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Abstract: To enhance the low-temperature catalytic activity and stability of Ni/bentonite catalyst,
Ni-Mn/bentonite catalyst was prepared by introducing Mn into Ni/bentonite catalyst and was used
for CO2 methanation. The results indicated that the addition of Mn enhanced the interaction between
the NiO and the bentonite carrier, increased the dispersion of the active component Ni and decreased
the grain size of the active component Ni, increased the specific surface area and pore volume of the
Ni/bentonite catalyst, and decreased the average pore size, which suppressed the aggregation of Ni
particles grown during the CO2 methanation process. At the same time, the Mn addition increased
the amount of oxygen vacancies on the Ni/bentonite catalyst surface, which promoted the activation
of CO2 in the methanation reaction, increasing the low-temperature activity and stability of the
Ni/bentonite catalyst. Under the reaction condition of atmospheric pressure, 270 ◦C, V(H2):V(CO2) = 4,
and feed gas space velocity of 3600 mL·gcat

−1·h−1, the CO2 conversion on the Ni-Mn/bentonite
catalyst with 2wt% Mn was 85.2%, and the selectivity of CH4 was 99.8%. On the other hand, when
Mn was not added, the CO2 conversion reached 84.7% and the reaction temperature only raised to
300 ◦C. During a 150-h stability test, the CO2 conversion of Ni-2wt%Mn/bentonite catalyst decreased
by 2.2%, while the CO2 conversion of the Ni/bentonite catalyst decreased by 6.4%.
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1. Introduction

With the development of modern society and the increasing combustion of fossil fuels, the CO2

concentration in the atmosphere has increased in recent years, causing global warming and even
climate change [1,2]. Hence, CO2 capture and sequestration (CCS) and conversion continue to play
a key role in reducing the atmospheric CO2 concentration and make the transition towards green
energy smoother, especially in carbon-intensive regions [3–6].

Catalytic hydrogenation of CO2 to methane, also called the Sabatier reaction, is an important
reaction in CO2 utilization [7,8]; it is also a simple and environment-friendly process, and the
main product, methane (CH4), is the main constituent of natural gas, which has the advantages
of high calorific value and environmental protection. CH4 demands have been increasing in recent
years [9,10]. At present, Rh/γ-Al2O3 [11,12], Ni/Al2O3 [13,14], Ni/ZrO2 [15–17], Ni/CeO2 [17–19],
Ni/USY zeolites [20,21], and Ni/La2O3 [17,22] have been used for the catalytic hydrogenation of CO2

to CH4. Among them, the Ni-based catalysts have been widely used in CO2 hydrogenation due to
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their lower cost than the noble metal-based catalysts, high catalytic properties and they are easily
obtainable [10,13,14,22]. CO2 is an inert molecule which is difficult to be activated at low temperature;
therefore, higher CO2 conversion can only be obtained at higher temperatures above 350 ◦C, leading to
an adverse influence on the catalysts stability/lifetime, easy to sinter deactivation [23], and increased
energy consumption [24]. Therefore, to reduce the reaction temperature, low-temperature activity
Ni-based catalysts should be developed.

In our previous study [25], Ni/bentonite with higher catalytic CO2 methanation activity was
prepared by using a solution combustion synthesis (SCS), which has the advantage of simple prepared
apparatus, rapid reaction rates, low-cost, and relatively low preheating temperatures [26]; furthermore,
the fuel in SCS provided energy in the combustion and was used as a complexing agent to form
a complex with metal ions, which increase its solubility. However, the lower temperature activity and
stability of the Ni/bentonite catalysts prepared by SCS were still low [25].

