) at 120 ◦C for 12 h.
The treated CNTs were obtained by filtration, washing several times, and vacuum drying at 140 ◦C for
8 h.

A series of Pd-based catalysts were synthesized through immobilizing the ethanol reduction
Pd nanoparticles (Pd NPs) onto the CNTs. In a typical synthesis, PdCl2 was dissolved in an HCl
aqueous solution to form an H2PdCl4 aqueous solution. Then, PVP (0.4 g), H2O (40 mL), H2PdCl4
aqueous solution (45 mL) and ethanol (60 mL) were refluxed at 90 ◦C for 3 h. The foregoing
solution was treated through vacuum rotary evaporation and re-dispersed in ethanol to obtain the
poly(N-vinyl-2-pyrrolidone)-stabilized Pd nanoparticles (PVP-Pd NPs) solution. Next, an appropriate
amount of treated CNTs was added into the above-mentioned PVP-Pd solution under stirring. After
another 3 h, the products were stirred to remove the excess solvent in the water bath. The obtained
catalyst was dried at 70 ◦C for 4 h in a vacuum oven and then the X wt% Pd/CNTs catalysts were
acquired after calcining at 550 ◦C for 3 h under a nitrogen atmosphere (X was the nominal Pd loading).
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3.3. Hydrogen Generation from Dodecahydro-N-ethylcarbazole

Dodecahydro-N-ethylcarbazole was synthesized via the hydrogenation process using 5 wt%
as catalysts for the dehydrogenation of N-ethylcarbazole. The detailed synthesis process has been
previously reported [50].

The dehydrogenation of dodecahydro-N-ethylcarbazole was performed in a 25 mL
round-bottomed flask in the presence of Pd/CNTs at a temperature ranging from 453 to 533 K.
Specifically, 25 mg Pd/CNTs was placed in the round-bottomed flask, which was heated the desired
temperature. Then, 5 mL of dodecahydro-N-ethylcarbazole was injected into the reactor under stirring.
The evolved gas was measured by recording the displacement of water.

Durability for the catalysts. For testing the recyclability of the Pd/CNTs, after completing the
dehydrogenation reaction, Pd/CNTs were separated from the reaction solution through centrifugation
and washed with ethanol and water several times. The recovered Pd/CNTs were dried for the next
experiment. The dehydrogenation reaction was repeated five times at the designed temperature.

3.4. Characterization

Powder X-ray diffraction (PXRD) patterns were obtained on a Bruker D8-Advance X-ray
diffractometer using a Cu Kα radiation source. X-ray photoelectron spectroscopy (XPS) was carried
out using an Escalab 250Xi spectrometer with an Al Kα source. BET surface areas were collected
from N2 adsorption/desorption isotherms at 77 K using automatic volumetric adsorption equipment
(Micromeritics ASAP2020) after pretreatment under vacuum at 200 ◦C for 5 h. Transmission electron
microscope (TEM) images were recorded on an FEI Tecnai F20 transmission electron microscope with
an operating voltage of 200 kV. The metal content of the materials was collected on an inductively
coupled plasma-atomic emission spectrometer (ICP-AES, Thermo iCAP6300). The exit gas composition
was monitored using a Hiden QIC-20 quadruple mass spectrometer. Liquid samples were analyzed
using a Shimadzu QP-2010S GC/MS with a Restek RTX5 30 m 0.25 mm capillary column according to
the temperature program (100 ◦C isotherm for 2 min, then heated to 260 ◦C with a ramping rate of
10 ◦C/min).

4. Conclusions

In summary, we have developed an alcohol reduction method for the fabrication of Pd/CNTs
with different palladium loadings. The as-synthesized 3.0 wt% Pd/CNTs exhibited outstanding
catalytic performance for hydrogen release of dodecahydro-N-ethylcarbazole at 533 K with a
conversion rate of 99.7% and 5.8 wt% H2. Furthermore, the activation energy for producing
hydrogen from dodecahydro-N-ethylcarbazole catalyzed by 3.0 wt% Pd/CNTs was found to be
43.8 ± 0.2 kJ mol−1. More importantly, the as-synthesized 3.0 wt% Pd/CNTs possess excellent
cycle stability for the dehydrogenation of dodecahydro-N-ethylcarbazole. The reusability tests
revealed that 3.0 wt% Pd/CNTs exhibited superior activity even five runs into the hydrogen evolution
of dodecahydro-N-ethylcarbazole providing 96.4% conversion and 5.6 wt% H2 at the fifth run.
In addition, this simple synthesis means may provide a new avenue for the noble-metal and CNTs in
dehydrogenation reaction.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/8/12/638/s1,
Figure S1: XRD patterns for the synthesized Pd/CNTs with 20 wt% Pd loading, Figure S2: Nitrogen
adsorption-desorption isotherms for CNTs and 3.0 wt% Pd/CNTs, Figure S3: Pore size distribution for CNTs and
3.0 wt% Pd/CNTs, Table S1. The content of Pd in Pd/CNTs with different loading based on ICP-AES analysis.
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