In general, the addition of a small amount of rare earth or transition metal could effectively reduce
the catalytic hydrogenation reaction temperature, i.e., Ni2+ could be partially substituted with Co3+

ions to form a Ni-Co spinel solid solution, and is vital for CO oxidation [27]; Fe modified Mn/TiO2

catalysts showed distinguished catalytic activities in the NH3-SCR reaction [28]; the addition of La and
Mn additives facilitated the dispersion of Ni species, and increased the syngas methanation activities of
Ni catalysts [29]. Among them, transition metal Mn exhibited the properties of the adjusted d-electron
structure and could improve the surface area of the active metal, as well as the metal dispersion
on the support [30]. In the present study, to improve the catalytic activities and stabilities of the
Ni/bentonite catalysts, based on the previous research about the Ni-based catalysts [25,31,32], Mn was
used to modify the Ni/bentonite prepared by SCS using urea as a fuel, and was applied in the CO2

catalytic hydrogenation to CH4. Furthermore, the Ni/bentonite catalysts were characterized by X-ray
diffraction (XRD), H2 temperature-programmed reduction (H2-TPR), scanning electron microscope
(SEM), N2-adsorption/desorption, and X-ray photoelectron spectroscopy (XPS).

2. Results and Discussion

2.1. Effects of Metal Modification on CO2 Methanation on Ni/Bentonite

The addition of a small amount of other metal elements to the Ni catalyst has an effect on the
catalytic activity. The addition of 2 wt% Na, Mg, or Mn respectively influenced the catalytic activity.
The Ni/ bentonite-U (U means the Urea was used as the fuel in a SCS) catalysts were modified by
adding 2 wt% Na, Mg, Mn, Ce, and La, respectively, and were used in the methanation of CO2.
The activities of the catalysts before and after the modification were compared and the results are
shown in Figure 1.

From Figure 1, at 200–350 ◦C, the activity order of the CO2 conversion in the CO2 methanation
for the Ni/bentonite-U catalysts was: Ni-Mn/bentonite-U > Ni-Ce/bentonite-U > Ni-La/bentonite-U
> Ni-Mg/bentonite-U ≈ Ni/bentonite-U > Ni-Na/bentonite-U. Considering the order, the CO2

conversion on the Ni/bentonite-U catalyst was reduced after adding Na. The reduction might be
attributed to the fact that the addition of Na covered some of the Ni active sites and weakened the
adsorption ability of the reactant molecules on the surface of Ni/bentonite catalysts [33]. In Figure 1,
the addition of Mg did not exhibit a significant effect on CO2 conversion in the CO2 methanation,
which may be due to the formation of the stronger interaction between Ni and Mg oxides, leading to
the decreased amount of nickel-active sites available and thus the catalytic performance [34]. However,
the addition of La, Ce and Mn increased the CO2 conversion of Ni/bentonite-U catalysts at low
temperature, which might be due to the fact that the addition of these three metals could promote the
structure and performance of the catalysts, form oxygen vacancies, change the interaction between
the active component Ni and the support, and the CO2 could be activated by the basic sites formed
between the metal and the Ni, which further improved the catalytic activity of the catalysts [35–40].
Among these five metals, the addition of Mn had the most significant improvement with regards to
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catalyst activity. Therefore, the influence of the additive on the catalytic activity and stability of the
catalysts was investigated by selecting the Mn promoter.
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Figure 1. Effects of Ni/bentonite-U catalyst modified with different metals on the CO2 conversion
(A) and CH4 selectivity (B). Reaction conditions: atmospheric pressure, V(H2)/V(CO2) = 4,
GHSV = 3600 mL·gcat

−1·h−1.

2.2. The Effects of the Mn on the CO2 Methanation on Ni/bentonite Catalysts

The Ni-Mn/bentonite-U catalysts with the Mn contents of 0, 1.0, 2.0, and 3.0 wt% were prepared
by the impregnation combustion method, and the catalysts were used in CO2 methanation. Figure 2
shows the effects of the Mn contents on the catalytic activity of the Ni-Mn/bentonite-U catalysts.
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(A) and CH4 selectivity (B). Reaction conditions: atmospheric pressure, V(H2)/V(CO2) = 4,
GHSV = 3600 mL·gcat

−1·h−1.

The CO2 conversion on the Ni-Mn/bentonite-U and the Ni/bentonite-U catalysts increased
with increasing temperature from 200 to 300 ◦C. The CO2 conversion on the Ni-Mn/bentonite-U
catalyst was higher than that on the Ni/bentonite-U catalysts in 200–300 ◦C. The CO2 conversion
on the Ni-Mn/bentonite-U and the Ni/bentonite-U catalysts decreased gradually above 300 ◦C.
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The highest CO2 conversion 88.0% was obtained when the content of Mn reached 2wt% and the CH4

selectivity was approximately 99.7% at 300 ◦C on the Ni-2wt%Mn/bentonite-U catalyst. In the same
conditions, the CO2 conversion and CH4 selectivity were 84.7% and 99.7% at 300 ◦C, respectively,
on the Ni/bentonite-U. Therefore, The Mn could increase the CO2 conversion at low temperature,
and 2wt% Mn was chosen as the optimal addition amount to investigate the effects of the Mn on the
structure and surface properties of the Ni/bentonite-U catalysts.

2.3. XRD Analysis

Figure 3 shows the XRD patterns of the Ni/bentonite-U and the Ni-2wt%Mn/Bentonite-U
catalysts after 4 h calcining at 400 ◦C. Four diffraction peaks (2θ = 19.8◦, 34.9◦, 54.2◦, and 62.0◦),
which were the characteristic diffraction peaks of montmorillonite, were both found in the spectra of
the Ni/bentonite-U and the Ni-2wt%Mn/bentonite-U catalysts, indicating that montmorillonite was
the main component in bentonite. The diffraction peaks (2θ = 37.2◦, 43.3◦, 62.9◦, 75.4◦, and 79.4◦) of NiO
(JCPDS card NO. 47-1049) were both detected in the Ni/bentonite-U and the Ni-2wt%Mn/bentonite-U
catalysts, which ascribed to the planes (111), (200), (220), (311), and (222) of the NiO cubic phase,
respectively. No diffraction peaks of the Mn were found in the XRD patterns of the Ni-Mn/bentonite-U
samples, which might be due to the low Mn content, the amorphous state of Mn, or the highly
dispersion of Mn on the catalyst surface [27].
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Figure 3. XRD patterns of the Ni/Bentonite-U (a) and Ni-2wt%Mn/Bentonite-U (b) after being calcined
at 400 ◦C.

In addition, the intensity of NiO diffraction peaks in the Ni-2wt%Mn/bentonite-U catalyst
was remarkably weaker than the intensity of NiO diffraction peaks in the Ni/bentonite-U catalyst.
According to the diffraction plane (200), the average grain sizes of NiO in different catalysts were
calculated by the Scherrer’s equation. NiO had a smaller grain size in Ni-2wt%Mn/bentonite-U catalyst
(5.3 nm) than in the Ni/bentonite-U catalyst (8.2 nm), which demonstrated that the addition of Mn
decreased the average grain sizes of NiO and promoted NiO dispersion on bentonite [41]. The smaller
Ni particles could promote the activation of CO2 by promoting H spillover to the surface of the carrier
and enhancing the CO2 methanation activity [42].

2.4. SEM Analysis

Figure 4 showed the SEM images of the Ni/bentonite-U and Ni-2wt%Mn/bentonite-U catalysts
after the reduction, and the effects of Mn on the morphologies and the catalyst structures
were investigated.
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Figure 4. SEM images of the reduced Ni/bentonite-U (A) and Ni-2wt%Mn/bentonite-U (B) catalysts.

As shown in Figure 4A,B, the Ni/bentonite-U and the Ni-2wt%Mn/bentonite-U catalysts
were irregularly spherical, indicating that adding Mn did not change the morphologies of the
Ni/bentonite-U catalyst. After adding Mn, the Ni particles were uniformly dispersed on the surface of
the reduced Ni-2wt%Mn/bentonite-U catalyst and the Ni particle size was about 15 nm, which was
smaller than the particle size of Ni in the Ni/bentonite-U catalysts (20 nm). It was concluded that
adding Mn prohibits the aggregation of Ni particles, resulting in a decrease of Ni particle size [43,44].

2.5. N2 Adsorption-Desorption Analysis

The N2 adsorption–desorption and pore size distribution of the Ni/bentonite-U and the
Ni-2wt%Mn/bentonite-U catalysts are shown in Figure 5, and the specific surface area and average
pore size calculated by BET and BJH methods are summarized in Table 1.
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Ni/Bentonite-U (a) and Ni-2wt%Mn/Bentonite-U (b).

According to the IUPAC classification, the N2 adsorption–desorption isotherm of the
Ni/bentonite-U and the Ni-2wt%Mn/bentonite-U catalysts can be attributabled to the IV-type isotherm,
as shown in Figure 5A. In the medium- and high-pressure region (P/P0 > 0.45), an H3-type hysteresis
loop was generated by the capillary condensation. The above results indicated that the Ni/bentonite-U
and Ni-2wt%Mn/bentonite-U catalysts both were mesoporous materials with a layered structure [45].
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From the pore size distribution curve in Figure 5B, the pore sizes of the two catalysts were in a narrow
range between 2 and 20 nm. After adding Mn, the pore size of Ni/bentonite-U catalyst did not
significantly change, which indicated that adding Mn exhibited no significant effect on the catalyst
pore size distribution.

Table 1. Texture properties of the Ni/Bentonite-U and Ni-2wt%Mn/Bentonite-U catalysts.

Catalysts SBET
1

(m2·g−1)
Average Pore

Diameter (nm)
Pore Volume

(mL·g−1)
Ni Dispersion 2

(%)

Bentonite 3 75.7 10.6 0.200 -
Ni/bentonite-U3 79.8 11.4 0.228 18.9

Ni-2wt%Mn/bentonite-U 92.6 8.8 0.203 22.1
1 Determined by N2 adsorption-desorption analysis; 2 Determined by H2 pulse chemisorption; 3 the data was
showed in Reference [25].

In general, the larger the specific surface area of the catalyst, the more active sites can be provided
for the reactant molecule, to a certain extent, which is beneficial to improve the catalytic activity of
the catalyst [4]. In Table 1, the BET surface area of the Ni-2wt%Mn/Bentonite-U (92.6 m2·g−1) was
larger than that of the Ni/bentonite-U (79.8 m2·g−1) and bentonite (75.7 m2·g−1) [26], respectively,
and the pore diameter of the Ni-2wt%Mn/bentonite-U (8.8 nm) was also smaller than that of the
Ni/Bentonite-U (11.4 nm) and bentonite (10.6 nm), respectively, indicating that the addition of Mn
exhibited a reduction of the pore diameter in Ni/bentonite catalysts. The results of Table 1 and XRD
data indicated that the addition of Mn promoted the dispersion of NiO species on the surface of
bentonite and reduced the blocking of NiO on the carrier pore. It concluded that the addition of Mn
had an effect on the pore structure of the catalyst, which made the NiO particles better dispersed in
the Ni-Mn/bentonite catalyst, and the catalyst with a larger specific surface area was advantageous to
the catalytic activity [46].

In Table 1, the dispersions of metal Ni, determined by H2 pulse chemisorption, on the
Ni/bentonite-U catalyst and Ni-2wt%Mn/bentonite-U catalyst were 18.8% and 22.1%, respectively.
It can be seen that the addition of Mn increased the dispersion of the active component Ni in the
catalyst, which was consistent with the XRD analysis.

2.6. XPS Analysis

Figure 6 showed the XPS profiles of the Ni 2p, O 1s, and Mn 2p for the Ni/bentonite-U and
Ni-2wt%Mn/bentonite-U catalysts, and the surface elemental composition and valence change of the
Ni-2wt%Mn/bentonite-U catalyst were studied.

In the Ni 2p spectra of Ni/bentonite-U and Ni-2wt%Mn/bentonite-U catalysts, there were five
Gaussian fitting peaks. Two peaks in the Ni 2p spectra, 873.2 eV and 854.5 eV, were typical binding
energies of Ni2+, indicating that Ni existed in the form of Ni2+ in the two catalysts [47,48]. The peaks
at 879.6 and 861.7 eV were the satellite peaks of the Ni 2p1/2 and Ni 2p3/2 [49,50], respectively, and
were produced by the orbital spin splitting. In addition, the peak at 856.3 eV and the peak at about
856.2 eV was mainly caused by the presence of nickel-alumina spinel [49,51]. The binding energy of Ni
2p3/2 belonged to Ni(OH)2 [52], which might be overlapping with the peak of nickel-alumina spinel.
With the above analysis and XRD results, the major form for Ni in the catalysts was NiO.

In Table 2, the binding energies of the Ni 2p in the Ni-2wt%Mn/bentonite-U catalyst were
0.1–0.3 eV higher than those in the Ni/bentonite-U catalyst, indicating that the addition of Mn
acted as an electron promoter which increased the binding energy of Ni in Ni/bentonite-U
catalyst and decreased the electron cloud density around Ni. This phenomenon made Ni exist
in an electron-deficient state, which would improve catalytic hydrogenation activity. Therefore,
the addition of Mn changed the energy state of Ni in the Ni/bentonite-U catalyst, and also the
change of binding energy indicated there was an interaction between Ni and Mn [51,53].
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Table 2. Binding Energy of Ni 2p, Mn 2p, and O 1s for Ni/bentonite-U and Ni-2wt%Mn/bentonite-U catalysts.

XPS Spectra Element Valence
Binding Energy (eV) (Percent of Valence State, %)

Ni/Bentonite-U Ni-2wt%Mn/Bentonite-U

Ni 2p Ni2+(Ni 2p1/2) 879.4(14.43) 879.6(14.87)
Ni2+(Ni 2p1/2) 873.0(16.94) 873.2(16.83)
Ni2+(Ni 2p3/2) 861.4(32.79) 861.7(31.18)
Ni2+(Ni 2p3/2) 856.2(22.24) 856.3(24.54)
Ni2+(Ni 2p3/2) 854.2(13.61) 854.5(12.57)

Mn 2p Mn4+(Mn 2p1/2) - 654.0(4.26)
Mn4+(Mn 2p3/2) - 642.1(95.74)

O 1s O− 532.4(74.85) 532.3(83.55)
OH- 531.4(13.32) 531.2(7.70)
O2− 529.9(13.32) 529.6.0(8.76)

In the O 1s spectra, there were three oxygen species in the two catalysts. The binding energies
at 529.9 and 529.6 eV were corresponding to lattice oxygen (O2−). The peaks at 531.4 and 531.2 eV
belonged to hydroxyl oxygen (OH−), and the peaks at 532.4 and 532 eV were yielded by surface
adsorbed oxygen (O−) [54]. Also, hydroxyl oxygen can be dehydrated to form adsorbed oxygen
species under certain conditions [55]. When Mn was added, the binding energies of O 1s of the
catalysts moved in the direction of low electron binding energies, i.e., towards the characteristic peaks
of the lattice oxygen species. In Table 2, the content of surface-adsorbed oxygen in the Ni/bentonite-U
catalyst was 83.55% of the total oxygen content, which was 8.7% higher than that of the Ni/bentonite,
indicating that the addition of Mn made the catalyst surface produce more surface adsorbed oxygen,
representing the amount of oxygen vacancy. The addition of Mn increased the oxygen vacancy in
the catalyst which was beneficial to the adsorption and dissociation of CO2 molecules on the catalyst
into intermediate species [54]. In the Mn 2p spectrum, the peak located at 642.5 eV corresponded to
Mn 2p 3/2, and the peak at 653.9 eV was Mn 2p 1/2, indicating that the Mn existed as Mn4+, that is,
MnO2 [56,57].

2.7. H2-TPR Analysis

H2-TPR was carried out for the Ni/bentonite-U and Ni-2wt%Mn /bentonite-U catalysts, and the
effect of Mn addition on the reductive performance of the catalyst and the interaction between metal
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and carriers were investigated. The results are shown in Figure 7; each reduction curve was fitted with
Gaussian fitting peaks. The calculation results are shown in Table 3.Catalysts 2018, 8, x FOR PEER REVIEW  8 of 15 
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Table 3. Temperatures and area distributions of reduction peaks of Ni/Bentonite-U and Ni-2wt%Mn/
Bentonite-U catalysts.

Catalysts
Tmax Ni Species Reduction (◦C) Peak Area 1 (a.u.) Total Area

(a.u.)θ α β γ δ θ α β γ δ

Ni/bentonite-U - 340 393 493 696 - 4381 8887 1729 431 15,428
Ni-2wt%Mn/bentonite-U 224 321 389 504 679 1140 1130 13,740 3395 848 20,253

1 The results were measured from H2-TPR profiles and the area distributions were calculated by integration of the
area under the peaks.

There were four hydrogen reduction peaks (α, β, γ, and δ) in the Ni/bentonite-U and
Ni-2wt%Mn/bentonite-U catalysts corresponding to the reduction of NiO species having different
interactions with bentonite. The temperature of the reduction peak α in Ni/bentonite-U catalyst
(centered at 340 ◦C) was higher than the temperature of Ni-2wt%Mn/bentonite-U catalyst (321 ◦C),
which corresponded to the reduction of the larger particles of NiO which existed on the surface
of the catalyst and had a weak interaction with bentonite [58,59]. The reduction peak β was
assigned to the reduction of NiO particles confined within the mesopores, which had a relatively
strong interaction with bentonite [58,60]. The peak β temperature did not change significantly
in the samples. The reduction peak γ belonged to the reduction of the greater dispersion NiO
particles on the surface of bentonite, and the NiO particles had a strong interaction with the
support [61]. The temperature of the reduction peak γ (504 ◦C) in the Ni-Mn/bentonite-U catalyst was
higher than that of Ni/bentonite-U catalyst (493 ◦C). The peak temperature shifted to high temperature,
which indicated that the Mn addition enhanced the interaction between support and NiO. The small δ
peaks centered at 679 and 696 ◦C, corresponding to Ni-2wt%Mn/bentonite-U and Ni/bentonite-U
catalysts, respectively, were ascribed to the stable nickel aluminate phase with a spinel structure [60,61].

In addition, it is observed that the addition of Mn made the catalyst have a weak reduction
peak θ at low temperature (<280 ◦C), which is attributed to the oxygen species adsorbed on the
oxygen vacancy of NiO-Mg oxide solid melt [62], which is consistent with the results of XPS analysis.
There were more oxygen vacancies on the surface of the Mn-modified catalyst, but no NiO-Mg oxide
solid melt was observed in XRD spectra. The reason might be that the grain size of the material was
too small to be detected.
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Table 3 showed that the total reduction peak area (20253 a.u.) of Ni-2wt%Mn/bentonite-U catalyst
was larger than that of Ni/bentonite-U catalyst (15428 a.u.). The larger the peak area was, the more
active the components on the surface of the catalyst were, and the more active sites could be provided,
so as to improve the catalytic activity [63]. The reduction peak area proportion of α-type NiO decreased
and the β-type NiO proportion increased with the addition of Mn. After the reduction, α-type NiO
was the source of large Ni particles, β-type NiO was the source of small Ni particles, and γ-type NiO
was the source of fine Ni particles, indicating that the doping of Mn could inhibit the formation of large
NiO species in the calcination process of the catalyst [64]. At the same time, the NiO corresponding to
the β-reduction peak was also the main Ni source of the catalyst activity at low temperature. The area
of the β-reduction peak in Ni-2wt%Mn/bentonite-U catalyst (13740 a.u.) was larger than that of the
peak in Ni/bentonite-U catalyst (8887 a.u.). Therefore, Ni-2wt%Mn/bentonite-U catalyst had better
catalytic activity at low temperature [65]. This was consistent with the CO2 methanation activity data
in previous Section 2.2.

2.8. Effect of Gas Hourly Space Velocity

Ni-2wt%Mn/bentonite-U catalyst was reduced by H2 for 2 h under 3600 mL·gcat
−1·h−1 GHSV.

The effects of feed gas GHSV at 2400−8400 mL·gcat
−1·h−1 on the CO2 methanation are shown

in Figure 8.
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Figure 8. Effect of GHSV on catalytic CO2 methanation of Ni/bentonite-U and Ni-2wt%Mn/bentonite-U
catalysts. Reaction conditions: atmospheric pressure, T = 300 ◦C, V(H2)/V(CO2) = 4.

The CO2 conversion decreased with the increase of GHSV. When the GHSV increased from
2400 to 8400 mL·gcat

−1·h−1, the CO2 conversion decreased from 89.1% to 76.4%. The reason was
that the GHSV increasing reduced the contact time between Ni-2wt%Mn/bentonite-U catalyst and
the CO2/H2 mixture, causing a lower CO2 conversion rate. The CO2 conversion was 88.0% and
the selectivity of CH4 was 100% when the GHSV was 3600 mL·gcat

−1·h−1. When the GHSV was
higher than 3600 mL·gcat

−1·h−1, the CO2 conversion decreased rapidly. According to the experimental
results and the comparability of the data, 3600 mL·gcat

−1·h−1 was chosen as the optimal GHSV for the
investigation of the catalyst stability.

2.9. Stability of Catalysts

The stability of Ni/bentonite and Ni-2wt%Mn/bentonite catalysts was investigated at
atmospheric pressure, 300 ◦C, V(H2)/V(CO2) = 4:1, GHSV = 3600 mL·gcat

−1·h−1. The results are
shown in Figure 9.
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atmospheric pressure, T = 300 ◦C, V(H2)/V(CO2) = 4, GHSV = 3600 mL·gcat

−1·h−1.

During the 150-h reaction, the CO2 conversion under the catalysis of Ni-2wt%Mn/bentonite
catalyst remained at about 87%, and CH4 selectivity was above 99%. For the Ni/bentonite
catalysts, the CO2 conversion decreased from 84.8% to 78.4%. The results indicated that the
Ni-2wt%Mn/bentonite catalysts exhibited a better catalytic stability than the Ni/bentonite catalysts
did, and showed a higher catalytic activity at low temperatures.

2.10. Catalyst Characterization after the Reaction

The diffraction peaks of montmorillonite and quartz in the two catalysts after the 150-h
stability test are shown in Figure 10. The diffraction peaks of montmorillonite were found at
2θ = 5–10◦, which indicated that the layered structure of bentonite was not destroyed after the
150-h reaction. The diffraction peaks at 2θ = 44.6◦, 52.0◦, and 76.6◦ (JCPDS card NO.87-0712)
corresponded to the crystal plane of Ni (111), (200), and (220). The diffraction peak intensity of
Ni in Ni-2wt%Mn/bentonite-U catalyst was weaker than that of Ni in the Ni/bentonite-U catalyst,
indicating that Ni particles had good dispersity and stability and a smaller particle size. In addition,
the corresponding characteristic diffraction peaks of carbon were not detected in the two catalysts,
illustrating the carbon deposition might exist in the amorphous state.

Figure 11 shows the SEM images of Ni-2wt%Mn/bentonite-U and Ni/bentonite-U catalysts after
the 150-h reaction. The carbon deposition was not observed on the surface of the two catalysts.
In Figure 11A, the Ni particles size was smaller and the particles dispersed uniformly in fresh
Ni-2wt%Mn/bentonite-U catalysts. According to Figure 11B, the Ni particles size was obviously
aggregated and grew up after the 150-h reaction. However, for the Ni-2wt%Mn/bentonite-U catalysts,
the Ni particles were well dispersed and Ni particle size did not show significant change before and
after the reaction. With the previous analysis, the Ni particles in the Ni-2wt%Mn/bentonite-U catalysts
exhibited a high dispersion with a smaller particle size. The Mn addition enhanced the interaction
between NiO and bentonite and inhibited the aggregation and growth of Ni particles during the
reaction process (The aggregation and growth of Ni particles would cause the catalytic activity to
reduce), which gave the catalyst better stability.
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3. Experiments

3.1. Catalysts Preparation

The Ni/bentonite catalysts were prepared by using SCS with a 20 wt% metallic Ni loading
amount based on the bentonite weight [25]. Typically, to obtain a suspension, 3.0 g bentonite and
2.97 g Ni(NO3)2·6H2O were dissolved in 20 mL deionized water, and 3.0 g urea and 0.125, 0.25, and
0.375 mL 50% Mn(NO3)2 of water solution were added to the above suspension, before being heated
to 70 ◦C and impregnated at 200 r·min−1 for 4 h. Subsequently, the above mixture was heated to
400 ◦C at a 5 ◦C·min−1 heating rate, and kept at 400 ◦C for 4 h. The obtained catalyst with a Ni loading
amount of 20 wt% and a 1.0, 2.0 and 3.0 wt% Mn was marked as Ni-x%Mn/bentonite-U(x = 1.0, 2.0,
and 3.0). Accordingly, the Ni-Na/bentonite-U, Ni-Mg/ bentonite-U, Ni-La/ bentonite -U, and Ni-Ce/
bentonite-U catalysts with 2 wt% metal were prepared.

3.2. Catalytic Hydrogenation of CO2

The catalytic CO2 methanation on the above Ni-based bentonite catalyst was conducted at
atmospheric pressure in a fixed-bed reactor; the detail of the experiments can be found in the
literature [25].
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3.3. Catalyst Characterization

The XRD, N2 adsorption-desorption, SEM, XPS, and H2-TPR were conducted to characterize the
catalysts; the details are as described in the literature [25].

4. Conclusions

The Ni/bentonite catalyst was prepared by a solution combustion synthesis and modified
by manganese (Mn) as a cocatalyst in the present study. The results showed the Mn modification
improved the low-temperature catalytic activity and stability. The Mn-modification Ni/bentonite
catalysts exhibited a larger surface area and pore volume, a lower average pore diameter, and a higher
metal Ni particles dispersion than the Ni/bentonite catalysts, which would form more Ni activity
centers. H2-TPR analysis showed that the Mn addition increased the total hydrogen consumption
of the catalyst and the β-type NiO content, which form the easily reduced Ni species, and led to
the Ni-2wt%Mn/bentonite-U catalyst which exhibited better low-temperature activity. XPS results
indicated that the Mn addition reduced the electron cloud density around Ni, put the Ni in
an electron-deficient state, and more oxygen vacancies were formed on the catalyst surface,
which was also beneficial to the CO2 molecular activation and increased the catalytic activity for
CO2 methanation. Furthermore, Mn addition reduced the Ni particle size and delayed the Ni particles
growth in the CO2 methanation process, which improved the stability of the catalysts. When using
Ni-2wt%Mn/bentonite-U as the catalyst, under the condition of atmospheric pressure, 270 ◦C,
V(H2)/V(CO2) = 4, and a GHSV of 3600 mL·gcat

−1·h−1, the CO2 conversion and CH4 selectivity
were 85.2 and 100%, respectively, which was equivalent to the activities of the Ni/bentonite-U catalyst
at 300 ◦C. In the 150-h stability test, the CO2 conversion decreased by 2.2% on the Ni-Mn/bentonite
catalyst CO2, while the CO2 conversion decreased by 6.4% on the Ni/bentonite catalyst.
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